aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Scalar/SCCP.cpp
blob: 1c39160d9bd8e284ce26c77072eb6a9833d6b815 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This file implements sparse conditional constant propagation and merging:
//
// Specifically, this:
//   * Assumes values are constant unless proven otherwise
//   * Assumes BasicBlocks are dead unless proven otherwise
//   * Proves values to be constant, and replaces them with constants
//   * Proves conditional branches to be unconditional
//
// Notice that:
//   * This pass has a habit of making definitions be dead.  It is a good idea
//     to to run a DCE pass sometime after running this pass.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar.h"
#include "llvm/Constants.h"
#include "llvm/Function.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Instructions.h"
#include "llvm/Pass.h"
#include "llvm/Type.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Transforms/Utils/Local.h"
#include "Support/Debug.h"
#include "Support/hash_map"
#include "Support/Statistic.h"
#include "Support/STLExtras.h"
#include <algorithm>
#include <set>
using namespace llvm;

// InstVal class - This class represents the different lattice values that an 
// instruction may occupy.  It is a simple class with value semantics.
//
namespace {
  Statistic<> NumInstRemoved("sccp", "Number of instructions removed");

class InstVal {
  enum { 
    undefined,           // This instruction has no known value
    constant,            // This instruction has a constant value
    overdefined          // This instruction has an unknown value
  } LatticeValue;        // The current lattice position
  Constant *ConstantVal; // If Constant value, the current value
public:
  inline InstVal() : LatticeValue(undefined), ConstantVal(0) {}

  // markOverdefined - Return true if this is a new status to be in...
  inline bool markOverdefined() {
    if (LatticeValue != overdefined) {
      LatticeValue = overdefined;
      return true;
    }
    return false;
  }

  // markConstant - Return true if this is a new status for us...
  inline bool markConstant(Constant *V) {
    if (LatticeValue != constant) {
      LatticeValue = constant;
      ConstantVal = V;
      return true;
    } else {
      assert(ConstantVal == V && "Marking constant with different value");
    }
    return false;
  }

  inline bool isUndefined()   const { return LatticeValue == undefined; }
  inline bool isConstant()    const { return LatticeValue == constant; }
  inline bool isOverdefined() const { return LatticeValue == overdefined; }

  inline Constant *getConstant() const {
    assert(isConstant() && "Cannot get the constant of a non-constant!");
    return ConstantVal;
  }
};

} // end anonymous namespace


//===----------------------------------------------------------------------===//
// SCCP Class
//
// This class does all of the work of Sparse Conditional Constant Propagation.
//
namespace {
class SCCP : public FunctionPass, public InstVisitor<SCCP> {
  std::set<BasicBlock*>     BBExecutable;// The basic blocks that are executable
  hash_map<Value*, InstVal> ValueState;  // The state each value is in...

  // The reason for two worklists is that overdefined is the lowest state
  // on the lattice, and moving things to overdefined as fast as possible
  // makes SCCP converge much faster.
  // By having a separate worklist, we accomplish this because everything
  // possibly overdefined will become overdefined at the soonest possible
  // point.
  std::vector<Instruction*> OverdefinedInstWorkList;// The overdefined 
                                                    // instruction work list
  std::vector<Instruction*> InstWorkList;// The instruction work list


  std::vector<BasicBlock*>  BBWorkList;  // The BasicBlock work list

  /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not
  /// overdefined, despite the fact that the PHI node is overdefined.
  std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs;

  /// KnownFeasibleEdges - Entries in this set are edges which have already had
  /// PHI nodes retriggered.
  typedef std::pair<BasicBlock*,BasicBlock*> Edge;
  std::set<Edge> KnownFeasibleEdges;
public:

  // runOnFunction - Run the Sparse Conditional Constant Propagation algorithm,
  // and return true if the function was modified.
  //
  bool runOnFunction(Function &F);

  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    AU.setPreservesCFG();
  }


  //===--------------------------------------------------------------------===//
  // The implementation of this class
  //
private:
  friend class InstVisitor<SCCP>;        // Allow callbacks from visitor

  // markConstant - Make a value be marked as "constant".  If the value
  // is not already a constant, add it to the instruction work list so that 
  // the users of the instruction are updated later.
  //
  inline void markConstant(InstVal &IV, Instruction *I, Constant *C) {
    if (IV.markConstant(C)) {
      DEBUG(std::cerr << "markConstant: " << *C << ": " << *I);
      InstWorkList.push_back(I);
    }
  }
  inline void markConstant(Instruction *I, Constant *C) {
    markConstant(ValueState[I], I, C);
  }

  // markOverdefined - Make a value be marked as "overdefined". If the
  // value is not already overdefined, add it to the overdefined instruction 
  // work list so that the users of the instruction are updated later.
  
  inline void markOverdefined(InstVal &IV, Instruction *I) {
    if (IV.markOverdefined()) {
      DEBUG(std::cerr << "markOverdefined: " << *I);
      OverdefinedInstWorkList.push_back(I);  // Only instructions go on the work list
    }
  }
  inline void markOverdefined(Instruction *I) {
    markOverdefined(ValueState[I], I);
  }

  // getValueState - Return the InstVal object that corresponds to the value.
  // This function is necessary because not all values should start out in the
  // underdefined state... Argument's should be overdefined, and
  // constants should be marked as constants.  If a value is not known to be an
  // Instruction object, then use this accessor to get its value from the map.
  //
  inline InstVal &getValueState(Value *V) {
    hash_map<Value*, InstVal>::iterator I = ValueState.find(V);
    if (I != ValueState.end()) return I->second;  // Common case, in the map
      
    if (Constant *CPV = dyn_cast<Constant>(V)) {  // Constants are constant
      ValueState[CPV].markConstant(CPV);
    } else if (isa<Argument>(V)) {                // Arguments are overdefined
      ValueState[V].markOverdefined();
    }
    // All others are underdefined by default...
    return ValueState[V];
  }

  // markEdgeExecutable - Mark a basic block as executable, adding it to the BB 
  // work list if it is not already executable...
  // 
  void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
    if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
      return;  // This edge is already known to be executable!

    if (BBExecutable.count(Dest)) {
      DEBUG(std::cerr << "Marking Edge Executable: " << Source->getName()
                      << " -> " << Dest->getName() << "\n");

      // The destination is already executable, but we just made an edge
      // feasible that wasn't before.  Revisit the PHI nodes in the block
      // because they have potentially new operands.
      for (BasicBlock::iterator I = Dest->begin();
           PHINode *PN = dyn_cast<PHINode>(I); ++I)
        visitPHINode(*PN);

    } else {
      DEBUG(std::cerr << "Marking Block Executable: " << Dest->getName()<<"\n");
      BBExecutable.insert(Dest);   // Basic block is executable!
      BBWorkList.push_back(Dest);  // Add the block to the work list!
    }
  }


  // visit implementations - Something changed in this instruction... Either an 
  // operand made a transition, or the instruction is newly executable.  Change
  // the value type of I to reflect these changes if appropriate.
  //
  void visitPHINode(PHINode &I);

  // Terminators
  void visitReturnInst(ReturnInst &I) { /*does not have an effect*/ }
  void visitTerminatorInst(TerminatorInst &TI);

  void visitCastInst(CastInst &I);
  void visitSelectInst(SelectInst &I);
  void visitBinaryOperator(Instruction &I);
  void visitShiftInst(ShiftInst &I) { visitBinaryOperator(I); }

  // Instructions that cannot be folded away...
  void visitStoreInst     (Instruction &I) { /*returns void*/ }
  void visitLoadInst      (LoadInst &I);
  void visitGetElementPtrInst(GetElementPtrInst &I);
  void visitCallInst      (CallInst &I);
  void visitInvokeInst    (TerminatorInst &I) {
    if (I.getType() != Type::VoidTy) markOverdefined(&I);
    visitTerminatorInst(I);
  }
  void visitUnwindInst    (TerminatorInst &I) { /*returns void*/ }
  void visitAllocationInst(Instruction &I) { markOverdefined(&I); }
  void visitVANextInst    (Instruction &I) { markOverdefined(&I); }
  void visitVAArgInst     (Instruction &I) { markOverdefined(&I); }
  void visitFreeInst      (Instruction &I) { /*returns void*/ }

  void visitInstruction(Instruction &I) {
    // If a new instruction is added to LLVM that we don't handle...
    std::cerr << "SCCP: Don't know how to handle: " << I;
    markOverdefined(&I);   // Just in case
  }

  // getFeasibleSuccessors - Return a vector of booleans to indicate which
  // successors are reachable from a given terminator instruction.
  //
  void getFeasibleSuccessors(TerminatorInst &TI, std::vector<bool> &Succs);

  // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
  // block to the 'To' basic block is currently feasible...
  //
  bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);

  // OperandChangedState - This method is invoked on all of the users of an
  // instruction that was just changed state somehow....  Based on this
  // information, we need to update the specified user of this instruction.
  //
  void OperandChangedState(User *U) {
    // Only instructions use other variable values!
    Instruction &I = cast<Instruction>(*U);
    if (BBExecutable.count(I.getParent()))   // Inst is executable?
      visit(I);
  }
};

  RegisterOpt<SCCP> X("sccp", "Sparse Conditional Constant Propagation");
} // end anonymous namespace


// createSCCPPass - This is the public interface to this file...
Pass *llvm::createSCCPPass() {
  return new SCCP();
}


//===----------------------------------------------------------------------===//
// SCCP Class Implementation


// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
// and return true if the function was modified.
//
bool SCCP::runOnFunction(Function &F) {
  // Mark the first block of the function as being executable...
  BBExecutable.insert(F.begin());   // Basic block is executable!
  BBWorkList.push_back(F.begin());  // Add the block to the work list!

  // Process the work lists until they are empty!
  while (!BBWorkList.empty() || !InstWorkList.empty() || 
	 !OverdefinedInstWorkList.empty()) {
    // Process the instruction work list...
    while (!OverdefinedInstWorkList.empty()) {
      Instruction *I = OverdefinedInstWorkList.back();
      OverdefinedInstWorkList.pop_back();

      DEBUG(std::cerr << "\nPopped off OI-WL: " << I);
      
      // "I" got into the work list because it either made the transition from
      // bottom to constant
      //
      // Anything on this worklist that is overdefined need not be visited
      // since all of its users will have already been marked as overdefined
      // Update all of the users of this instruction's value...
      //
      for_each(I->use_begin(), I->use_end(),
	       bind_obj(this, &SCCP::OperandChangedState));
    }
    // Process the instruction work list...
    while (!InstWorkList.empty()) {
      Instruction *I = InstWorkList.back();
      InstWorkList.pop_back();

      DEBUG(std::cerr << "\nPopped off I-WL: " << *I);
      
      // "I" got into the work list because it either made the transition from
      // bottom to constant
      //
      // Anything on this worklist that is overdefined need not be visited
      // since all of its users will have already been marked as overdefined.
      // Update all of the users of this instruction's value...
      //
      InstVal &Ival = getValueState (I);
      if (!Ival.isOverdefined())
	for_each(I->use_begin(), I->use_end(),
		 bind_obj(this, &SCCP::OperandChangedState));
    }

    // Process the basic block work list...
    while (!BBWorkList.empty()) {
      BasicBlock *BB = BBWorkList.back();
      BBWorkList.pop_back();

      DEBUG(std::cerr << "\nPopped off BBWL: " << *BB);

      // Notify all instructions in this basic block that they are newly
      // executable.
      visit(BB);
    }
  }

  if (DebugFlag) {
    for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
      if (!BBExecutable.count(I))
        std::cerr << "BasicBlock Dead:" << *I;
  }

  // Iterate over all of the instructions in a function, replacing them with
  // constants if we have found them to be of constant values.
  //
  bool MadeChanges = false;
  for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB)
    for (BasicBlock::iterator BI = BB->begin(); BI != BB->end();) {
      Instruction &Inst = *BI;
      InstVal &IV = ValueState[&Inst];
      if (IV.isConstant()) {
        Constant *Const = IV.getConstant();
        DEBUG(std::cerr << "Constant: " << *Const << " = " << Inst);

        // Replaces all of the uses of a variable with uses of the constant.
        Inst.replaceAllUsesWith(Const);

        // Remove the operator from the list of definitions... and delete it.
        BI = BB->getInstList().erase(BI);

        // Hey, we just changed something!
        MadeChanges = true;
        ++NumInstRemoved;
      } else {
        ++BI;
      }
    }

  // Reset state so that the next invocation will have empty data structures
  BBExecutable.clear();
  ValueState.clear();
  std::vector<Instruction*>().swap(OverdefinedInstWorkList);
  std::vector<Instruction*>().swap(InstWorkList);
  std::vector<BasicBlock*>().swap(BBWorkList);

  return MadeChanges;
}


// getFeasibleSuccessors - Return a vector of booleans to indicate which
// successors are reachable from a given terminator instruction.
//
void SCCP::getFeasibleSuccessors(TerminatorInst &TI, std::vector<bool> &Succs) {
  Succs.resize(TI.getNumSuccessors());
  if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
    if (BI->isUnconditional()) {
      Succs[0] = true;
    } else {
      InstVal &BCValue = getValueState(BI->getCondition());
      if (BCValue.isOverdefined() ||
          (BCValue.isConstant() && !isa<ConstantBool>(BCValue.getConstant()))) {
        // Overdefined condition variables, and branches on unfoldable constant
        // conditions, mean the branch could go either way.
        Succs[0] = Succs[1] = true;
      } else if (BCValue.isConstant()) {
        // Constant condition variables mean the branch can only go a single way
        Succs[BCValue.getConstant() == ConstantBool::False] = true;
      }
    }
  } else if (InvokeInst *II = dyn_cast<InvokeInst>(&TI)) {
    // Invoke instructions successors are always executable.
    Succs[0] = Succs[1] = true;
  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
    InstVal &SCValue = getValueState(SI->getCondition());
    if (SCValue.isOverdefined() ||   // Overdefined condition?
        (SCValue.isConstant() && !isa<ConstantInt>(SCValue.getConstant()))) {
      // All destinations are executable!
      Succs.assign(TI.getNumSuccessors(), true);
    } else if (SCValue.isConstant()) {
      Constant *CPV = SCValue.getConstant();
      // Make sure to skip the "default value" which isn't a value
      for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) {
        if (SI->getSuccessorValue(i) == CPV) {// Found the right branch...
          Succs[i] = true;
          return;
        }
      }

      // Constant value not equal to any of the branches... must execute
      // default branch then...
      Succs[0] = true;
    }
  } else {
    std::cerr << "SCCP: Don't know how to handle: " << TI;
    Succs.assign(TI.getNumSuccessors(), true);
  }
}


// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
// block to the 'To' basic block is currently feasible...
//
bool SCCP::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
  assert(BBExecutable.count(To) && "Dest should always be alive!");

  // Make sure the source basic block is executable!!
  if (!BBExecutable.count(From)) return false;
  
  // Check to make sure this edge itself is actually feasible now...
  TerminatorInst *TI = From->getTerminator();
  if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
    if (BI->isUnconditional())
      return true;
    else {
      InstVal &BCValue = getValueState(BI->getCondition());
      if (BCValue.isOverdefined()) {
        // Overdefined condition variables mean the branch could go either way.
        return true;
      } else if (BCValue.isConstant()) {
        // Not branching on an evaluatable constant?
        if (!isa<ConstantBool>(BCValue.getConstant())) return true;

        // Constant condition variables mean the branch can only go a single way
        return BI->getSuccessor(BCValue.getConstant() == 
                                       ConstantBool::False) == To;
      }
      return false;
    }
  } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
    // Invoke instructions successors are always executable.
    return true;
  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    InstVal &SCValue = getValueState(SI->getCondition());
    if (SCValue.isOverdefined()) {  // Overdefined condition?
      // All destinations are executable!
      return true;
    } else if (SCValue.isConstant()) {
      Constant *CPV = SCValue.getConstant();
      if (!isa<ConstantInt>(CPV))
        return true;  // not a foldable constant?

      // Make sure to skip the "default value" which isn't a value
      for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i)
        if (SI->getSuccessorValue(i) == CPV) // Found the taken branch...
          return SI->getSuccessor(i) == To;

      // Constant value not equal to any of the branches... must execute
      // default branch then...
      return SI->getDefaultDest() == To;
    }
    return false;
  } else {
    std::cerr << "Unknown terminator instruction: " << *TI;
    abort();
  }
}

// visit Implementations - Something changed in this instruction... Either an
// operand made a transition, or the instruction is newly executable.  Change
// the value type of I to reflect these changes if appropriate.  This method
// makes sure to do the following actions:
//
// 1. If a phi node merges two constants in, and has conflicting value coming
//    from different branches, or if the PHI node merges in an overdefined
//    value, then the PHI node becomes overdefined.
// 2. If a phi node merges only constants in, and they all agree on value, the
//    PHI node becomes a constant value equal to that.
// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
// 6. If a conditional branch has a value that is constant, make the selected
//    destination executable
// 7. If a conditional branch has a value that is overdefined, make all
//    successors executable.
//
void SCCP::visitPHINode(PHINode &PN) {
  InstVal &PNIV = getValueState(&PN);
  if (PNIV.isOverdefined()) {
    // There may be instructions using this PHI node that are not overdefined
    // themselves.  If so, make sure that they know that the PHI node operand
    // changed.
    std::multimap<PHINode*, Instruction*>::iterator I, E;
    tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN);
    if (I != E) {
      std::vector<Instruction*> Users;
      Users.reserve(std::distance(I, E));
      for (; I != E; ++I) Users.push_back(I->second);
      while (!Users.empty()) {
        visit(Users.back());
        Users.pop_back();
      }
    }
    return;  // Quick exit
  }

  // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
  // and slow us down a lot.  Just mark them overdefined.
  if (PN.getNumIncomingValues() > 64) {
    markOverdefined(PNIV, &PN);
    return;
  }

  // Look at all of the executable operands of the PHI node.  If any of them
  // are overdefined, the PHI becomes overdefined as well.  If they are all
  // constant, and they agree with each other, the PHI becomes the identical
  // constant.  If they are constant and don't agree, the PHI is overdefined.
  // If there are no executable operands, the PHI remains undefined.
  //
  Constant *OperandVal = 0;
  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
    InstVal &IV = getValueState(PN.getIncomingValue(i));
    if (IV.isUndefined()) continue;  // Doesn't influence PHI node.
    
    if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) {
      if (IV.isOverdefined()) {   // PHI node becomes overdefined!
        markOverdefined(PNIV, &PN);
        return;
      }

      if (OperandVal == 0) {   // Grab the first value...
        OperandVal = IV.getConstant();
      } else {                // Another value is being merged in!
        // There is already a reachable operand.  If we conflict with it,
        // then the PHI node becomes overdefined.  If we agree with it, we
        // can continue on.
        
        // Check to see if there are two different constants merging...
        if (IV.getConstant() != OperandVal) {
          // Yes there is.  This means the PHI node is not constant.
          // You must be overdefined poor PHI.
          //
          markOverdefined(PNIV, &PN);    // The PHI node now becomes overdefined
          return;    // I'm done analyzing you
        }
      }
    }
  }

  // If we exited the loop, this means that the PHI node only has constant
  // arguments that agree with each other(and OperandVal is the constant) or
  // OperandVal is null because there are no defined incoming arguments.  If
  // this is the case, the PHI remains undefined.
  //
  if (OperandVal)
    markConstant(PNIV, &PN, OperandVal);      // Acquire operand value
}

void SCCP::visitTerminatorInst(TerminatorInst &TI) {
  std::vector<bool> SuccFeasible;
  getFeasibleSuccessors(TI, SuccFeasible);

  BasicBlock *BB = TI.getParent();

  // Mark all feasible successors executable...
  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
    if (SuccFeasible[i])
      markEdgeExecutable(BB, TI.getSuccessor(i));
}

void SCCP::visitCastInst(CastInst &I) {
  Value *V = I.getOperand(0);
  InstVal &VState = getValueState(V);
  if (VState.isOverdefined())          // Inherit overdefinedness of operand
    markOverdefined(&I);
  else if (VState.isConstant())        // Propagate constant value
    markConstant(&I, ConstantExpr::getCast(VState.getConstant(), I.getType()));
}

void SCCP::visitSelectInst(SelectInst &I) {
  InstVal &CondValue = getValueState(I.getCondition());
  if (CondValue.isOverdefined())
    markOverdefined(&I);
  else if (CondValue.isConstant()) {
    if (CondValue.getConstant() == ConstantBool::True) {
      InstVal &Val = getValueState(I.getTrueValue());
      if (Val.isOverdefined())
        markOverdefined(&I);
      else if (Val.isConstant())
        markConstant(&I, Val.getConstant());
    } else if (CondValue.getConstant() == ConstantBool::False) {
      InstVal &Val = getValueState(I.getFalseValue());
      if (Val.isOverdefined())
        markOverdefined(&I);
      else if (Val.isConstant())
        markConstant(&I, Val.getConstant());
    } else
      markOverdefined(&I);
  }
}

// Handle BinaryOperators and Shift Instructions...
void SCCP::visitBinaryOperator(Instruction &I) {
  InstVal &IV = ValueState[&I];
  if (IV.isOverdefined()) return;

  InstVal &V1State = getValueState(I.getOperand(0));
  InstVal &V2State = getValueState(I.getOperand(1));

  if (V1State.isOverdefined() || V2State.isOverdefined()) {
    // If both operands are PHI nodes, it is possible that this instruction has
    // a constant value, despite the fact that the PHI node doesn't.  Check for
    // this condition now.
    if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
      if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
        if (PN1->getParent() == PN2->getParent()) {
          // Since the two PHI nodes are in the same basic block, they must have
          // entries for the same predecessors.  Walk the predecessor list, and
          // if all of the incoming values are constants, and the result of
          // evaluating this expression with all incoming value pairs is the
          // same, then this expression is a constant even though the PHI node
          // is not a constant!
          InstVal Result;
          for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
            InstVal &In1 = getValueState(PN1->getIncomingValue(i));
            BasicBlock *InBlock = PN1->getIncomingBlock(i);
            InstVal &In2 =getValueState(PN2->getIncomingValueForBlock(InBlock));

            if (In1.isOverdefined() || In2.isOverdefined()) {
              Result.markOverdefined();
              break;  // Cannot fold this operation over the PHI nodes!
            } else if (In1.isConstant() && In2.isConstant()) {
              Constant *V = ConstantExpr::get(I.getOpcode(), In1.getConstant(),
                                              In2.getConstant());
              if (Result.isUndefined())
                Result.markConstant(V);
              else if (Result.isConstant() && Result.getConstant() != V) {
                Result.markOverdefined();
                break;
              }
            }
          }

          // If we found a constant value here, then we know the instruction is
          // constant despite the fact that the PHI nodes are overdefined.
          if (Result.isConstant()) {
            markConstant(IV, &I, Result.getConstant());
            // Remember that this instruction is virtually using the PHI node
            // operands.
            UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
            UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
            return;
          } else if (Result.isUndefined()) {
            return;
          }

          // Okay, this really is overdefined now.  Since we might have
          // speculatively thought that this was not overdefined before, and
          // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
          // make sure to clean out any entries that we put there, for
          // efficiency.
          std::multimap<PHINode*, Instruction*>::iterator It, E;
          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
          while (It != E) {
            if (It->second == &I) {
              UsersOfOverdefinedPHIs.erase(It++);
            } else
              ++It;
          }
          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
          while (It != E) {
            if (It->second == &I) {
              UsersOfOverdefinedPHIs.erase(It++);
            } else
              ++It;
          }
        }

    markOverdefined(IV, &I);
  } else if (V1State.isConstant() && V2State.isConstant()) {
    markConstant(IV, &I, ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
                                           V2State.getConstant()));
  }
}

// Handle getelementptr instructions... if all operands are constants then we
// can turn this into a getelementptr ConstantExpr.
//
void SCCP::visitGetElementPtrInst(GetElementPtrInst &I) {
  InstVal &IV = ValueState[&I];
  if (IV.isOverdefined()) return;

  std::vector<Constant*> Operands;
  Operands.reserve(I.getNumOperands());

  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
    InstVal &State = getValueState(I.getOperand(i));
    if (State.isUndefined())
      return;  // Operands are not resolved yet...
    else if (State.isOverdefined()) {
      markOverdefined(IV, &I);
      return;
    }
    assert(State.isConstant() && "Unknown state!");
    Operands.push_back(State.getConstant());
  }

  Constant *Ptr = Operands[0];
  Operands.erase(Operands.begin());  // Erase the pointer from idx list...

  markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, Operands));  
}

/// GetGEPGlobalInitializer - Given a constant and a getelementptr constantexpr,
/// return the constant value being addressed by the constant expression, or
/// null if something is funny.
///
static Constant *GetGEPGlobalInitializer(Constant *C, ConstantExpr *CE) {
  if (CE->getOperand(1) != Constant::getNullValue(CE->getOperand(1)->getType()))
    return 0;  // Do not allow stepping over the value!

  // Loop over all of the operands, tracking down which value we are
  // addressing...
  for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i)
    if (ConstantUInt *CU = dyn_cast<ConstantUInt>(CE->getOperand(i))) {
      ConstantStruct *CS = dyn_cast<ConstantStruct>(C);
      if (CS == 0) return 0;
      if (CU->getValue() >= CS->getNumOperands()) return 0;
      C = CS->getOperand(CU->getValue());
    } else if (ConstantSInt *CS = dyn_cast<ConstantSInt>(CE->getOperand(i))) {
      ConstantArray *CA = dyn_cast<ConstantArray>(C);
      if (CA == 0) return 0;
      if ((uint64_t)CS->getValue() >= CA->getNumOperands()) return 0;
      C = CA->getOperand(CS->getValue());
    } else
      return 0;
  return C;
}

// Handle load instructions.  If the operand is a constant pointer to a constant
// global, we can replace the load with the loaded constant value!
void SCCP::visitLoadInst(LoadInst &I) {
  InstVal &IV = ValueState[&I];
  if (IV.isOverdefined()) return;

  InstVal &PtrVal = getValueState(I.getOperand(0));
  if (PtrVal.isUndefined()) return;   // The pointer is not resolved yet!
  if (PtrVal.isConstant() && !I.isVolatile()) {
    Value *Ptr = PtrVal.getConstant();
    if (isa<ConstantPointerNull>(Ptr)) {
      // load null -> null
      markConstant(IV, &I, Constant::getNullValue(I.getType()));
      return;
    }
      
    // Transform load (constant global) into the value loaded.
    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr))
      if (GV->isConstant() && !GV->isExternal()) {
        markConstant(IV, &I, GV->getInitializer());
        return;
      }

    // Transform load (constantexpr_GEP global, 0, ...) into the value loaded.
    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
      if (CE->getOpcode() == Instruction::GetElementPtr)
	if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
	  if (GV->isConstant() && !GV->isExternal())
	    if (Constant *V = 
		GetGEPGlobalInitializer(GV->getInitializer(), CE)) {
	      markConstant(IV, &I, V);
	      return;
	    }
  }

  // Otherwise we cannot say for certain what value this load will produce.
  // Bail out.
  markOverdefined(IV, &I);
}

void SCCP::visitCallInst(CallInst &I) {
  InstVal &IV = ValueState[&I];
  if (IV.isOverdefined()) return;

  Function *F = I.getCalledFunction();
  if (F == 0 || !canConstantFoldCallTo(F)) {
    markOverdefined(IV, &I);
    return;
  }

  std::vector<Constant*> Operands;
  Operands.reserve(I.getNumOperands()-1);

  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
    InstVal &State = getValueState(I.getOperand(i));
    if (State.isUndefined())
      return;  // Operands are not resolved yet...
    else if (State.isOverdefined()) {
      markOverdefined(IV, &I);
      return;
    }
    assert(State.isConstant() && "Unknown state!");
    Operands.push_back(State.getConstant());
  }

  if (Constant *C = ConstantFoldCall(F, Operands))
    markConstant(IV, &I, C);
  else
    markOverdefined(IV, &I);
}