1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
|
//===-- StraightLineStrengthReduce.cpp - ------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements straight-line strength reduction (SLSR). Unlike loop
// strength reduction, this algorithm is designed to reduce arithmetic
// redundancy in straight-line code instead of loops. It has proven to be
// effective in simplifying arithmetic statements derived from an unrolled loop.
// It can also simplify the logic of SeparateConstOffsetFromGEP.
//
// There are many optimizations we can perform in the domain of SLSR. This file
// for now contains only an initial step. Specifically, we look for strength
// reduction candidates in two forms:
//
// Form 1: (B + i) * S
// Form 2: &B[i * S]
//
// where S is an integer variable, and i is a constant integer. If we found two
// candidates
//
// S1: X = (B + i) * S
// S2: Y = (B + i') * S
//
// or
//
// S1: X = &B[i * S]
// S2: Y = &B[i' * S]
//
// and S1 dominates S2, we call S1 a basis of S2, and can replace S2 with
//
// Y = X + (i' - i) * S
//
// or
//
// Y = &X[(i' - i) * S]
//
// where (i' - i) * S is folded to the extent possible. When S2 has multiple
// bases, we pick the one that is closest to S2, or S2's "immediate" basis.
//
// TODO:
//
// - Handle candidates in the form of B + i * S
//
// - Floating point arithmetics when fast math is enabled.
//
// - SLSR may decrease ILP at the architecture level. Targets that are very
// sensitive to ILP may want to disable it. Having SLSR to consider ILP is
// left as future work.
#include <vector>
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
using namespace llvm;
using namespace PatternMatch;
namespace {
class StraightLineStrengthReduce : public FunctionPass {
public:
// SLSR candidate. Such a candidate must be in the form of
// (Base + Index) * Stride
// or
// Base[..][Index * Stride][..]
struct Candidate : public ilist_node<Candidate> {
enum Kind {
Invalid, // reserved for the default constructor
Mul, // (B + i) * S
GEP, // &B[..][i * S][..]
};
Candidate()
: CandidateKind(Invalid), Base(nullptr), Index(nullptr),
Stride(nullptr), Ins(nullptr), Basis(nullptr) {}
Candidate(Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
Instruction *I)
: CandidateKind(CT), Base(B), Index(Idx), Stride(S), Ins(I),
Basis(nullptr) {}
Kind CandidateKind;
const SCEV *Base;
// Note that Index and Stride of a GEP candidate may not have the same
// integer type. In that case, during rewriting, Stride will be
// sign-extended or truncated to Index's type.
ConstantInt *Index;
Value *Stride;
// The instruction this candidate corresponds to. It helps us to rewrite a
// candidate with respect to its immediate basis. Note that one instruction
// can corresponds to multiple candidates depending on how you associate the
// expression. For instance,
//
// (a + 1) * (b + 2)
//
// can be treated as
//
// <Base: a, Index: 1, Stride: b + 2>
//
// or
//
// <Base: b, Index: 2, Stride: a + 1>
Instruction *Ins;
// Points to the immediate basis of this candidate, or nullptr if we cannot
// find any basis for this candidate.
Candidate *Basis;
};
static char ID;
StraightLineStrengthReduce()
: FunctionPass(ID), DL(nullptr), DT(nullptr), TTI(nullptr) {
initializeStraightLineStrengthReducePass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<ScalarEvolution>();
AU.addRequired<TargetTransformInfoWrapperPass>();
// We do not modify the shape of the CFG.
AU.setPreservesCFG();
}
bool doInitialization(Module &M) override {
DL = &M.getDataLayout();
return false;
}
bool runOnFunction(Function &F) override;
private:
// Returns true if Basis is a basis for C, i.e., Basis dominates C and they
// share the same base and stride.
bool isBasisFor(const Candidate &Basis, const Candidate &C);
// Checks whether I is in a candidate form. If so, adds all the matching forms
// to Candidates, and tries to find the immediate basis for each of them.
void allocateCandidateAndFindBasis(Instruction *I);
// Allocate candidates and find bases for Mul instructions.
void allocateCandidateAndFindBasisForMul(Instruction *I);
// Splits LHS into Base + Index and, if succeeds, calls
// allocateCandidateAndFindBasis.
void allocateCandidateAndFindBasisForMul(Value *LHS, Value *RHS,
Instruction *I);
// Allocate candidates and find bases for GetElementPtr instructions.
void allocateCandidateAndFindBasisForGEP(GetElementPtrInst *GEP);
// A helper function that scales Idx with ElementSize before invoking
// allocateCandidateAndFindBasis.
void allocateCandidateAndFindBasisForGEP(const SCEV *B, ConstantInt *Idx,
Value *S, uint64_t ElementSize,
Instruction *I);
// Adds the given form <CT, B, Idx, S> to Candidates, and finds its immediate
// basis.
void allocateCandidateAndFindBasis(Candidate::Kind CT, const SCEV *B,
ConstantInt *Idx, Value *S,
Instruction *I);
// Rewrites candidate C with respect to Basis.
void rewriteCandidateWithBasis(const Candidate &C, const Candidate &Basis);
// A helper function that factors ArrayIdx to a product of a stride and a
// constant index, and invokes allocateCandidateAndFindBasis with the
// factorings.
void factorArrayIndex(Value *ArrayIdx, const SCEV *Base, uint64_t ElementSize,
GetElementPtrInst *GEP);
// Emit code that computes the "bump" from Basis to C. If the candidate is a
// GEP and the bump is not divisible by the element size of the GEP, this
// function sets the BumpWithUglyGEP flag to notify its caller to bump the
// basis using an ugly GEP.
static Value *emitBump(const Candidate &Basis, const Candidate &C,
IRBuilder<> &Builder, const DataLayout *DL,
bool &BumpWithUglyGEP);
const DataLayout *DL;
DominatorTree *DT;
ScalarEvolution *SE;
TargetTransformInfo *TTI;
ilist<Candidate> Candidates;
// Temporarily holds all instructions that are unlinked (but not deleted) by
// rewriteCandidateWithBasis. These instructions will be actually removed
// after all rewriting finishes.
DenseSet<Instruction *> UnlinkedInstructions;
};
} // anonymous namespace
char StraightLineStrengthReduce::ID = 0;
INITIALIZE_PASS_BEGIN(StraightLineStrengthReduce, "slsr",
"Straight line strength reduction", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_END(StraightLineStrengthReduce, "slsr",
"Straight line strength reduction", false, false)
FunctionPass *llvm::createStraightLineStrengthReducePass() {
return new StraightLineStrengthReduce();
}
bool StraightLineStrengthReduce::isBasisFor(const Candidate &Basis,
const Candidate &C) {
return (Basis.Ins != C.Ins && // skip the same instruction
// Basis must dominate C in order to rewrite C with respect to Basis.
DT->dominates(Basis.Ins->getParent(), C.Ins->getParent()) &&
// They share the same base, stride, and candidate kind.
Basis.Base == C.Base &&
Basis.Stride == C.Stride &&
Basis.CandidateKind == C.CandidateKind);
}
static bool isCompletelyFoldable(GetElementPtrInst *GEP,
const TargetTransformInfo *TTI,
const DataLayout *DL) {
GlobalVariable *BaseGV = nullptr;
int64_t BaseOffset = 0;
bool HasBaseReg = false;
int64_t Scale = 0;
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getPointerOperand()))
BaseGV = GV;
else
HasBaseReg = true;
gep_type_iterator GTI = gep_type_begin(GEP);
for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I, ++GTI) {
if (isa<SequentialType>(*GTI)) {
int64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
if (ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I)) {
BaseOffset += ConstIdx->getSExtValue() * ElementSize;
} else {
// Needs scale register.
if (Scale != 0) {
// No addressing mode takes two scale registers.
return false;
}
Scale = ElementSize;
}
} else {
StructType *STy = cast<StructType>(*GTI);
uint64_t Field = cast<ConstantInt>(*I)->getZExtValue();
BaseOffset += DL->getStructLayout(STy)->getElementOffset(Field);
}
}
return TTI->isLegalAddressingMode(GEP->getType()->getElementType(), BaseGV,
BaseOffset, HasBaseReg, Scale);
}
// TODO: We currently implement an algorithm whose time complexity is linear to
// the number of existing candidates. However, a better algorithm exists. We
// could depth-first search the dominator tree, and maintain a hash table that
// contains all candidates that dominate the node being traversed. This hash
// table is indexed by the base and the stride of a candidate. Therefore,
// finding the immediate basis of a candidate boils down to one hash-table look
// up.
void StraightLineStrengthReduce::allocateCandidateAndFindBasis(
Candidate::Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
Instruction *I) {
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
// If &B[Idx * S] fits into an addressing mode, do not turn it into
// non-free computation.
if (isCompletelyFoldable(GEP, TTI, DL))
return;
}
Candidate C(CT, B, Idx, S, I);
// Try to compute the immediate basis of C.
unsigned NumIterations = 0;
// Limit the scan radius to avoid running forever.
static const unsigned MaxNumIterations = 50;
for (auto Basis = Candidates.rbegin();
Basis != Candidates.rend() && NumIterations < MaxNumIterations;
++Basis, ++NumIterations) {
if (isBasisFor(*Basis, C)) {
C.Basis = &(*Basis);
break;
}
}
// Regardless of whether we find a basis for C, we need to push C to the
// candidate list.
Candidates.push_back(C);
}
void StraightLineStrengthReduce::allocateCandidateAndFindBasis(Instruction *I) {
switch (I->getOpcode()) {
case Instruction::Mul:
allocateCandidateAndFindBasisForMul(I);
break;
case Instruction::GetElementPtr:
allocateCandidateAndFindBasisForGEP(cast<GetElementPtrInst>(I));
break;
}
}
void StraightLineStrengthReduce::allocateCandidateAndFindBasisForMul(
Value *LHS, Value *RHS, Instruction *I) {
Value *B = nullptr;
ConstantInt *Idx = nullptr;
// Only handle the canonical operand ordering.
if (match(LHS, m_Add(m_Value(B), m_ConstantInt(Idx)))) {
// If LHS is in the form of "Base + Index", then I is in the form of
// "(Base + Index) * RHS".
allocateCandidateAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
} else {
// Otherwise, at least try the form (LHS + 0) * RHS.
ConstantInt *Zero = ConstantInt::get(cast<IntegerType>(I->getType()), 0);
allocateCandidateAndFindBasis(Candidate::Mul, SE->getSCEV(LHS), Zero, RHS,
I);
}
}
void StraightLineStrengthReduce::allocateCandidateAndFindBasisForMul(
Instruction *I) {
// Try matching (B + i) * S.
// TODO: we could extend SLSR to float and vector types.
if (!isa<IntegerType>(I->getType()))
return;
Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
allocateCandidateAndFindBasisForMul(LHS, RHS, I);
if (LHS != RHS) {
// Symmetrically, try to split RHS to Base + Index.
allocateCandidateAndFindBasisForMul(RHS, LHS, I);
}
}
void StraightLineStrengthReduce::allocateCandidateAndFindBasisForGEP(
const SCEV *B, ConstantInt *Idx, Value *S, uint64_t ElementSize,
Instruction *I) {
// I = B + sext(Idx *nsw S) *nsw ElementSize
// = B + (sext(Idx) * ElementSize) * sext(S)
// Casting to IntegerType is safe because we skipped vector GEPs.
IntegerType *IntPtrTy = cast<IntegerType>(DL->getIntPtrType(I->getType()));
ConstantInt *ScaledIdx = ConstantInt::get(
IntPtrTy, Idx->getSExtValue() * (int64_t)ElementSize, true);
allocateCandidateAndFindBasis(Candidate::GEP, B, ScaledIdx, S, I);
}
void StraightLineStrengthReduce::factorArrayIndex(Value *ArrayIdx,
const SCEV *Base,
uint64_t ElementSize,
GetElementPtrInst *GEP) {
// At least, ArrayIdx = ArrayIdx *s 1.
allocateCandidateAndFindBasisForGEP(
Base, ConstantInt::get(cast<IntegerType>(ArrayIdx->getType()), 1),
ArrayIdx, ElementSize, GEP);
Value *LHS = nullptr;
ConstantInt *RHS = nullptr;
// TODO: handle shl. e.g., we could treat (S << 2) as (S * 4).
//
// One alternative is matching the SCEV of ArrayIdx instead of ArrayIdx
// itself. This would allow us to handle the shl case for free. However,
// matching SCEVs has two issues:
//
// 1. this would complicate rewriting because the rewriting procedure
// would have to translate SCEVs back to IR instructions. This translation
// is difficult when LHS is further evaluated to a composite SCEV.
//
// 2. ScalarEvolution is designed to be control-flow oblivious. It tends
// to strip nsw/nuw flags which are critical for SLSR to trace into
// sext'ed multiplication.
if (match(ArrayIdx, m_NSWMul(m_Value(LHS), m_ConstantInt(RHS)))) {
// SLSR is currently unsafe if i * S may overflow.
// GEP = Base + sext(LHS *nsw RHS) *nsw ElementSize
allocateCandidateAndFindBasisForGEP(Base, RHS, LHS, ElementSize, GEP);
}
}
void StraightLineStrengthReduce::allocateCandidateAndFindBasisForGEP(
GetElementPtrInst *GEP) {
// TODO: handle vector GEPs
if (GEP->getType()->isVectorTy())
return;
const SCEV *GEPExpr = SE->getSCEV(GEP);
Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
gep_type_iterator GTI = gep_type_begin(GEP);
for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) {
if (!isa<SequentialType>(*GTI++))
continue;
Value *ArrayIdx = *I;
// Compute the byte offset of this index.
uint64_t ElementSize = DL->getTypeAllocSize(*GTI);
const SCEV *ElementSizeExpr = SE->getSizeOfExpr(IntPtrTy, *GTI);
const SCEV *ArrayIdxExpr = SE->getSCEV(ArrayIdx);
ArrayIdxExpr = SE->getTruncateOrSignExtend(ArrayIdxExpr, IntPtrTy);
const SCEV *LocalOffset =
SE->getMulExpr(ArrayIdxExpr, ElementSizeExpr, SCEV::FlagNSW);
// The base of this candidate equals GEPExpr less the byte offset of this
// index.
const SCEV *Base = SE->getMinusSCEV(GEPExpr, LocalOffset);
factorArrayIndex(ArrayIdx, Base, ElementSize, GEP);
// When ArrayIdx is the sext of a value, we try to factor that value as
// well. Handling this case is important because array indices are
// typically sign-extended to the pointer size.
Value *TruncatedArrayIdx = nullptr;
if (match(ArrayIdx, m_SExt(m_Value(TruncatedArrayIdx))))
factorArrayIndex(TruncatedArrayIdx, Base, ElementSize, GEP);
}
}
// A helper function that unifies the bitwidth of A and B.
static void unifyBitWidth(APInt &A, APInt &B) {
if (A.getBitWidth() < B.getBitWidth())
A = A.sext(B.getBitWidth());
else if (A.getBitWidth() > B.getBitWidth())
B = B.sext(A.getBitWidth());
}
Value *StraightLineStrengthReduce::emitBump(const Candidate &Basis,
const Candidate &C,
IRBuilder<> &Builder,
const DataLayout *DL,
bool &BumpWithUglyGEP) {
APInt Idx = C.Index->getValue(), BasisIdx = Basis.Index->getValue();
unifyBitWidth(Idx, BasisIdx);
APInt IndexOffset = Idx - BasisIdx;
BumpWithUglyGEP = false;
if (Basis.CandidateKind == Candidate::GEP) {
APInt ElementSize(
IndexOffset.getBitWidth(),
DL->getTypeAllocSize(
cast<GetElementPtrInst>(Basis.Ins)->getType()->getElementType()));
APInt Q, R;
APInt::sdivrem(IndexOffset, ElementSize, Q, R);
if (R.getSExtValue() == 0)
IndexOffset = Q;
else
BumpWithUglyGEP = true;
}
// Compute Bump = C - Basis = (i' - i) * S.
// Common case 1: if (i' - i) is 1, Bump = S.
if (IndexOffset.getSExtValue() == 1)
return C.Stride;
// Common case 2: if (i' - i) is -1, Bump = -S.
if (IndexOffset.getSExtValue() == -1)
return Builder.CreateNeg(C.Stride);
// Otherwise, Bump = (i' - i) * sext/trunc(S).
ConstantInt *Delta = ConstantInt::get(Basis.Ins->getContext(), IndexOffset);
Value *ExtendedStride = Builder.CreateSExtOrTrunc(C.Stride, Delta->getType());
return Builder.CreateMul(ExtendedStride, Delta);
}
void StraightLineStrengthReduce::rewriteCandidateWithBasis(
const Candidate &C, const Candidate &Basis) {
assert(C.CandidateKind == Basis.CandidateKind && C.Base == Basis.Base &&
C.Stride == Basis.Stride);
// An instruction can correspond to multiple candidates. Therefore, instead of
// simply deleting an instruction when we rewrite it, we mark its parent as
// nullptr (i.e. unlink it) so that we can skip the candidates whose
// instruction is already rewritten.
if (!C.Ins->getParent())
return;
IRBuilder<> Builder(C.Ins);
bool BumpWithUglyGEP;
Value *Bump = emitBump(Basis, C, Builder, DL, BumpWithUglyGEP);
Value *Reduced = nullptr; // equivalent to but weaker than C.Ins
switch (C.CandidateKind) {
case Candidate::Mul:
Reduced = Builder.CreateAdd(Basis.Ins, Bump);
break;
case Candidate::GEP:
{
Type *IntPtrTy = DL->getIntPtrType(C.Ins->getType());
if (BumpWithUglyGEP) {
// C = (char *)Basis + Bump
unsigned AS = Basis.Ins->getType()->getPointerAddressSpace();
Type *CharTy = Type::getInt8PtrTy(Basis.Ins->getContext(), AS);
Reduced = Builder.CreateBitCast(Basis.Ins, CharTy);
// We only considered inbounds GEP as candidates.
Reduced = Builder.CreateInBoundsGEP(Reduced, Bump);
Reduced = Builder.CreateBitCast(Reduced, C.Ins->getType());
} else {
// C = gep Basis, Bump
// Canonicalize bump to pointer size.
Bump = Builder.CreateSExtOrTrunc(Bump, IntPtrTy);
Reduced = Builder.CreateInBoundsGEP(Basis.Ins, Bump);
}
}
break;
default:
llvm_unreachable("C.CandidateKind is invalid");
};
Reduced->takeName(C.Ins);
C.Ins->replaceAllUsesWith(Reduced);
C.Ins->dropAllReferences();
// Unlink C.Ins so that we can skip other candidates also corresponding to
// C.Ins. The actual deletion is postponed to the end of runOnFunction.
C.Ins->removeFromParent();
UnlinkedInstructions.insert(C.Ins);
}
bool StraightLineStrengthReduce::runOnFunction(Function &F) {
if (skipOptnoneFunction(F))
return false;
TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
SE = &getAnalysis<ScalarEvolution>();
// Traverse the dominator tree in the depth-first order. This order makes sure
// all bases of a candidate are in Candidates when we process it.
for (auto node = GraphTraits<DominatorTree *>::nodes_begin(DT);
node != GraphTraits<DominatorTree *>::nodes_end(DT); ++node) {
for (auto &I : *node->getBlock())
allocateCandidateAndFindBasis(&I);
}
// Rewrite candidates in the reverse depth-first order. This order makes sure
// a candidate being rewritten is not a basis for any other candidate.
while (!Candidates.empty()) {
const Candidate &C = Candidates.back();
if (C.Basis != nullptr) {
rewriteCandidateWithBasis(C, *C.Basis);
}
Candidates.pop_back();
}
// Delete all unlink instructions.
for (auto I : UnlinkedInstructions) {
delete I;
}
bool Ret = !UnlinkedInstructions.empty();
UnlinkedInstructions.clear();
return Ret;
}
|