aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Utils/CodeExtractor.cpp
blob: cbe9858aa448e61e1f0ac7dca73d56236808469a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
//===- CodeExtractor.cpp - Pull code region into a new function -----------===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This file implements the interface to tear out a code region, such as an
// individual loop or a parallel section, into a new function, replacing it with
// a call to the new function.
//
//===----------------------------------------------------------------------===//

#include "llvm/BasicBlock.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instructions.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/Verifier.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/FunctionUtils.h"
#include "Support/Debug.h"
#include "Support/StringExtras.h"
#include <algorithm>
#include <map>
#include <vector>
using namespace llvm;

namespace {

  inline bool contains(const std::vector<BasicBlock*> &V, const BasicBlock *BB){
    return std::find(V.begin(), V.end(), BB) != V.end();
  }

  /// getFunctionArg - Return a pointer to F's ARGNOth argument.
  ///
  Argument *getFunctionArg(Function *F, unsigned argno) {
    Function::aiterator ai = F->abegin();
    while (argno) { ++ai; --argno; }
    return &*ai;
  }

  struct CodeExtractor {
    typedef std::vector<Value*> Values;
    typedef std::vector<std::pair<unsigned, unsigned> > PhiValChangesTy;
    typedef std::map<PHINode*, PhiValChangesTy> PhiVal2ArgTy;
    PhiVal2ArgTy PhiVal2Arg;

  public:
    Function *ExtractCodeRegion(const std::vector<BasicBlock*> &code);

  private:
    void findInputsOutputs(const std::vector<BasicBlock*> &code,
                           Values &inputs,
                           Values &outputs,
                           BasicBlock *newHeader,
                           BasicBlock *newRootNode);

    void processPhiNodeInputs(PHINode *Phi,
                              const std::vector<BasicBlock*> &code,
                              Values &inputs,
                              BasicBlock *newHeader,
                              BasicBlock *newRootNode);

    void rewritePhiNodes(Function *F, BasicBlock *newFuncRoot);

    Function *constructFunction(const Values &inputs,
                                const Values &outputs,
                                BasicBlock *newRootNode, BasicBlock *newHeader,
                                const std::vector<BasicBlock*> &code,
                                Function *oldFunction, Module *M);

    void moveCodeToFunction(const std::vector<BasicBlock*> &code,
                            Function *newFunction);

    void emitCallAndSwitchStatement(Function *newFunction,
                                    BasicBlock *newHeader,
                                    const std::vector<BasicBlock*> &code,
                                    Values &inputs,
                                    Values &outputs);

  };
}

void CodeExtractor::processPhiNodeInputs(PHINode *Phi,
                                         const std::vector<BasicBlock*> &code,
                                         Values &inputs,
                                         BasicBlock *codeReplacer,
                                         BasicBlock *newFuncRoot)
{
  // Separate incoming values and BasicBlocks as internal/external. We ignore
  // the case where both the value and BasicBlock are internal, because we don't
  // need to do a thing.
  std::vector<unsigned> EValEBB;
  std::vector<unsigned> EValIBB;
  std::vector<unsigned> IValEBB;

  for (unsigned i = 0, e = Phi->getNumIncomingValues(); i != e; ++i) {
    Value *phiVal = Phi->getIncomingValue(i);
    if (Instruction *Inst = dyn_cast<Instruction>(phiVal)) {
      if (contains(code, Inst->getParent())) {
        if (!contains(code, Phi->getIncomingBlock(i)))
          IValEBB.push_back(i);
      } else {
        if (contains(code, Phi->getIncomingBlock(i)))
          EValIBB.push_back(i);
        else
          EValEBB.push_back(i);
      }
    } else if (Constant *Const = dyn_cast<Constant>(phiVal)) {
      // Constants are internal, but considered `external' if they are coming
      // from an external block.
      if (!contains(code, Phi->getIncomingBlock(i)))
        EValEBB.push_back(i);
    } else if (Argument *Arg = dyn_cast<Argument>(phiVal)) {
      // arguments are external
      if (contains(code, Phi->getIncomingBlock(i)))
        EValIBB.push_back(i);
      else
        EValEBB.push_back(i);
    } else {
      phiVal->dump();
      assert(0 && "Unhandled input in a Phi node");
    }
  }

  // Both value and block are external. Need to group all of
  // these, have an external phi, pass the result as an
  // argument, and have THIS phi use that result.
  if (EValEBB.size() > 0) {
    if (EValEBB.size() == 1) {
      // Now if it's coming from the newFuncRoot, it's that funky input
      unsigned phiIdx = EValEBB[0];
      if (!dyn_cast<Constant>(Phi->getIncomingValue(phiIdx)))
      {
        PhiVal2Arg[Phi].push_back(std::make_pair(phiIdx, inputs.size()));
        // We can just pass this value in as argument
        inputs.push_back(Phi->getIncomingValue(phiIdx));
      }
      Phi->setIncomingBlock(phiIdx, newFuncRoot);
    } else {
      PHINode *externalPhi = new PHINode(Phi->getType(), "extPhi");
      codeReplacer->getInstList().insert(codeReplacer->begin(), externalPhi);
      for (std::vector<unsigned>::iterator i = EValEBB.begin(),
             e = EValEBB.end(); i != e; ++i)
      {
        externalPhi->addIncoming(Phi->getIncomingValue(*i),
                                 Phi->getIncomingBlock(*i));

        // We make these values invalid instead of deleting them because that
        // would shift the indices of other values... The fixPhiNodes should
        // clean these phi nodes up later.
        Phi->setIncomingValue(*i, 0);
        Phi->setIncomingBlock(*i, 0);
      }
      PhiVal2Arg[Phi].push_back(std::make_pair(Phi->getNumIncomingValues(),
                                               inputs.size()));
      // We can just pass this value in as argument
      inputs.push_back(externalPhi);
    }
  }

  // When the value is external, but block internal...
  // just pass it in as argument, no change to phi node
  for (std::vector<unsigned>::iterator i = EValIBB.begin(),
         e = EValIBB.end(); i != e; ++i)
  {
    // rewrite the phi input node to be an argument
    PhiVal2Arg[Phi].push_back(std::make_pair(*i, inputs.size()));
    inputs.push_back(Phi->getIncomingValue(*i));
  }

  // Value internal, block external
  // this can happen if we are extracting a part of a loop
  for (std::vector<unsigned>::iterator i = IValEBB.begin(),
         e = IValEBB.end(); i != e; ++i)
  {
    assert(0 && "Cannot (YET) handle internal values via external blocks");
  }
}


void CodeExtractor::findInputsOutputs(const std::vector<BasicBlock*> &code,
                                      Values &inputs,
                                      Values &outputs,
                                      BasicBlock *newHeader,
                                      BasicBlock *newRootNode)
{
  for (std::vector<BasicBlock*>::const_iterator ci = code.begin(), 
       ce = code.end(); ci != ce; ++ci) {
    BasicBlock *BB = *ci;
    for (BasicBlock::iterator BBi = BB->begin(), BBe = BB->end();
         BBi != BBe; ++BBi) {
      // If a use is defined outside the region, it's an input.
      // If a def is used outside the region, it's an output.
      if (Instruction *I = dyn_cast<Instruction>(&*BBi)) {
        // If it's a phi node
        if (PHINode *Phi = dyn_cast<PHINode>(I)) {
          processPhiNodeInputs(Phi, code, inputs, newHeader, newRootNode);
        } else {
          // All other instructions go through the generic input finder
          // Loop over the operands of each instruction (inputs)
          for (User::op_iterator op = I->op_begin(), opE = I->op_end();
               op != opE; ++op) {
            if (Instruction *opI = dyn_cast<Instruction>(op->get())) {
              // Check if definition of this operand is within the loop
              if (!contains(code, opI->getParent())) {
                // add this operand to the inputs
                inputs.push_back(opI);
              }
            }
          }
        }

        // Consider uses of this instruction (outputs)
        for (Value::use_iterator use = I->use_begin(), useE = I->use_end();
             use != useE; ++use) {
          if (Instruction* inst = dyn_cast<Instruction>(*use)) {
            if (!contains(code, inst->getParent())) {
              // add this op to the outputs
              outputs.push_back(I);
            }
          }
        }
      } /* if */
    } /* for: insts */
  } /* for: basic blocks */
}

void CodeExtractor::rewritePhiNodes(Function *F,
                                    BasicBlock *newFuncRoot) {
  // Write any changes that were saved before: use function arguments as inputs
  for (PhiVal2ArgTy::iterator i = PhiVal2Arg.begin(), e = PhiVal2Arg.end();
       i != e; ++i)
  {
    PHINode *phi = (*i).first;
    PhiValChangesTy &values = (*i).second;
    for (unsigned cIdx = 0, ce = values.size(); cIdx != ce; ++cIdx)
    {
      unsigned phiValueIdx = values[cIdx].first, argNum = values[cIdx].second;
      if (phiValueIdx < phi->getNumIncomingValues())
        phi->setIncomingValue(phiValueIdx, getFunctionArg(F, argNum));
      else
        phi->addIncoming(getFunctionArg(F, argNum), newFuncRoot);
    }
  }

  // Delete any invalid Phi node inputs that were marked as NULL previously
  for (PhiVal2ArgTy::iterator i = PhiVal2Arg.begin(), e = PhiVal2Arg.end();
       i != e; ++i)
  {
    PHINode *phi = (*i).first;
    for (unsigned idx = 0, end = phi->getNumIncomingValues(); idx != end; ++idx)
    {
      if (phi->getIncomingValue(idx) == 0 && phi->getIncomingBlock(idx) == 0) {
        phi->removeIncomingValue(idx);
        --idx;
        --end;
      }
    }
  }

  // We are done with the saved values
  PhiVal2Arg.clear();
}


/// constructFunction - make a function based on inputs and outputs, as follows:
/// f(in0, ..., inN, out0, ..., outN)
///
Function *CodeExtractor::constructFunction(const Values &inputs,
                                           const Values &outputs,
                                           BasicBlock *newRootNode,
                                           BasicBlock *newHeader,
                                           const std::vector<BasicBlock*> &code,
                                           Function *oldFunction, Module *M) {
  DEBUG(std::cerr << "inputs: " << inputs.size() << "\n");
  DEBUG(std::cerr << "outputs: " << outputs.size() << "\n");
  BasicBlock *header = code[0];

  // This function returns unsigned, outputs will go back by reference.
  Type *retTy = Type::UShortTy;
  std::vector<const Type*> paramTy;

  // Add the types of the input values to the function's argument list
  for (Values::const_iterator i = inputs.begin(),
         e = inputs.end(); i != e; ++i) {
    const Value *value = *i;
    DEBUG(std::cerr << "value used in func: " << value << "\n");
    paramTy.push_back(value->getType());
  }

  // Add the types of the output values to the function's argument list, but
  // make them pointer types for scalars
  for (Values::const_iterator i = outputs.begin(),
         e = outputs.end(); i != e; ++i) {
    const Value *value = *i;
    DEBUG(std::cerr << "instr used in func: " << value << "\n");
    const Type *valueType = value->getType();
    // Convert scalar types into a pointer of that type
    if (valueType->isPrimitiveType()) {
      valueType = PointerType::get(valueType);
    }
    paramTy.push_back(valueType);
  }

  DEBUG(std::cerr << "Function type: " << retTy << " f(");
  for (std::vector<const Type*>::iterator i = paramTy.begin(),
         e = paramTy.end(); i != e; ++i)
    DEBUG(std::cerr << (*i) << ", ");
  DEBUG(std::cerr << ")\n");

  const FunctionType *funcType = FunctionType::get(retTy, paramTy, false);

  // Create the new function
  Function *newFunction = new Function(funcType,
                                       GlobalValue::InternalLinkage,
                                       oldFunction->getName() + "_code", M);
  newFunction->getBasicBlockList().push_back(newRootNode);

  for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
    std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end());
    for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end();
         use != useE; ++use)
      if (Instruction* inst = dyn_cast<Instruction>(*use))
        if (contains(code, inst->getParent()))
          inst->replaceUsesOfWith(inputs[i], getFunctionArg(newFunction, i));
  }

  // Rewrite branches to basic blocks outside of the loop to new dummy blocks
  // within the new function. This must be done before we lose track of which
  // blocks were originally in the code region.
  std::vector<User*> Users(header->use_begin(), header->use_end());
  for (std::vector<User*>::iterator i = Users.begin(), e = Users.end();
       i != e; ++i) {
    if (BranchInst *inst = dyn_cast<BranchInst>(*i)) {
      BasicBlock *BB = inst->getParent();
      if (!contains(code, BB) && BB->getParent() == oldFunction) {
        // The BasicBlock which contains the branch is not in the region
        // modify the branch target to a new block
        inst->replaceUsesOfWith(header, newHeader);
      }
    }
  }

  return newFunction;
}

void CodeExtractor::moveCodeToFunction(const std::vector<BasicBlock*> &code,
                                       Function *newFunction)
{
  for (std::vector<BasicBlock*>::const_iterator i = code.begin(), e =code.end();
       i != e; ++i) {
    BasicBlock *BB = *i;
    Function *oldFunc = BB->getParent();
    Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();

    // Delete the basic block from the old function, and the list of blocks
    oldBlocks.remove(BB);

    // Insert this basic block into the new function
    Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
    newBlocks.push_back(BB);
  }
}

void
CodeExtractor::emitCallAndSwitchStatement(Function *newFunction,
                                          BasicBlock *codeReplacer,
                                          const std::vector<BasicBlock*> &code,
                                          Values &inputs,
                                          Values &outputs)
{
  // Emit a call to the new function, passing allocated memory for outputs and
  // just plain inputs for non-scalars
  std::vector<Value*> params;
  BasicBlock *codeReplacerTail = new BasicBlock("codeReplTail",
                                                codeReplacer->getParent());
  for (Values::const_iterator i = inputs.begin(),
         e = inputs.end(); i != e; ++i)
    params.push_back(*i);
  for (Values::const_iterator i = outputs.begin(), 
         e = outputs.end(); i != e; ++i) {
    // Create allocas for scalar outputs
    if ((*i)->getType()->isPrimitiveType()) {
      Constant *one = ConstantUInt::get(Type::UIntTy, 1);
      AllocaInst *alloca = new AllocaInst((*i)->getType(), one);
      codeReplacer->getInstList().push_back(alloca);
      params.push_back(alloca);

      LoadInst *load = new LoadInst(alloca, "alloca");
      codeReplacerTail->getInstList().push_back(load);
      std::vector<User*> Users((*i)->use_begin(), (*i)->use_end());
      for (std::vector<User*>::iterator use = Users.begin(), useE =Users.end();
           use != useE; ++use) {
        if (Instruction* inst = dyn_cast<Instruction>(*use)) {
          if (!contains(code, inst->getParent())) {
            inst->replaceUsesOfWith(*i, load);
          }
        }
      }
    } else {
      params.push_back(*i);
    }
  }
  CallInst *call = new CallInst(newFunction, params, "targetBlock");
  codeReplacer->getInstList().push_back(call);
  codeReplacer->getInstList().push_back(new BranchInst(codeReplacerTail));

  // Now we can emit a switch statement using the call as a value.
  // FIXME: perhaps instead of default being self BB, it should be a second
  // dummy block which asserts that the value is not within the range...?
  //BasicBlock *defaultBlock = new BasicBlock("defaultBlock", oldF);
  //insert abort() ?
  //defaultBlock->getInstList().push_back(new BranchInst(codeReplacer));

  SwitchInst *switchInst = new SwitchInst(call, codeReplacerTail,
                                          codeReplacerTail);

  // Since there may be multiple exits from the original region, make the new
  // function return an unsigned, switch on that number
  unsigned switchVal = 0;
  for (std::vector<BasicBlock*>::const_iterator i =code.begin(), e = code.end();
       i != e; ++i) {
    BasicBlock *BB = *i;

    // rewrite the terminator of the original BasicBlock
    Instruction *term = BB->getTerminator();
    if (BranchInst *brInst = dyn_cast<BranchInst>(term)) {

      // Restore values just before we exit
      // FIXME: Use a GetElementPtr to bunch the outputs in a struct
      for (unsigned outIdx = 0, outE = outputs.size(); outIdx != outE; ++outIdx)
      {
        new StoreInst(outputs[outIdx],
                      getFunctionArg(newFunction, outIdx),
                      brInst);
      }

      // Rewrite branches into exits which return a value based on which
      // exit we take from this function
      if (brInst->isUnconditional()) {
        if (!contains(code, brInst->getSuccessor(0))) {
          ConstantUInt *brVal = ConstantUInt::get(Type::UShortTy, switchVal);
          ReturnInst *newRet = new ReturnInst(brVal);
          // add a new target to the switch
          switchInst->addCase(brVal, brInst->getSuccessor(0));
          ++switchVal;
          // rewrite the branch with a return
          BasicBlock::iterator ii(brInst);
          ReplaceInstWithInst(BB->getInstList(), ii, newRet);
          delete brInst;
        }
      } else {
        // Replace the conditional branch to branch
        // to two new blocks, each of which returns a different code.
        for (unsigned idx = 0; idx < 2; ++idx) {
          BasicBlock *oldTarget = brInst->getSuccessor(idx);
          if (!contains(code, oldTarget)) {
            // add a new basic block which returns the appropriate value
            BasicBlock *newTarget = new BasicBlock("newTarget", newFunction);
            ConstantUInt *brVal = ConstantUInt::get(Type::UShortTy, switchVal);
            ReturnInst *newRet = new ReturnInst(brVal);
            newTarget->getInstList().push_back(newRet);
            // rewrite the original branch instruction with this new target
            brInst->setSuccessor(idx, newTarget);
            // the switch statement knows what to do with this value
            switchInst->addCase(brVal, oldTarget);
            ++switchVal;
          }
        }
      }
    } else if (ReturnInst *retTerm = dyn_cast<ReturnInst>(term)) {
      assert(0 && "Cannot handle return instructions just yet.");
      // FIXME: what if the terminator is a return!??!
      // Need to rewrite: add new basic block, move the return there
      // treat the original as an unconditional branch to that basicblock
    } else if (SwitchInst *swTerm = dyn_cast<SwitchInst>(term)) {
      assert(0 && "Cannot handle switch instructions just yet.");
    } else if (InvokeInst *invInst = dyn_cast<InvokeInst>(term)) {
      assert(0 && "Cannot handle invoke instructions just yet.");
    } else {
      assert(0 && "Unrecognized terminator, or badly-formed BasicBlock.");
    }
  }
}


/// ExtractRegion - Removes a loop from a function, replaces it with a call to
/// new function. Returns pointer to the new function.
///
/// algorithm:
///
/// find inputs and outputs for the region
///
/// for inputs: add to function as args, map input instr* to arg# 
/// for outputs: add allocas for scalars, 
///             add to func as args, map output instr* to arg#
///
/// rewrite func to use argument #s instead of instr*
///
/// for each scalar output in the function: at every exit, store intermediate 
/// computed result back into memory.
///
Function *CodeExtractor::ExtractCodeRegion(const std::vector<BasicBlock*> &code)
{
  // 1) Find inputs, outputs
  // 2) Construct new function
  //  * Add allocas for defs, pass as args by reference
  //  * Pass in uses as args
  // 3) Move code region, add call instr to func
  // 

  Values inputs, outputs;

  // Assumption: this is a single-entry code region, and the header is the first
  // block in the region. FIXME: is this true for a list of blocks from a
  // natural function?
  BasicBlock *header = code[0];
  Function *oldFunction = header->getParent();
  Module *module = oldFunction->getParent();

  // This takes place of the original loop
  BasicBlock *codeReplacer = new BasicBlock("codeRepl", oldFunction);

  // The new function needs a root node because other nodes can branch to the
  // head of the loop, and the root cannot have predecessors
  BasicBlock *newFuncRoot = new BasicBlock("newFuncRoot");
  newFuncRoot->getInstList().push_back(new BranchInst(header));

  // Find inputs to, outputs from the code region
  //
  // If one of the inputs is coming from a different basic block and it's in a
  // phi node, we need to rewrite the phi node:
  //
  // * All the inputs which involve basic blocks OUTSIDE of this region go into
  //   a NEW phi node that takes care of finding which value really came in.
  //   The result of this phi is passed to the function as an argument. 
  //
  // * All the other phi values stay.
  //
  // FIXME: PHI nodes' incoming blocks aren't being rewritten to accomodate for
  // blocks moving to a new function.
  // SOLUTION: move Phi nodes out of the loop header into the codeReplacer, pass
  // the values as parameters to the function
  findInputsOutputs(code, inputs, outputs, codeReplacer, newFuncRoot);

  // Step 2: Construct new function based on inputs/outputs,
  // Add allocas for all defs
  Function *newFunction = constructFunction(inputs, outputs, newFuncRoot, 
                                            codeReplacer, code, 
                                            oldFunction, module);

  rewritePhiNodes(newFunction, newFuncRoot);

  emitCallAndSwitchStatement(newFunction, codeReplacer, code, inputs, outputs);

  moveCodeToFunction(code, newFunction);

  DEBUG(if (verifyFunction(*newFunction)) abort());
  return newFunction;
}

/// ExtractCodeRegion - slurp a sequence of basic blocks into a brand new
/// function
///
Function* llvm::ExtractCodeRegion(const std::vector<BasicBlock*> &code) {
  CodeExtractor CE;
  return CE.ExtractCodeRegion(code);
}

/// ExtractBasicBlock - slurp a natural loop into a brand new function
///
Function* llvm::ExtractLoop(Loop *L) {
  CodeExtractor CE;
  return CE.ExtractCodeRegion(L->getBlocks());
}

/// ExtractBasicBlock - slurp a basic block into a brand new function
///
Function* llvm::ExtractBasicBlock(BasicBlock *BB) {
  CodeExtractor CE;
  std::vector<BasicBlock*> Blocks;
  Blocks.push_back(BB);
  return CE.ExtractCodeRegion(Blocks);  
}