aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Scalar/StraightLineStrengthReduce.cpp
blob: 4edc86cceda6c8d5a9c9c03a2acbd260a68d956d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
//===-- StraightLineStrengthReduce.cpp - ------------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements straight-line strength reduction (SLSR). Unlike loop
// strength reduction, this algorithm is designed to reduce arithmetic
// redundancy in straight-line code instead of loops. It has proven to be
// effective in simplifying arithmetic statements derived from an unrolled loop.
// It can also simplify the logic of SeparateConstOffsetFromGEP.
//
// There are many optimizations we can perform in the domain of SLSR. This file
// for now contains only an initial step. Specifically, we look for strength
// reduction candidate in the form of
//
// (B + i) * S
//
// where B and S are integer constants or variables, and i is a constant
// integer. If we found two such candidates
//
// S1: X = (B + i) * S S2: Y = (B + i') * S
//
// and S1 dominates S2, we call S1 a basis of S2, and can replace S2 with
//
// Y = X + (i' - i) * S
//
// where (i' - i) * S is folded to the extent possible. When S2 has multiple
// bases, we pick the one that is closest to S2, or S2's "immediate" basis.
//
// TODO:
//
// - Handle candidates in the form of B + i * S
//
// - Handle candidates in the form of pointer arithmetics. e.g., B[i * S]
//
// - Floating point arithmetics when fast math is enabled.
//
// - SLSR may decrease ILP at the architecture level. Targets that are very
//   sensitive to ILP may want to disable it. Having SLSR to consider ILP is
//   left as future work.
#include <vector>

#include "llvm/ADT/DenseSet.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"

using namespace llvm;
using namespace PatternMatch;

namespace {

class StraightLineStrengthReduce : public FunctionPass {
 public:
  // SLSR candidate. Such a candidate must be in the form of
  //   (Base + Index) * Stride
  struct Candidate : public ilist_node<Candidate> {
    Candidate(Value *B = nullptr, ConstantInt *Idx = nullptr,
              Value *S = nullptr, Instruction *I = nullptr)
        : Base(B), Index(Idx), Stride(S), Ins(I), Basis(nullptr) {}
    Value *Base;
    ConstantInt *Index;
    Value *Stride;
    // The instruction this candidate corresponds to. It helps us to rewrite a
    // candidate with respect to its immediate basis. Note that one instruction
    // can corresponds to multiple candidates depending on how you associate the
    // expression. For instance,
    //
    // (a + 1) * (b + 2)
    //
    // can be treated as
    //
    // <Base: a, Index: 1, Stride: b + 2>
    //
    // or
    //
    // <Base: b, Index: 2, Stride: a + 1>
    Instruction *Ins;
    // Points to the immediate basis of this candidate, or nullptr if we cannot
    // find any basis for this candidate.
    Candidate *Basis;
  };

  static char ID;

  StraightLineStrengthReduce() : FunctionPass(ID), DT(nullptr) {
    initializeStraightLineStrengthReducePass(*PassRegistry::getPassRegistry());
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<DominatorTreeWrapperPass>();
    // We do not modify the shape of the CFG.
    AU.setPreservesCFG();
  }

  bool runOnFunction(Function &F) override;

 private:
  // Returns true if Basis is a basis for C, i.e., Basis dominates C and they
  // share the same base and stride.
  bool isBasisFor(const Candidate &Basis, const Candidate &C);
  // Checks whether I is in a candidate form. If so, adds all the matching forms
  // to Candidates, and tries to find the immediate basis for each of them.
  void allocateCandidateAndFindBasis(Instruction *I);
  // Given that I is in the form of "(B + Idx) * S", adds this form to
  // Candidates, and finds its immediate basis.
  void allocateCandidateAndFindBasis(Value *B, ConstantInt *Idx, Value *S,
                                     Instruction *I);
  // Rewrites candidate C with respect to Basis.
  void rewriteCandidateWithBasis(const Candidate &C, const Candidate &Basis);

  DominatorTree *DT;
  ilist<Candidate> Candidates;
  // Temporarily holds all instructions that are unlinked (but not deleted) by
  // rewriteCandidateWithBasis. These instructions will be actually removed
  // after all rewriting finishes.
  DenseSet<Instruction *> UnlinkedInstructions;
};
}  // anonymous namespace

char StraightLineStrengthReduce::ID = 0;
INITIALIZE_PASS_BEGIN(StraightLineStrengthReduce, "slsr",
                      "Straight line strength reduction", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(StraightLineStrengthReduce, "slsr",
                    "Straight line strength reduction", false, false)

FunctionPass *llvm::createStraightLineStrengthReducePass() {
  return new StraightLineStrengthReduce();
}

bool StraightLineStrengthReduce::isBasisFor(const Candidate &Basis,
                                            const Candidate &C) {
  return (Basis.Ins != C.Ins && // skip the same instruction
          // Basis must dominate C in order to rewrite C with respect to Basis.
          DT->dominates(Basis.Ins->getParent(), C.Ins->getParent()) &&
          // They share the same base and stride.
          Basis.Base == C.Base &&
          Basis.Stride == C.Stride);
}

// TODO: We currently implement an algorithm whose time complexity is linear to
// the number of existing candidates. However, a better algorithm exists. We
// could depth-first search the dominator tree, and maintain a hash table that
// contains all candidates that dominate the node being traversed.  This hash
// table is indexed by the base and the stride of a candidate.  Therefore,
// finding the immediate basis of a candidate boils down to one hash-table look
// up.
void StraightLineStrengthReduce::allocateCandidateAndFindBasis(Value *B,
                                                               ConstantInt *Idx,
                                                               Value *S,
                                                               Instruction *I) {
  Candidate C(B, Idx, S, I);
  // Try to compute the immediate basis of C.
  unsigned NumIterations = 0;
  // Limit the scan radius to avoid running forever.
  static const unsigned MaxNumIterations = 50;
  for (auto Basis = Candidates.rbegin();
       Basis != Candidates.rend() && NumIterations < MaxNumIterations;
       ++Basis, ++NumIterations) {
    if (isBasisFor(*Basis, C)) {
      C.Basis = &(*Basis);
      break;
    }
  }
  // Regardless of whether we find a basis for C, we need to push C to the
  // candidate list.
  Candidates.push_back(C);
}

void StraightLineStrengthReduce::allocateCandidateAndFindBasis(Instruction *I) {
  Value *B = nullptr;
  ConstantInt *Idx = nullptr;
  // "(Base + Index) * Stride" must be a Mul instruction at the first hand.
  if (I->getOpcode() == Instruction::Mul) {
    if (IntegerType *ITy = dyn_cast<IntegerType>(I->getType())) {
      Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
      for (unsigned Swapped = 0; Swapped < 2; ++Swapped) {
        // Only handle the canonical operand ordering.
        if (match(LHS, m_Add(m_Value(B), m_ConstantInt(Idx)))) {
          // If LHS is in the form of "Base + Index", then I is in the form of
          // "(Base + Index) * RHS".
          allocateCandidateAndFindBasis(B, Idx, RHS, I);
        } else {
          // Otherwise, at least try the form (LHS + 0) * RHS.
          allocateCandidateAndFindBasis(LHS, ConstantInt::get(ITy, 0), RHS, I);
        }
        // Swap LHS and RHS so that we also cover the cases where LHS is the
        // stride.
        if (LHS == RHS)
          break;
        std::swap(LHS, RHS);
      }
    }
  }
}

void StraightLineStrengthReduce::rewriteCandidateWithBasis(
    const Candidate &C, const Candidate &Basis) {
  // An instruction can correspond to multiple candidates. Therefore, instead of
  // simply deleting an instruction when we rewrite it, we mark its parent as
  // nullptr (i.e. unlink it) so that we can skip the candidates whose
  // instruction is already rewritten.
  if (!C.Ins->getParent())
    return;
  assert(C.Base == Basis.Base && C.Stride == Basis.Stride);
  // Basis = (B + i) * S
  // C     = (B + i') * S
  //   ==>
  // C     = Basis + (i' - i) * S
  IRBuilder<> Builder(C.Ins);
  ConstantInt *IndexOffset = ConstantInt::get(
      C.Ins->getContext(), C.Index->getValue() - Basis.Index->getValue());
  Value *Reduced;
  // TODO: preserve nsw/nuw in some cases.
  if (IndexOffset->isOne()) {
    // If (i' - i) is 1, fold C into Basis + S.
    Reduced = Builder.CreateAdd(Basis.Ins, C.Stride);
  } else if (IndexOffset->isMinusOne()) {
    // If (i' - i) is -1, fold C into Basis - S.
    Reduced = Builder.CreateSub(Basis.Ins, C.Stride);
  } else {
    Value *Bump = Builder.CreateMul(C.Stride, IndexOffset);
    Reduced = Builder.CreateAdd(Basis.Ins, Bump);
  }
  Reduced->takeName(C.Ins);
  C.Ins->replaceAllUsesWith(Reduced);
  C.Ins->dropAllReferences();
  // Unlink C.Ins so that we can skip other candidates also corresponding to
  // C.Ins. The actual deletion is postponed to the end of runOnFunction.
  C.Ins->removeFromParent();
  UnlinkedInstructions.insert(C.Ins);
}

bool StraightLineStrengthReduce::runOnFunction(Function &F) {
  if (skipOptnoneFunction(F))
    return false;

  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  // Traverse the dominator tree in the depth-first order. This order makes sure
  // all bases of a candidate are in Candidates when we process it.
  for (auto node = GraphTraits<DominatorTree *>::nodes_begin(DT);
       node != GraphTraits<DominatorTree *>::nodes_end(DT); ++node) {
    BasicBlock *B = node->getBlock();
    for (auto I = B->begin(); I != B->end(); ++I) {
      allocateCandidateAndFindBasis(I);
    }
  }

  // Rewrite candidates in the reverse depth-first order. This order makes sure
  // a candidate being rewritten is not a basis for any other candidate.
  while (!Candidates.empty()) {
    const Candidate &C = Candidates.back();
    if (C.Basis != nullptr) {
      rewriteCandidateWithBasis(C, *C.Basis);
    }
    Candidates.pop_back();
  }

  // Delete all unlink instructions.
  for (auto I : UnlinkedInstructions) {
    delete I;
  }
  bool Ret = !UnlinkedInstructions.empty();
  UnlinkedInstructions.clear();
  return Ret;
}