aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Scalar/Reassociate.cpp
blob: 09687d8909da30ee70e0c454daa9a187cb921715 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass reassociates commutative expressions in an order that is designed
// to promote better constant propagation, GCSE, LICM, PRE, etc.
//
// For example: 4 + (x + 5) -> x + (4 + 5)
//
// In the implementation of this algorithm, constants are assigned rank = 0,
// function arguments are rank = 1, and other values are assigned ranks
// corresponding to the reverse post order traversal of current function
// (starting at 2), which effectively gives values in deep loops higher rank
// than values not in loops.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "reassociate"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/IRBuilder.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Pass.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ValueHandle.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
using namespace llvm;

STATISTIC(NumChanged, "Number of insts reassociated");
STATISTIC(NumAnnihil, "Number of expr tree annihilated");
STATISTIC(NumFactor , "Number of multiplies factored");

namespace {
  struct ValueEntry {
    unsigned Rank;
    Value *Op;
    ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
  };
  inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
    return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
  }
}

#ifndef NDEBUG
/// PrintOps - Print out the expression identified in the Ops list.
///
static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
  Module *M = I->getParent()->getParent()->getParent();
  dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
       << *Ops[0].Op->getType() << '\t';
  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
    dbgs() << "[ ";
    WriteAsOperand(dbgs(), Ops[i].Op, false, M);
    dbgs() << ", #" << Ops[i].Rank << "] ";
  }
}
#endif

namespace {
  /// \brief Utility class representing a base and exponent pair which form one
  /// factor of some product.
  struct Factor {
    Value *Base;
    unsigned Power;

    Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {}

    /// \brief Sort factors by their Base.
    struct BaseSorter {
      bool operator()(const Factor &LHS, const Factor &RHS) {
        return LHS.Base < RHS.Base;
      }
    };

    /// \brief Compare factors for equal bases.
    struct BaseEqual {
      bool operator()(const Factor &LHS, const Factor &RHS) {
        return LHS.Base == RHS.Base;
      }
    };

    /// \brief Sort factors in descending order by their power.
    struct PowerDescendingSorter {
      bool operator()(const Factor &LHS, const Factor &RHS) {
        return LHS.Power > RHS.Power;
      }
    };

    /// \brief Compare factors for equal powers.
    struct PowerEqual {
      bool operator()(const Factor &LHS, const Factor &RHS) {
        return LHS.Power == RHS.Power;
      }
    };
  };
}

namespace {
  class Reassociate : public FunctionPass {
    DenseMap<BasicBlock*, unsigned> RankMap;
    DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
    SetVector<AssertingVH<Instruction> > RedoInsts;
    bool MadeChange;
  public:
    static char ID; // Pass identification, replacement for typeid
    Reassociate() : FunctionPass(ID) {
      initializeReassociatePass(*PassRegistry::getPassRegistry());
    }

    bool runOnFunction(Function &F);

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.setPreservesCFG();
    }
  private:
    void BuildRankMap(Function &F);
    unsigned getRank(Value *V);
    void ReassociateExpression(BinaryOperator *I);
    void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
    Value *OptimizeExpression(BinaryOperator *I,
                              SmallVectorImpl<ValueEntry> &Ops);
    Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
    bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
                                SmallVectorImpl<Factor> &Factors);
    Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
                                   SmallVectorImpl<Factor> &Factors);
    Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
    Value *RemoveFactorFromExpression(Value *V, Value *Factor);
    void EraseInst(Instruction *I);
    void OptimizeInst(Instruction *I);
  };
}

char Reassociate::ID = 0;
INITIALIZE_PASS(Reassociate, "reassociate",
                "Reassociate expressions", false, false)

// Public interface to the Reassociate pass
FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }

/// isReassociableOp - Return true if V is an instruction of the specified
/// opcode and if it only has one use.
static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
  if (V->hasOneUse() && isa<Instruction>(V) &&
      cast<Instruction>(V)->getOpcode() == Opcode)
    return cast<BinaryOperator>(V);
  return 0;
}

static bool isUnmovableInstruction(Instruction *I) {
  if (I->getOpcode() == Instruction::PHI ||
      I->getOpcode() == Instruction::LandingPad ||
      I->getOpcode() == Instruction::Alloca ||
      I->getOpcode() == Instruction::Load ||
      I->getOpcode() == Instruction::Invoke ||
      (I->getOpcode() == Instruction::Call &&
       !isa<DbgInfoIntrinsic>(I)) ||
      I->getOpcode() == Instruction::UDiv ||
      I->getOpcode() == Instruction::SDiv ||
      I->getOpcode() == Instruction::FDiv ||
      I->getOpcode() == Instruction::URem ||
      I->getOpcode() == Instruction::SRem ||
      I->getOpcode() == Instruction::FRem)
    return true;
  return false;
}

void Reassociate::BuildRankMap(Function &F) {
  unsigned i = 2;

  // Assign distinct ranks to function arguments
  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
    ValueRankMap[&*I] = ++i;

  ReversePostOrderTraversal<Function*> RPOT(&F);
  for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
         E = RPOT.end(); I != E; ++I) {
    BasicBlock *BB = *I;
    unsigned BBRank = RankMap[BB] = ++i << 16;

    // Walk the basic block, adding precomputed ranks for any instructions that
    // we cannot move.  This ensures that the ranks for these instructions are
    // all different in the block.
    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
      if (isUnmovableInstruction(I))
        ValueRankMap[&*I] = ++BBRank;
  }
}

unsigned Reassociate::getRank(Value *V) {
  Instruction *I = dyn_cast<Instruction>(V);
  if (I == 0) {
    if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
    return 0;  // Otherwise it's a global or constant, rank 0.
  }

  if (unsigned Rank = ValueRankMap[I])
    return Rank;    // Rank already known?

  // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
  // we can reassociate expressions for code motion!  Since we do not recurse
  // for PHI nodes, we cannot have infinite recursion here, because there
  // cannot be loops in the value graph that do not go through PHI nodes.
  unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
  for (unsigned i = 0, e = I->getNumOperands();
       i != e && Rank != MaxRank; ++i)
    Rank = std::max(Rank, getRank(I->getOperand(i)));

  // If this is a not or neg instruction, do not count it for rank.  This
  // assures us that X and ~X will have the same rank.
  if (!I->getType()->isIntegerTy() ||
      (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
    ++Rank;

  //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
  //     << Rank << "\n");

  return ValueRankMap[I] = Rank;
}

/// LowerNegateToMultiply - Replace 0-X with X*-1.
///
static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
  Constant *Cst = Constant::getAllOnesValue(Neg->getType());

  BinaryOperator *Res =
    BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
  Neg->setOperand(1, Constant::getNullValue(Neg->getType())); // Drop use of op.
  Res->takeName(Neg);
  Neg->replaceAllUsesWith(Res);
  Res->setDebugLoc(Neg->getDebugLoc());
  return Res;
}

/// CarmichaelShift - Returns k such that lambda(2^Bitwidth) = 2^k, where lambda
/// is the Carmichael function. This means that x^(2^k) === 1 mod 2^Bitwidth for
/// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
/// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
/// even x in Bitwidth-bit arithmetic.
static unsigned CarmichaelShift(unsigned Bitwidth) {
  if (Bitwidth < 3)
    return Bitwidth - 1;
  return Bitwidth - 2;
}

/// IncorporateWeight - Add the extra weight 'RHS' to the existing weight 'LHS',
/// reducing the combined weight using any special properties of the operation.
/// The existing weight LHS represents the computation X op X op ... op X where
/// X occurs LHS times.  The combined weight represents  X op X op ... op X with
/// X occurring LHS + RHS times.  If op is "Xor" for example then the combined
/// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
/// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
  // If we were working with infinite precision arithmetic then the combined
  // weight would be LHS + RHS.  But we are using finite precision arithmetic,
  // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
  // for nilpotent operations and addition, but not for idempotent operations
  // and multiplication), so it is important to correctly reduce the combined
  // weight back into range if wrapping would be wrong.

  // If RHS is zero then the weight didn't change.
  if (RHS.isMinValue())
    return;
  // If LHS is zero then the combined weight is RHS.
  if (LHS.isMinValue()) {
    LHS = RHS;
    return;
  }
  // From this point on we know that neither LHS nor RHS is zero.

  if (Instruction::isIdempotent(Opcode)) {
    // Idempotent means X op X === X, so any non-zero weight is equivalent to a
    // weight of 1.  Keeping weights at zero or one also means that wrapping is
    // not a problem.
    assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
    return; // Return a weight of 1.
  }
  if (Instruction::isNilpotent(Opcode)) {
    // Nilpotent means X op X === 0, so reduce weights modulo 2.
    assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
    LHS = 0; // 1 + 1 === 0 modulo 2.
    return;
  }
  if (Opcode == Instruction::Add) {
    // TODO: Reduce the weight by exploiting nsw/nuw?
    LHS += RHS;
    return;
  }

  assert(Opcode == Instruction::Mul && "Unknown associative operation!");
  unsigned Bitwidth = LHS.getBitWidth();
  // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
  // can be replaced with W-CM.  That's because x^W=x^(W-CM) for every Bitwidth
  // bit number x, since either x is odd in which case x^CM = 1, or x is even in
  // which case both x^W and x^(W - CM) are zero.  By subtracting off multiples
  // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
  // which by a happy accident means that they can always be represented using
  // Bitwidth bits.
  // TODO: Reduce the weight by exploiting nsw/nuw?  (Could do much better than
  // the Carmichael number).
  if (Bitwidth > 3) {
    /// CM - The value of Carmichael's lambda function.
    APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
    // Any weight W >= Threshold can be replaced with W - CM.
    APInt Threshold = CM + Bitwidth;
    assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
    // For Bitwidth 4 or more the following sum does not overflow.
    LHS += RHS;
    while (LHS.uge(Threshold))
      LHS -= CM;
  } else {
    // To avoid problems with overflow do everything the same as above but using
    // a larger type.
    unsigned CM = 1U << CarmichaelShift(Bitwidth);
    unsigned Threshold = CM + Bitwidth;
    assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
           "Weights not reduced!");
    unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
    while (Total >= Threshold)
      Total -= CM;
    LHS = Total;
  }
}

/// EvaluateRepeatedConstant - Compute C op C op ... op C where the constant C
/// is repeated Weight times.
static Constant *EvaluateRepeatedConstant(unsigned Opcode, Constant *C,
                                          APInt Weight) {
  // For addition the result can be efficiently computed as the product of the
  // constant and the weight.
  if (Opcode == Instruction::Add)
    return ConstantExpr::getMul(C, ConstantInt::get(C->getContext(), Weight));

  // The weight might be huge, so compute by repeated squaring to ensure that
  // compile time is proportional to the logarithm of the weight.
  Constant *Result = 0;
  Constant *Power = C; // Successively C, C op C, (C op C) op (C op C) etc.
  // Visit the bits in Weight.
  while (Weight != 0) {
    // If the current bit in Weight is non-zero do Result = Result op Power.
    if (Weight[0])
      Result = Result ? ConstantExpr::get(Opcode, Result, Power) : Power;
    // Move on to the next bit if any more are non-zero.
    Weight = Weight.lshr(1);
    if (Weight.isMinValue())
      break;
    // Square the power.
    Power = ConstantExpr::get(Opcode, Power, Power);
  }

  assert(Result && "Only positive weights supported!");
  return Result;
}

typedef std::pair<Value*, APInt> RepeatedValue;

/// LinearizeExprTree - Given an associative binary expression, return the leaf
/// nodes in Ops along with their weights (how many times the leaf occurs).  The
/// original expression is the same as
///   (Ops[0].first op Ops[0].first op ... Ops[0].first)  <- Ops[0].second times
/// op
///   (Ops[1].first op Ops[1].first op ... Ops[1].first)  <- Ops[1].second times
/// op
///   ...
/// op
///   (Ops[N].first op Ops[N].first op ... Ops[N].first)  <- Ops[N].second times
///
/// Note that the values Ops[0].first, ..., Ops[N].first are all distinct, and
/// they are all non-constant except possibly for the last one, which if it is
/// constant will have weight one (Ops[N].second === 1).
///
/// This routine may modify the function, in which case it returns 'true'.  The
/// changes it makes may well be destructive, changing the value computed by 'I'
/// to something completely different.  Thus if the routine returns 'true' then
/// you MUST either replace I with a new expression computed from the Ops array,
/// or use RewriteExprTree to put the values back in.
///
/// A leaf node is either not a binary operation of the same kind as the root
/// node 'I' (i.e. is not a binary operator at all, or is, but with a different
/// opcode), or is the same kind of binary operator but has a use which either
/// does not belong to the expression, or does belong to the expression but is
/// a leaf node.  Every leaf node has at least one use that is a non-leaf node
/// of the expression, while for non-leaf nodes (except for the root 'I') every
/// use is a non-leaf node of the expression.
///
/// For example:
///           expression graph        node names
///
///                     +        |        I
///                    / \       |
///                   +   +      |      A,  B
///                  / \ / \     |
///                 *   +   *    |    C,  D,  E
///                / \ / \ / \   |
///                   +   *      |      F,  G
///
/// The leaf nodes are C, E, F and G.  The Ops array will contain (maybe not in
/// that order) (C, 1), (E, 1), (F, 2), (G, 2).
///
/// The expression is maximal: if some instruction is a binary operator of the
/// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
/// then the instruction also belongs to the expression, is not a leaf node of
/// it, and its operands also belong to the expression (but may be leaf nodes).
///
/// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
/// order to ensure that every non-root node in the expression has *exactly one*
/// use by a non-leaf node of the expression.  This destruction means that the
/// caller MUST either replace 'I' with a new expression or use something like
/// RewriteExprTree to put the values back in if the routine indicates that it
/// made a change by returning 'true'.
///
/// In the above example either the right operand of A or the left operand of B
/// will be replaced by undef.  If it is B's operand then this gives:
///
///                     +        |        I
///                    / \       |
///                   +   +      |      A,  B - operand of B replaced with undef
///                  / \   \     |
///                 *   +   *    |    C,  D,  E
///                / \ / \ / \   |
///                   +   *      |      F,  G
///
/// Note that such undef operands can only be reached by passing through 'I'.
/// For example, if you visit operands recursively starting from a leaf node
/// then you will never see such an undef operand unless you get back to 'I',
/// which requires passing through a phi node.
///
/// Note that this routine may also mutate binary operators of the wrong type
/// that have all uses inside the expression (i.e. only used by non-leaf nodes
/// of the expression) if it can turn them into binary operators of the right
/// type and thus make the expression bigger.

static bool LinearizeExprTree(BinaryOperator *I,
                              SmallVectorImpl<RepeatedValue> &Ops) {
  DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
  unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
  unsigned Opcode = I->getOpcode();
  assert(Instruction::isAssociative(Opcode) &&
         Instruction::isCommutative(Opcode) &&
         "Expected an associative and commutative operation!");
  // If we see an absorbing element then the entire expression must be equal to
  // it.  For example, if this is a multiplication expression and zero occurs as
  // an operand somewhere in it then the result of the expression must be zero.
  Constant *Absorber = ConstantExpr::getBinOpAbsorber(Opcode, I->getType());

  // Visit all operands of the expression, keeping track of their weight (the
  // number of paths from the expression root to the operand, or if you like
  // the number of times that operand occurs in the linearized expression).
  // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
  // while A has weight two.

  // Worklist of non-leaf nodes (their operands are in the expression too) along
  // with their weights, representing a certain number of paths to the operator.
  // If an operator occurs in the worklist multiple times then we found multiple
  // ways to get to it.
  SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
  Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
  bool MadeChange = false;

  // Leaves of the expression are values that either aren't the right kind of
  // operation (eg: a constant, or a multiply in an add tree), or are, but have
  // some uses that are not inside the expression.  For example, in I = X + X,
  // X = A + B, the value X has two uses (by I) that are in the expression.  If
  // X has any other uses, for example in a return instruction, then we consider
  // X to be a leaf, and won't analyze it further.  When we first visit a value,
  // if it has more than one use then at first we conservatively consider it to
  // be a leaf.  Later, as the expression is explored, we may discover some more
  // uses of the value from inside the expression.  If all uses turn out to be
  // from within the expression (and the value is a binary operator of the right
  // kind) then the value is no longer considered to be a leaf, and its operands
  // are explored.

  // Leaves - Keeps track of the set of putative leaves as well as the number of
  // paths to each leaf seen so far.
  typedef DenseMap<Value*, APInt> LeafMap;
  LeafMap Leaves; // Leaf -> Total weight so far.
  SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.

#ifndef NDEBUG
  SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
#endif
  while (!Worklist.empty()) {
    std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
    I = P.first; // We examine the operands of this binary operator.

    for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
      Value *Op = I->getOperand(OpIdx);
      APInt Weight = P.second; // Number of paths to this operand.
      DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
      assert(!Op->use_empty() && "No uses, so how did we get to it?!");

      // If the expression contains an absorbing element then there is no need
      // to analyze it further: it must evaluate to the absorbing element.
      if (Op == Absorber && !Weight.isMinValue()) {
        Ops.push_back(std::make_pair(Absorber, APInt(Bitwidth, 1)));
        return MadeChange;
      }

      // If this is a binary operation of the right kind with only one use then
      // add its operands to the expression.
      if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
        assert(Visited.insert(Op) && "Not first visit!");
        DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
        Worklist.push_back(std::make_pair(BO, Weight));
        continue;
      }

      // Appears to be a leaf.  Is the operand already in the set of leaves?
      LeafMap::iterator It = Leaves.find(Op);
      if (It == Leaves.end()) {
        // Not in the leaf map.  Must be the first time we saw this operand.
        assert(Visited.insert(Op) && "Not first visit!");
        if (!Op->hasOneUse()) {
          // This value has uses not accounted for by the expression, so it is
          // not safe to modify.  Mark it as being a leaf.
          DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
          LeafOrder.push_back(Op);
          Leaves[Op] = Weight;
          continue;
        }
        // No uses outside the expression, try morphing it.
      } else if (It != Leaves.end()) {
        // Already in the leaf map.
        assert(Visited.count(Op) && "In leaf map but not visited!");

        // Update the number of paths to the leaf.
        IncorporateWeight(It->second, Weight, Opcode);

#if 0   // TODO: Re-enable once PR13021 is fixed.
        // The leaf already has one use from inside the expression.  As we want
        // exactly one such use, drop this new use of the leaf.
        assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
        I->setOperand(OpIdx, UndefValue::get(I->getType()));
        MadeChange = true;

        // If the leaf is a binary operation of the right kind and we now see
        // that its multiple original uses were in fact all by nodes belonging
        // to the expression, then no longer consider it to be a leaf and add
        // its operands to the expression.
        if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
          DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
          Worklist.push_back(std::make_pair(BO, It->second));
          Leaves.erase(It);
          continue;
        }
#endif

        // If we still have uses that are not accounted for by the expression
        // then it is not safe to modify the value.
        if (!Op->hasOneUse())
          continue;

        // No uses outside the expression, try morphing it.
        Weight = It->second;
        Leaves.erase(It); // Since the value may be morphed below.
      }

      // At this point we have a value which, first of all, is not a binary
      // expression of the right kind, and secondly, is only used inside the
      // expression.  This means that it can safely be modified.  See if we
      // can usefully morph it into an expression of the right kind.
      assert((!isa<Instruction>(Op) ||
              cast<Instruction>(Op)->getOpcode() != Opcode) &&
             "Should have been handled above!");
      assert(Op->hasOneUse() && "Has uses outside the expression tree!");

      // If this is a multiply expression, turn any internal negations into
      // multiplies by -1 so they can be reassociated.
      BinaryOperator *BO = dyn_cast<BinaryOperator>(Op);
      if (Opcode == Instruction::Mul && BO && BinaryOperator::isNeg(BO)) {
        DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
        BO = LowerNegateToMultiply(BO);
        DEBUG(dbgs() << *BO << 'n');
        Worklist.push_back(std::make_pair(BO, Weight));
        MadeChange = true;
        continue;
      }

      // Failed to morph into an expression of the right type.  This really is
      // a leaf.
      DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
      assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
      LeafOrder.push_back(Op);
      Leaves[Op] = Weight;
    }
  }

  // The leaves, repeated according to their weights, represent the linearized
  // form of the expression.
  Constant *Cst = 0; // Accumulate constants here.
  for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
    Value *V = LeafOrder[i];
    LeafMap::iterator It = Leaves.find(V);
    if (It == Leaves.end())
      // Node initially thought to be a leaf wasn't.
      continue;
    assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
    APInt Weight = It->second;
    if (Weight.isMinValue())
      // Leaf already output or weight reduction eliminated it.
      continue;
    // Ensure the leaf is only output once.
    It->second = 0;
    // Glob all constants together into Cst.
    if (Constant *C = dyn_cast<Constant>(V)) {
      C = EvaluateRepeatedConstant(Opcode, C, Weight);
      Cst = Cst ? ConstantExpr::get(Opcode, Cst, C) : C;
      continue;
    }
    // Add non-constant
    Ops.push_back(std::make_pair(V, Weight));
  }

  // Add any constants back into Ops, all globbed together and reduced to having
  // weight 1 for the convenience of users.
  Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
  if (Cst && Cst != Identity) {
    // If combining multiple constants resulted in the absorber then the entire
    // expression must evaluate to the absorber.
    if (Cst == Absorber)
      Ops.clear();
    Ops.push_back(std::make_pair(Cst, APInt(Bitwidth, 1)));
  }

  // For nilpotent operations or addition there may be no operands, for example
  // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
  // in both cases the weight reduces to 0 causing the value to be skipped.
  if (Ops.empty()) {
    assert(Identity && "Associative operation without identity!");
    Ops.push_back(std::make_pair(Identity, APInt(Bitwidth, 1)));
  }

  return MadeChange;
}

// RewriteExprTree - Now that the operands for this expression tree are
// linearized and optimized, emit them in-order.
void Reassociate::RewriteExprTree(BinaryOperator *I,
                                  SmallVectorImpl<ValueEntry> &Ops) {
  assert(Ops.size() > 1 && "Single values should be used directly!");

  // Since our optimizations never increase the number of operations, the new
  // expression can always be written by reusing the existing binary operators
  // from the original expression tree, without creating any new instructions,
  // though the rewritten expression may have a completely different topology.
  // We take care to not change anything if the new expression will be the same
  // as the original.  If more than trivial changes (like commuting operands)
  // were made then we are obliged to clear out any optional subclass data like
  // nsw flags.

  /// NodesToRewrite - Nodes from the original expression available for writing
  /// the new expression into.
  SmallVector<BinaryOperator*, 8> NodesToRewrite;
  unsigned Opcode = I->getOpcode();
  BinaryOperator *Op = I;

  // ExpressionChanged - Non-null if the rewritten expression differs from the
  // original in some non-trivial way, requiring the clearing of optional flags.
  // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
  BinaryOperator *ExpressionChanged = 0;
  for (unsigned i = 0; ; ++i) {
    // The last operation (which comes earliest in the IR) is special as both
    // operands will come from Ops, rather than just one with the other being
    // a subexpression.
    if (i+2 == Ops.size()) {
      Value *NewLHS = Ops[i].Op;
      Value *NewRHS = Ops[i+1].Op;
      Value *OldLHS = Op->getOperand(0);
      Value *OldRHS = Op->getOperand(1);

      if (NewLHS == OldLHS && NewRHS == OldRHS)
        // Nothing changed, leave it alone.
        break;

      if (NewLHS == OldRHS && NewRHS == OldLHS) {
        // The order of the operands was reversed.  Swap them.
        DEBUG(dbgs() << "RA: " << *Op << '\n');
        Op->swapOperands();
        DEBUG(dbgs() << "TO: " << *Op << '\n');
        MadeChange = true;
        ++NumChanged;
        break;
      }

      // The new operation differs non-trivially from the original. Overwrite
      // the old operands with the new ones.
      DEBUG(dbgs() << "RA: " << *Op << '\n');
      if (NewLHS != OldLHS) {
        if (BinaryOperator *BO = isReassociableOp(OldLHS, Opcode))
          NodesToRewrite.push_back(BO);
        Op->setOperand(0, NewLHS);
      }
      if (NewRHS != OldRHS) {
        if (BinaryOperator *BO = isReassociableOp(OldRHS, Opcode))
          NodesToRewrite.push_back(BO);
        Op->setOperand(1, NewRHS);
      }
      DEBUG(dbgs() << "TO: " << *Op << '\n');

      ExpressionChanged = Op;
      MadeChange = true;
      ++NumChanged;

      break;
    }

    // Not the last operation.  The left-hand side will be a sub-expression
    // while the right-hand side will be the current element of Ops.
    Value *NewRHS = Ops[i].Op;
    if (NewRHS != Op->getOperand(1)) {
      DEBUG(dbgs() << "RA: " << *Op << '\n');
      if (NewRHS == Op->getOperand(0)) {
        // The new right-hand side was already present as the left operand.  If
        // we are lucky then swapping the operands will sort out both of them.
        Op->swapOperands();
      } else {
        // Overwrite with the new right-hand side.
        if (BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode))
          NodesToRewrite.push_back(BO);
        Op->setOperand(1, NewRHS);
        ExpressionChanged = Op;
      }
      DEBUG(dbgs() << "TO: " << *Op << '\n');
      MadeChange = true;
      ++NumChanged;
    }

    // Now deal with the left-hand side.  If this is already an operation node
    // from the original expression then just rewrite the rest of the expression
    // into it.
    if (BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode)) {
      Op = BO;
      continue;
    }

    // Otherwise, grab a spare node from the original expression and use that as
    // the left-hand side.  If there are no nodes left then the optimizers made
    // an expression with more nodes than the original!  This usually means that
    // they did something stupid but it might mean that the problem was just too
    // hard (finding the mimimal number of multiplications needed to realize a
    // multiplication expression is NP-complete).  Whatever the reason, smart or
    // stupid, create a new node if there are none left.
    BinaryOperator *NewOp;
    if (NodesToRewrite.empty()) {
      Constant *Undef = UndefValue::get(I->getType());
      NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
                                     Undef, Undef, "", I);
    } else {
      NewOp = NodesToRewrite.pop_back_val();
    }

    DEBUG(dbgs() << "RA: " << *Op << '\n');
    Op->setOperand(0, NewOp);
    DEBUG(dbgs() << "TO: " << *Op << '\n');
    ExpressionChanged = Op;
    MadeChange = true;
    ++NumChanged;
    Op = NewOp;
  }

  // If the expression changed non-trivially then clear out all subclass data
  // starting from the operator specified in ExpressionChanged, and compactify
  // the operators to just before the expression root to guarantee that the
  // expression tree is dominated by all of Ops.
  if (ExpressionChanged)
    do {
      ExpressionChanged->clearSubclassOptionalData();
      if (ExpressionChanged == I)
        break;
      ExpressionChanged->moveBefore(I);
      ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->use_begin());
    } while (1);

  // Throw away any left over nodes from the original expression.
  for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
    RedoInsts.insert(NodesToRewrite[i]);
}

/// NegateValue - Insert instructions before the instruction pointed to by BI,
/// that computes the negative version of the value specified.  The negative
/// version of the value is returned, and BI is left pointing at the instruction
/// that should be processed next by the reassociation pass.
static Value *NegateValue(Value *V, Instruction *BI) {
  if (Constant *C = dyn_cast<Constant>(V))
    return ConstantExpr::getNeg(C);

  // We are trying to expose opportunity for reassociation.  One of the things
  // that we want to do to achieve this is to push a negation as deep into an
  // expression chain as possible, to expose the add instructions.  In practice,
  // this means that we turn this:
  //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
  // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
  // the constants.  We assume that instcombine will clean up the mess later if
  // we introduce tons of unnecessary negation instructions.
  //
  if (BinaryOperator *I = isReassociableOp(V, Instruction::Add)) {
    // Push the negates through the add.
    I->setOperand(0, NegateValue(I->getOperand(0), BI));
    I->setOperand(1, NegateValue(I->getOperand(1), BI));

    // We must move the add instruction here, because the neg instructions do
    // not dominate the old add instruction in general.  By moving it, we are
    // assured that the neg instructions we just inserted dominate the
    // instruction we are about to insert after them.
    //
    I->moveBefore(BI);
    I->setName(I->getName()+".neg");
    return I;
  }

  // Okay, we need to materialize a negated version of V with an instruction.
  // Scan the use lists of V to see if we have one already.
  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
    User *U = *UI;
    if (!BinaryOperator::isNeg(U)) continue;

    // We found one!  Now we have to make sure that the definition dominates
    // this use.  We do this by moving it to the entry block (if it is a
    // non-instruction value) or right after the definition.  These negates will
    // be zapped by reassociate later, so we don't need much finesse here.
    BinaryOperator *TheNeg = cast<BinaryOperator>(U);

    // Verify that the negate is in this function, V might be a constant expr.
    if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
      continue;

    BasicBlock::iterator InsertPt;
    if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
      if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
        InsertPt = II->getNormalDest()->begin();
      } else {
        InsertPt = InstInput;
        ++InsertPt;
      }
      while (isa<PHINode>(InsertPt)) ++InsertPt;
    } else {
      InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
    }
    TheNeg->moveBefore(InsertPt);
    return TheNeg;
  }

  // Insert a 'neg' instruction that subtracts the value from zero to get the
  // negation.
  return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
}

/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
/// X-Y into (X + -Y).
static bool ShouldBreakUpSubtract(Instruction *Sub) {
  // If this is a negation, we can't split it up!
  if (BinaryOperator::isNeg(Sub))
    return false;

  // Don't bother to break this up unless either the LHS is an associable add or
  // subtract or if this is only used by one.
  if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
      isReassociableOp(Sub->getOperand(0), Instruction::Sub))
    return true;
  if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
      isReassociableOp(Sub->getOperand(1), Instruction::Sub))
    return true;
  if (Sub->hasOneUse() &&
      (isReassociableOp(Sub->use_back(), Instruction::Add) ||
       isReassociableOp(Sub->use_back(), Instruction::Sub)))
    return true;

  return false;
}

/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
/// only used by an add, transform this into (X+(0-Y)) to promote better
/// reassociation.
static BinaryOperator *BreakUpSubtract(Instruction *Sub) {
  // Convert a subtract into an add and a neg instruction. This allows sub
  // instructions to be commuted with other add instructions.
  //
  // Calculate the negative value of Operand 1 of the sub instruction,
  // and set it as the RHS of the add instruction we just made.
  //
  Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
  BinaryOperator *New =
    BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
  Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
  Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
  New->takeName(Sub);

  // Everyone now refers to the add instruction.
  Sub->replaceAllUsesWith(New);
  New->setDebugLoc(Sub->getDebugLoc());

  DEBUG(dbgs() << "Negated: " << *New << '\n');
  return New;
}

/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
/// by one, change this into a multiply by a constant to assist with further
/// reassociation.
static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
  Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
  MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));

  BinaryOperator *Mul =
    BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
  Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
  Mul->takeName(Shl);
  Shl->replaceAllUsesWith(Mul);
  Mul->setDebugLoc(Shl->getDebugLoc());
  return Mul;
}

/// FindInOperandList - Scan backwards and forwards among values with the same
/// rank as element i to see if X exists.  If X does not exist, return i.  This
/// is useful when scanning for 'x' when we see '-x' because they both get the
/// same rank.
static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
                                  Value *X) {
  unsigned XRank = Ops[i].Rank;
  unsigned e = Ops.size();
  for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
    if (Ops[j].Op == X)
      return j;
  // Scan backwards.
  for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
    if (Ops[j].Op == X)
      return j;
  return i;
}

/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
/// and returning the result.  Insert the tree before I.
static Value *EmitAddTreeOfValues(Instruction *I,
                                  SmallVectorImpl<WeakVH> &Ops){
  if (Ops.size() == 1) return Ops.back();

  Value *V1 = Ops.back();
  Ops.pop_back();
  Value *V2 = EmitAddTreeOfValues(I, Ops);
  return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
}

/// RemoveFactorFromExpression - If V is an expression tree that is a
/// multiplication sequence, and if this sequence contains a multiply by Factor,
/// remove Factor from the tree and return the new tree.
Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
  if (!BO) return 0;

  SmallVector<RepeatedValue, 8> Tree;
  MadeChange |= LinearizeExprTree(BO, Tree);
  SmallVector<ValueEntry, 8> Factors;
  Factors.reserve(Tree.size());
  for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
    RepeatedValue E = Tree[i];
    Factors.append(E.second.getZExtValue(),
                   ValueEntry(getRank(E.first), E.first));
  }

  bool FoundFactor = false;
  bool NeedsNegate = false;
  for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
    if (Factors[i].Op == Factor) {
      FoundFactor = true;
      Factors.erase(Factors.begin()+i);
      break;
    }

    // If this is a negative version of this factor, remove it.
    if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
      if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
        if (FC1->getValue() == -FC2->getValue()) {
          FoundFactor = NeedsNegate = true;
          Factors.erase(Factors.begin()+i);
          break;
        }
  }

  if (!FoundFactor) {
    // Make sure to restore the operands to the expression tree.
    RewriteExprTree(BO, Factors);
    return 0;
  }

  BasicBlock::iterator InsertPt = BO; ++InsertPt;

  // If this was just a single multiply, remove the multiply and return the only
  // remaining operand.
  if (Factors.size() == 1) {
    RedoInsts.insert(BO);
    V = Factors[0].Op;
  } else {
    RewriteExprTree(BO, Factors);
    V = BO;
  }

  if (NeedsNegate)
    V = BinaryOperator::CreateNeg(V, "neg", InsertPt);

  return V;
}

/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
/// add its operands as factors, otherwise add V to the list of factors.
///
/// Ops is the top-level list of add operands we're trying to factor.
static void FindSingleUseMultiplyFactors(Value *V,
                                         SmallVectorImpl<Value*> &Factors,
                                       const SmallVectorImpl<ValueEntry> &Ops) {
  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
  if (!BO) {
    Factors.push_back(V);
    return;
  }

  // Otherwise, add the LHS and RHS to the list of factors.
  FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
  FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
}

/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
/// instruction.  This optimizes based on identities.  If it can be reduced to
/// a single Value, it is returned, otherwise the Ops list is mutated as
/// necessary.
static Value *OptimizeAndOrXor(unsigned Opcode,
                               SmallVectorImpl<ValueEntry> &Ops) {
  // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
  // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
    // First, check for X and ~X in the operand list.
    assert(i < Ops.size());
    if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
      Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
      unsigned FoundX = FindInOperandList(Ops, i, X);
      if (FoundX != i) {
        if (Opcode == Instruction::And)   // ...&X&~X = 0
          return Constant::getNullValue(X->getType());

        if (Opcode == Instruction::Or)    // ...|X|~X = -1
          return Constant::getAllOnesValue(X->getType());
      }
    }

    // Next, check for duplicate pairs of values, which we assume are next to
    // each other, due to our sorting criteria.
    assert(i < Ops.size());
    if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
      if (Opcode == Instruction::And || Opcode == Instruction::Or) {
        // Drop duplicate values for And and Or.
        Ops.erase(Ops.begin()+i);
        --i; --e;
        ++NumAnnihil;
        continue;
      }

      // Drop pairs of values for Xor.
      assert(Opcode == Instruction::Xor);
      if (e == 2)
        return Constant::getNullValue(Ops[0].Op->getType());

      // Y ^ X^X -> Y
      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
      i -= 1; e -= 2;
      ++NumAnnihil;
    }
  }
  return 0;
}

/// OptimizeAdd - Optimize a series of operands to an 'add' instruction.  This
/// optimizes based on identities.  If it can be reduced to a single Value, it
/// is returned, otherwise the Ops list is mutated as necessary.
Value *Reassociate::OptimizeAdd(Instruction *I,
                                SmallVectorImpl<ValueEntry> &Ops) {
  // Scan the operand lists looking for X and -X pairs.  If we find any, we
  // can simplify the expression. X+-X == 0.  While we're at it, scan for any
  // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
  //
  // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
  //
  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
    Value *TheOp = Ops[i].Op;
    // Check to see if we've seen this operand before.  If so, we factor all
    // instances of the operand together.  Due to our sorting criteria, we know
    // that these need to be next to each other in the vector.
    if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
      // Rescan the list, remove all instances of this operand from the expr.
      unsigned NumFound = 0;
      do {
        Ops.erase(Ops.begin()+i);
        ++NumFound;
      } while (i != Ops.size() && Ops[i].Op == TheOp);

      DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
      ++NumFactor;

      // Insert a new multiply.
      Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
      Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);

      // Now that we have inserted a multiply, optimize it. This allows us to
      // handle cases that require multiple factoring steps, such as this:
      // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
      RedoInsts.insert(cast<Instruction>(Mul));

      // If every add operand was a duplicate, return the multiply.
      if (Ops.empty())
        return Mul;

      // Otherwise, we had some input that didn't have the dupe, such as
      // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
      // things being added by this operation.
      Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));

      --i;
      e = Ops.size();
      continue;
    }

    // Check for X and -X in the operand list.
    if (!BinaryOperator::isNeg(TheOp))
      continue;

    Value *X = BinaryOperator::getNegArgument(TheOp);
    unsigned FoundX = FindInOperandList(Ops, i, X);
    if (FoundX == i)
      continue;

    // Remove X and -X from the operand list.
    if (Ops.size() == 2)
      return Constant::getNullValue(X->getType());

    Ops.erase(Ops.begin()+i);
    if (i < FoundX)
      --FoundX;
    else
      --i;   // Need to back up an extra one.
    Ops.erase(Ops.begin()+FoundX);
    ++NumAnnihil;
    --i;     // Revisit element.
    e -= 2;  // Removed two elements.
  }

  // Scan the operand list, checking to see if there are any common factors
  // between operands.  Consider something like A*A+A*B*C+D.  We would like to
  // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
  // To efficiently find this, we count the number of times a factor occurs
  // for any ADD operands that are MULs.
  DenseMap<Value*, unsigned> FactorOccurrences;

  // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
  // where they are actually the same multiply.
  unsigned MaxOcc = 0;
  Value *MaxOccVal = 0;
  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
    BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
    if (!BOp)
      continue;

    // Compute all of the factors of this added value.
    SmallVector<Value*, 8> Factors;
    FindSingleUseMultiplyFactors(BOp, Factors, Ops);
    assert(Factors.size() > 1 && "Bad linearize!");

    // Add one to FactorOccurrences for each unique factor in this op.
    SmallPtrSet<Value*, 8> Duplicates;
    for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
      Value *Factor = Factors[i];
      if (!Duplicates.insert(Factor)) continue;

      unsigned Occ = ++FactorOccurrences[Factor];
      if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }

      // If Factor is a negative constant, add the negated value as a factor
      // because we can percolate the negate out.  Watch for minint, which
      // cannot be positivified.
      if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
        if (CI->isNegative() && !CI->isMinValue(true)) {
          Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
          assert(!Duplicates.count(Factor) &&
                 "Shouldn't have two constant factors, missed a canonicalize");

          unsigned Occ = ++FactorOccurrences[Factor];
          if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
        }
    }
  }

  // If any factor occurred more than one time, we can pull it out.
  if (MaxOcc > 1) {
    DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
    ++NumFactor;

    // Create a new instruction that uses the MaxOccVal twice.  If we don't do
    // this, we could otherwise run into situations where removing a factor
    // from an expression will drop a use of maxocc, and this can cause
    // RemoveFactorFromExpression on successive values to behave differently.
    Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
    SmallVector<WeakVH, 4> NewMulOps;
    for (unsigned i = 0; i != Ops.size(); ++i) {
      // Only try to remove factors from expressions we're allowed to.
      BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
      if (!BOp)
        continue;

      if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
        // The factorized operand may occur several times.  Convert them all in
        // one fell swoop.
        for (unsigned j = Ops.size(); j != i;) {
          --j;
          if (Ops[j].Op == Ops[i].Op) {
            NewMulOps.push_back(V);
            Ops.erase(Ops.begin()+j);
          }
        }
        --i;
      }
    }

    // No need for extra uses anymore.
    delete DummyInst;

    unsigned NumAddedValues = NewMulOps.size();
    Value *V = EmitAddTreeOfValues(I, NewMulOps);

    // Now that we have inserted the add tree, optimize it. This allows us to
    // handle cases that require multiple factoring steps, such as this:
    // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
    assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
    (void)NumAddedValues;
    if (Instruction *VI = dyn_cast<Instruction>(V))
      RedoInsts.insert(VI);

    // Create the multiply.
    Instruction *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);

    // Rerun associate on the multiply in case the inner expression turned into
    // a multiply.  We want to make sure that we keep things in canonical form.
    RedoInsts.insert(V2);

    // If every add operand included the factor (e.g. "A*B + A*C"), then the
    // entire result expression is just the multiply "A*(B+C)".
    if (Ops.empty())
      return V2;

    // Otherwise, we had some input that didn't have the factor, such as
    // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
    // things being added by this operation.
    Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
  }

  return 0;
}

namespace {
  /// \brief Predicate tests whether a ValueEntry's op is in a map.
  struct IsValueInMap {
    const DenseMap<Value *, unsigned> &Map;

    IsValueInMap(const DenseMap<Value *, unsigned> &Map) : Map(Map) {}

    bool operator()(const ValueEntry &Entry) {
      return Map.find(Entry.Op) != Map.end();
    }
  };
}

/// \brief Build up a vector of value/power pairs factoring a product.
///
/// Given a series of multiplication operands, build a vector of factors and
/// the powers each is raised to when forming the final product. Sort them in
/// the order of descending power.
///
///      (x*x)          -> [(x, 2)]
///     ((x*x)*x)       -> [(x, 3)]
///   ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
///
/// \returns Whether any factors have a power greater than one.
bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
                                         SmallVectorImpl<Factor> &Factors) {
  // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
  // Compute the sum of powers of simplifiable factors.
  unsigned FactorPowerSum = 0;
  for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
    Value *Op = Ops[Idx-1].Op;

    // Count the number of occurrences of this value.
    unsigned Count = 1;
    for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
      ++Count;
    // Track for simplification all factors which occur 2 or more times.
    if (Count > 1)
      FactorPowerSum += Count;
  }

  // We can only simplify factors if the sum of the powers of our simplifiable
  // factors is 4 or higher. When that is the case, we will *always* have
  // a simplification. This is an important invariant to prevent cyclicly
  // trying to simplify already minimal formations.
  if (FactorPowerSum < 4)
    return false;

  // Now gather the simplifiable factors, removing them from Ops.
  FactorPowerSum = 0;
  for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
    Value *Op = Ops[Idx-1].Op;

    // Count the number of occurrences of this value.
    unsigned Count = 1;
    for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
      ++Count;
    if (Count == 1)
      continue;
    // Move an even number of occurrences to Factors.
    Count &= ~1U;
    Idx -= Count;
    FactorPowerSum += Count;
    Factors.push_back(Factor(Op, Count));
    Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
  }

  // None of the adjustments above should have reduced the sum of factor powers
  // below our mininum of '4'.
  assert(FactorPowerSum >= 4);

  std::sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter());
  return true;
}

/// \brief Build a tree of multiplies, computing the product of Ops.
static Value *buildMultiplyTree(IRBuilder<> &Builder,
                                SmallVectorImpl<Value*> &Ops) {
  if (Ops.size() == 1)
    return Ops.back();

  Value *LHS = Ops.pop_back_val();
  do {
    LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
  } while (!Ops.empty());

  return LHS;
}

/// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
///
/// Given a vector of values raised to various powers, where no two values are
/// equal and the powers are sorted in decreasing order, compute the minimal
/// DAG of multiplies to compute the final product, and return that product
/// value.
Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
                                            SmallVectorImpl<Factor> &Factors) {
  assert(Factors[0].Power);
  SmallVector<Value *, 4> OuterProduct;
  for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
       Idx < Size && Factors[Idx].Power > 0; ++Idx) {
    if (Factors[Idx].Power != Factors[LastIdx].Power) {
      LastIdx = Idx;
      continue;
    }

    // We want to multiply across all the factors with the same power so that
    // we can raise them to that power as a single entity. Build a mini tree
    // for that.
    SmallVector<Value *, 4> InnerProduct;
    InnerProduct.push_back(Factors[LastIdx].Base);
    do {
      InnerProduct.push_back(Factors[Idx].Base);
      ++Idx;
    } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);

    // Reset the base value of the first factor to the new expression tree.
    // We'll remove all the factors with the same power in a second pass.
    Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
    if (Instruction *MI = dyn_cast<Instruction>(M))
      RedoInsts.insert(MI);

    LastIdx = Idx;
  }
  // Unique factors with equal powers -- we've folded them into the first one's
  // base.
  Factors.erase(std::unique(Factors.begin(), Factors.end(),
                            Factor::PowerEqual()),
                Factors.end());

  // Iteratively collect the base of each factor with an add power into the
  // outer product, and halve each power in preparation for squaring the
  // expression.
  for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
    if (Factors[Idx].Power & 1)
      OuterProduct.push_back(Factors[Idx].Base);
    Factors[Idx].Power >>= 1;
  }
  if (Factors[0].Power) {
    Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
    OuterProduct.push_back(SquareRoot);
    OuterProduct.push_back(SquareRoot);
  }
  if (OuterProduct.size() == 1)
    return OuterProduct.front();

  Value *V = buildMultiplyTree(Builder, OuterProduct);
  return V;
}

Value *Reassociate::OptimizeMul(BinaryOperator *I,
                                SmallVectorImpl<ValueEntry> &Ops) {
  // We can only optimize the multiplies when there is a chain of more than
  // three, such that a balanced tree might require fewer total multiplies.
  if (Ops.size() < 4)
    return 0;

  // Try to turn linear trees of multiplies without other uses of the
  // intermediate stages into minimal multiply DAGs with perfect sub-expression
  // re-use.
  SmallVector<Factor, 4> Factors;
  if (!collectMultiplyFactors(Ops, Factors))
    return 0; // All distinct factors, so nothing left for us to do.

  IRBuilder<> Builder(I);
  Value *V = buildMinimalMultiplyDAG(Builder, Factors);
  if (Ops.empty())
    return V;

  ValueEntry NewEntry = ValueEntry(getRank(V), V);
  Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
  return 0;
}

Value *Reassociate::OptimizeExpression(BinaryOperator *I,
                                       SmallVectorImpl<ValueEntry> &Ops) {
  // Now that we have the linearized expression tree, try to optimize it.
  // Start by folding any constants that we found.
  if (Ops.size() == 1) return Ops[0].Op;

  unsigned Opcode = I->getOpcode();

  // Handle destructive annihilation due to identities between elements in the
  // argument list here.
  unsigned NumOps = Ops.size();
  switch (Opcode) {
  default: break;
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
    if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
      return Result;
    break;

  case Instruction::Add:
    if (Value *Result = OptimizeAdd(I, Ops))
      return Result;
    break;

  case Instruction::Mul:
    if (Value *Result = OptimizeMul(I, Ops))
      return Result;
    break;
  }

  if (Ops.size() != NumOps)
    return OptimizeExpression(I, Ops);
  return 0;
}

/// EraseInst - Zap the given instruction, adding interesting operands to the
/// work list.
void Reassociate::EraseInst(Instruction *I) {
  assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
  SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
  // Erase the dead instruction.
  ValueRankMap.erase(I);
  RedoInsts.remove(I);
  I->eraseFromParent();
  // Optimize its operands.
  SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
    if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
      // If this is a node in an expression tree, climb to the expression root
      // and add that since that's where optimization actually happens.
      unsigned Opcode = Op->getOpcode();
      while (Op->hasOneUse() && Op->use_back()->getOpcode() == Opcode &&
             Visited.insert(Op))
        Op = Op->use_back();
      RedoInsts.insert(Op);
    }
}

/// OptimizeInst - Inspect and optimize the given instruction. Note that erasing
/// instructions is not allowed.
void Reassociate::OptimizeInst(Instruction *I) {
  // Only consider operations that we understand.
  if (!isa<BinaryOperator>(I))
    return;

  if (I->getOpcode() == Instruction::Shl &&
      isa<ConstantInt>(I->getOperand(1)))
    // If an operand of this shift is a reassociable multiply, or if the shift
    // is used by a reassociable multiply or add, turn into a multiply.
    if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
        (I->hasOneUse() &&
         (isReassociableOp(I->use_back(), Instruction::Mul) ||
          isReassociableOp(I->use_back(), Instruction::Add)))) {
      Instruction *NI = ConvertShiftToMul(I);
      RedoInsts.insert(I);
      MadeChange = true;
      I = NI;
    }

  // Floating point binary operators are not associative, but we can still
  // commute (some) of them, to canonicalize the order of their operands.
  // This can potentially expose more CSE opportunities, and makes writing
  // other transformations simpler.
  if ((I->getType()->isFloatingPointTy() || I->getType()->isVectorTy())) {
    // FAdd and FMul can be commuted.
    if (I->getOpcode() != Instruction::FMul &&
        I->getOpcode() != Instruction::FAdd)
      return;

    Value *LHS = I->getOperand(0);
    Value *RHS = I->getOperand(1);
    unsigned LHSRank = getRank(LHS);
    unsigned RHSRank = getRank(RHS);

    // Sort the operands by rank.
    if (RHSRank < LHSRank) {
      I->setOperand(0, RHS);
      I->setOperand(1, LHS);
    }

    return;
  }

  // Do not reassociate boolean (i1) expressions.  We want to preserve the
  // original order of evaluation for short-circuited comparisons that
  // SimplifyCFG has folded to AND/OR expressions.  If the expression
  // is not further optimized, it is likely to be transformed back to a
  // short-circuited form for code gen, and the source order may have been
  // optimized for the most likely conditions.
  if (I->getType()->isIntegerTy(1))
    return;

  // If this is a subtract instruction which is not already in negate form,
  // see if we can convert it to X+-Y.
  if (I->getOpcode() == Instruction::Sub) {
    if (ShouldBreakUpSubtract(I)) {
      Instruction *NI = BreakUpSubtract(I);
      RedoInsts.insert(I);
      MadeChange = true;
      I = NI;
    } else if (BinaryOperator::isNeg(I)) {
      // Otherwise, this is a negation.  See if the operand is a multiply tree
      // and if this is not an inner node of a multiply tree.
      if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
          (!I->hasOneUse() ||
           !isReassociableOp(I->use_back(), Instruction::Mul))) {
        Instruction *NI = LowerNegateToMultiply(I);
        RedoInsts.insert(I);
        MadeChange = true;
        I = NI;
      }
    }
  }

  // If this instruction is an associative binary operator, process it.
  if (!I->isAssociative()) return;
  BinaryOperator *BO = cast<BinaryOperator>(I);

  // If this is an interior node of a reassociable tree, ignore it until we
  // get to the root of the tree, to avoid N^2 analysis.
  unsigned Opcode = BO->getOpcode();
  if (BO->hasOneUse() && BO->use_back()->getOpcode() == Opcode)
    return;

  // If this is an add tree that is used by a sub instruction, ignore it
  // until we process the subtract.
  if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
      cast<Instruction>(BO->use_back())->getOpcode() == Instruction::Sub)
    return;

  ReassociateExpression(BO);
}

void Reassociate::ReassociateExpression(BinaryOperator *I) {

  // First, walk the expression tree, linearizing the tree, collecting the
  // operand information.
  SmallVector<RepeatedValue, 8> Tree;
  MadeChange |= LinearizeExprTree(I, Tree);
  SmallVector<ValueEntry, 8> Ops;
  Ops.reserve(Tree.size());
  for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
    RepeatedValue E = Tree[i];
    Ops.append(E.second.getZExtValue(),
               ValueEntry(getRank(E.first), E.first));
  }

  DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');

  // Now that we have linearized the tree to a list and have gathered all of
  // the operands and their ranks, sort the operands by their rank.  Use a
  // stable_sort so that values with equal ranks will have their relative
  // positions maintained (and so the compiler is deterministic).  Note that
  // this sorts so that the highest ranking values end up at the beginning of
  // the vector.
  std::stable_sort(Ops.begin(), Ops.end());

  // OptimizeExpression - Now that we have the expression tree in a convenient
  // sorted form, optimize it globally if possible.
  if (Value *V = OptimizeExpression(I, Ops)) {
    if (V == I)
      // Self-referential expression in unreachable code.
      return;
    // This expression tree simplified to something that isn't a tree,
    // eliminate it.
    DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
    I->replaceAllUsesWith(V);
    if (Instruction *VI = dyn_cast<Instruction>(V))
      VI->setDebugLoc(I->getDebugLoc());
    RedoInsts.insert(I);
    ++NumAnnihil;
    return;
  }

  // We want to sink immediates as deeply as possible except in the case where
  // this is a multiply tree used only by an add, and the immediate is a -1.
  // In this case we reassociate to put the negation on the outside so that we
  // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
  if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
      cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
      isa<ConstantInt>(Ops.back().Op) &&
      cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
    ValueEntry Tmp = Ops.pop_back_val();
    Ops.insert(Ops.begin(), Tmp);
  }

  DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');

  if (Ops.size() == 1) {
    if (Ops[0].Op == I)
      // Self-referential expression in unreachable code.
      return;

    // This expression tree simplified to something that isn't a tree,
    // eliminate it.
    I->replaceAllUsesWith(Ops[0].Op);
    if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
      OI->setDebugLoc(I->getDebugLoc());
    RedoInsts.insert(I);
    return;
  }

  // Now that we ordered and optimized the expressions, splat them back into
  // the expression tree, removing any unneeded nodes.
  RewriteExprTree(I, Ops);
}

bool Reassociate::runOnFunction(Function &F) {
  // Calculate the rank map for F
  BuildRankMap(F);

  MadeChange = false;
  for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
    // Optimize every instruction in the basic block.
    for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; )
      if (isInstructionTriviallyDead(II)) {
        EraseInst(II++);
      } else {
        OptimizeInst(II);
        assert(II->getParent() == BI && "Moved to a different block!");
        ++II;
      }

    // If this produced extra instructions to optimize, handle them now.
    while (!RedoInsts.empty()) {
      Instruction *I = RedoInsts.pop_back_val();
      if (isInstructionTriviallyDead(I))
        EraseInst(I);
      else
        OptimizeInst(I);
    }
  }

  // We are done with the rank map.
  RankMap.clear();
  ValueRankMap.clear();

  return MadeChange;
}