aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Utils/CodeExtractor.cpp
blob: a0193992a757e5425a66b25b52264e84da194789 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
//===- CodeExtractor.cpp - Pull code region into a new function -----------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the interface to tear out a code region, such as an
// individual loop or a parallel section, into a new function, replacing it with
// a call to the new function.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Utils/FunctionUtils.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instructions.h"
#include "llvm/Intrinsics.h"
#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/Verifier.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/ADT/StringExtras.h"
#include <algorithm>
#include <set>
using namespace llvm;

// Provide a command-line option to aggregate function arguments into a struct
// for functions produced by the code extractor. This is useful when converting
// extracted functions to pthread-based code, as only one argument (void*) can
// be passed in to pthread_create().
static cl::opt<bool>
AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
                 cl::desc("Aggregate arguments to code-extracted functions"));

namespace {
  class VISIBILITY_HIDDEN CodeExtractor {
    typedef std::vector<Value*> Values;
    std::set<BasicBlock*> BlocksToExtract;
    DominatorTree* DT;
    bool AggregateArgs;
    unsigned NumExitBlocks;
    const Type *RetTy;
  public:
    CodeExtractor(DominatorTree* dt = 0, bool AggArgs = false)
      : DT(dt), AggregateArgs(AggArgs||AggregateArgsOpt), NumExitBlocks(~0U) {}

    Function *ExtractCodeRegion(const std::vector<BasicBlock*> &code);

    bool isEligible(const std::vector<BasicBlock*> &code);

  private:
    /// definedInRegion - Return true if the specified value is defined in the
    /// extracted region.
    bool definedInRegion(Value *V) const {
      if (Instruction *I = dyn_cast<Instruction>(V))
        if (BlocksToExtract.count(I->getParent()))
          return true;
      return false;
    }

    /// definedInCaller - Return true if the specified value is defined in the
    /// function being code extracted, but not in the region being extracted.
    /// These values must be passed in as live-ins to the function.
    bool definedInCaller(Value *V) const {
      if (isa<Argument>(V)) return true;
      if (Instruction *I = dyn_cast<Instruction>(V))
        if (!BlocksToExtract.count(I->getParent()))
          return true;
      return false;
    }

    void severSplitPHINodes(BasicBlock *&Header);
    void splitReturnBlocks();
    void findInputsOutputs(Values &inputs, Values &outputs);

    Function *constructFunction(const Values &inputs,
                                const Values &outputs,
                                BasicBlock *header,
                                BasicBlock *newRootNode, BasicBlock *newHeader,
                                Function *oldFunction, Module *M);

    void moveCodeToFunction(Function *newFunction);

    void emitCallAndSwitchStatement(Function *newFunction,
                                    BasicBlock *newHeader,
                                    Values &inputs,
                                    Values &outputs);

  };
}

/// severSplitPHINodes - If a PHI node has multiple inputs from outside of the
/// region, we need to split the entry block of the region so that the PHI node
/// is easier to deal with.
void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) {
  bool HasPredsFromRegion = false;
  unsigned NumPredsOutsideRegion = 0;

  if (Header != &Header->getParent()->getEntryBlock()) {
    PHINode *PN = dyn_cast<PHINode>(Header->begin());
    if (!PN) return;  // No PHI nodes.

    // If the header node contains any PHI nodes, check to see if there is more
    // than one entry from outside the region.  If so, we need to sever the
    // header block into two.
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
      if (BlocksToExtract.count(PN->getIncomingBlock(i)))
        HasPredsFromRegion = true;
      else
        ++NumPredsOutsideRegion;

    // If there is one (or fewer) predecessor from outside the region, we don't
    // need to do anything special.
    if (NumPredsOutsideRegion <= 1) return;
  }

  // Otherwise, we need to split the header block into two pieces: one
  // containing PHI nodes merging values from outside of the region, and a
  // second that contains all of the code for the block and merges back any
  // incoming values from inside of the region.
  BasicBlock::iterator AfterPHIs = Header->getFirstNonPHI();
  BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs,
                                              Header->getName()+".ce");

  // We only want to code extract the second block now, and it becomes the new
  // header of the region.
  BasicBlock *OldPred = Header;
  BlocksToExtract.erase(OldPred);
  BlocksToExtract.insert(NewBB);
  Header = NewBB;

  // Okay, update dominator sets. The blocks that dominate the new one are the
  // blocks that dominate TIBB plus the new block itself.
  if (DT)
    DT->splitBlock(NewBB);

  // Okay, now we need to adjust the PHI nodes and any branches from within the
  // region to go to the new header block instead of the old header block.
  if (HasPredsFromRegion) {
    PHINode *PN = cast<PHINode>(OldPred->begin());
    // Loop over all of the predecessors of OldPred that are in the region,
    // changing them to branch to NewBB instead.
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
      if (BlocksToExtract.count(PN->getIncomingBlock(i))) {
        TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator();
        TI->replaceUsesOfWith(OldPred, NewBB);
      }

    // Okay, everthing within the region is now branching to the right block, we
    // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
    for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
      PHINode *PN = cast<PHINode>(AfterPHIs);
      // Create a new PHI node in the new region, which has an incoming value
      // from OldPred of PN.
      PHINode *NewPN = PHINode::Create(PN->getType(), PN->getName()+".ce",
                                       NewBB->begin());
      NewPN->addIncoming(PN, OldPred);

      // Loop over all of the incoming value in PN, moving them to NewPN if they
      // are from the extracted region.
      for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
        if (BlocksToExtract.count(PN->getIncomingBlock(i))) {
          NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
          PN->removeIncomingValue(i);
          --i;
        }
      }
    }
  }
}

void CodeExtractor::splitReturnBlocks() {
  for (std::set<BasicBlock*>::iterator I = BlocksToExtract.begin(),
         E = BlocksToExtract.end(); I != E; ++I)
    if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator()))
      (*I)->splitBasicBlock(RI, (*I)->getName()+".ret");
}

// findInputsOutputs - Find inputs to, outputs from the code region.
//
void CodeExtractor::findInputsOutputs(Values &inputs, Values &outputs) {
  std::set<BasicBlock*> ExitBlocks;
  for (std::set<BasicBlock*>::const_iterator ci = BlocksToExtract.begin(),
       ce = BlocksToExtract.end(); ci != ce; ++ci) {
    BasicBlock *BB = *ci;

    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
      // If a used value is defined outside the region, it's an input.  If an
      // instruction is used outside the region, it's an output.
      for (User::op_iterator O = I->op_begin(), E = I->op_end(); O != E; ++O)
        if (definedInCaller(*O))
          inputs.push_back(*O);

      // Consider uses of this instruction (outputs).
      for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
           UI != E; ++UI)
        if (!definedInRegion(*UI)) {
          outputs.push_back(I);
          break;
        }
    } // for: insts

    // Keep track of the exit blocks from the region.
    TerminatorInst *TI = BB->getTerminator();
    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
      if (!BlocksToExtract.count(TI->getSuccessor(i)))
        ExitBlocks.insert(TI->getSuccessor(i));
  } // for: basic blocks

  NumExitBlocks = ExitBlocks.size();

  // Eliminate duplicates.
  std::sort(inputs.begin(), inputs.end());
  inputs.erase(std::unique(inputs.begin(), inputs.end()), inputs.end());
  std::sort(outputs.begin(), outputs.end());
  outputs.erase(std::unique(outputs.begin(), outputs.end()), outputs.end());
}

/// constructFunction - make a function based on inputs and outputs, as follows:
/// f(in0, ..., inN, out0, ..., outN)
///
Function *CodeExtractor::constructFunction(const Values &inputs,
                                           const Values &outputs,
                                           BasicBlock *header,
                                           BasicBlock *newRootNode,
                                           BasicBlock *newHeader,
                                           Function *oldFunction,
                                           Module *M) {
  DOUT << "inputs: " << inputs.size() << "\n";
  DOUT << "outputs: " << outputs.size() << "\n";

  LLVMContext &Context = header->getContext();

  // This function returns unsigned, outputs will go back by reference.
  switch (NumExitBlocks) {
  case 0:
  case 1: RetTy = Type::VoidTy; break;
  case 2: RetTy = Type::Int1Ty; break;
  default: RetTy = Type::Int16Ty; break;
  }

  std::vector<const Type*> paramTy;

  // Add the types of the input values to the function's argument list
  for (Values::const_iterator i = inputs.begin(),
         e = inputs.end(); i != e; ++i) {
    const Value *value = *i;
    DOUT << "value used in func: " << *value << "\n";
    paramTy.push_back(value->getType());
  }

  // Add the types of the output values to the function's argument list.
  for (Values::const_iterator I = outputs.begin(), E = outputs.end();
       I != E; ++I) {
    DOUT << "instr used in func: " << **I << "\n";
    if (AggregateArgs)
      paramTy.push_back((*I)->getType());
    else
      paramTy.push_back(
         header->getContext().getPointerTypeUnqual((*I)->getType()));
  }

  DOUT << "Function type: " << *RetTy << " f(";
  for (std::vector<const Type*>::iterator i = paramTy.begin(),
         e = paramTy.end(); i != e; ++i)
    DOUT << **i << ", ";
  DOUT << ")\n";

  if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
    PointerType *StructPtr =
           Context.getPointerTypeUnqual(Context.getStructType(paramTy));
    paramTy.clear();
    paramTy.push_back(StructPtr);
  }
  const FunctionType *funcType =
                  Context.getFunctionType(RetTy, paramTy, false);

  // Create the new function
  Function *newFunction = Function::Create(funcType,
                                           GlobalValue::InternalLinkage,
                                           oldFunction->getName() + "_" +
                                           header->getName(), M);
  // If the old function is no-throw, so is the new one.
  if (oldFunction->doesNotThrow())
    newFunction->setDoesNotThrow(true);
  
  newFunction->getBasicBlockList().push_back(newRootNode);

  // Create an iterator to name all of the arguments we inserted.
  Function::arg_iterator AI = newFunction->arg_begin();

  // Rewrite all users of the inputs in the extracted region to use the
  // arguments (or appropriate addressing into struct) instead.
  for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
    Value *RewriteVal;
    if (AggregateArgs) {
      Value *Idx[2];
      Idx[0] = Context.getNullValue(Type::Int32Ty);
      Idx[1] = Context.getConstantInt(Type::Int32Ty, i);
      std::string GEPname = "gep_" + inputs[i]->getName();
      TerminatorInst *TI = newFunction->begin()->getTerminator();
      GetElementPtrInst *GEP = GetElementPtrInst::Create(AI, Idx, Idx+2, 
                                                         GEPname, TI);
      RewriteVal = new LoadInst(GEP, "load" + GEPname, TI);
    } else
      RewriteVal = AI++;

    std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end());
    for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end();
         use != useE; ++use)
      if (Instruction* inst = dyn_cast<Instruction>(*use))
        if (BlocksToExtract.count(inst->getParent()))
          inst->replaceUsesOfWith(inputs[i], RewriteVal);
  }

  // Set names for input and output arguments.
  if (!AggregateArgs) {
    AI = newFunction->arg_begin();
    for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
      AI->setName(inputs[i]->getName());
    for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
      AI->setName(outputs[i]->getName()+".out");
  }

  // Rewrite branches to basic blocks outside of the loop to new dummy blocks
  // within the new function. This must be done before we lose track of which
  // blocks were originally in the code region.
  std::vector<User*> Users(header->use_begin(), header->use_end());
  for (unsigned i = 0, e = Users.size(); i != e; ++i)
    // The BasicBlock which contains the branch is not in the region
    // modify the branch target to a new block
    if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i]))
      if (!BlocksToExtract.count(TI->getParent()) &&
          TI->getParent()->getParent() == oldFunction)
        TI->replaceUsesOfWith(header, newHeader);

  return newFunction;
}

/// emitCallAndSwitchStatement - This method sets up the caller side by adding
/// the call instruction, splitting any PHI nodes in the header block as
/// necessary.
void CodeExtractor::
emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
                           Values &inputs, Values &outputs) {
  LLVMContext &Context = codeReplacer->getContext();
  
  // Emit a call to the new function, passing in: *pointer to struct (if
  // aggregating parameters), or plan inputs and allocated memory for outputs
  std::vector<Value*> params, StructValues, ReloadOutputs;

  // Add inputs as params, or to be filled into the struct
  for (Values::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i)
    if (AggregateArgs)
      StructValues.push_back(*i);
    else
      params.push_back(*i);

  // Create allocas for the outputs
  for (Values::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) {
    if (AggregateArgs) {
      StructValues.push_back(*i);
    } else {
      AllocaInst *alloca =
        new AllocaInst((*i)->getType(), 0, (*i)->getName()+".loc",
                       codeReplacer->getParent()->begin()->begin());
      ReloadOutputs.push_back(alloca);
      params.push_back(alloca);
    }
  }

  AllocaInst *Struct = 0;
  if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
    std::vector<const Type*> ArgTypes;
    for (Values::iterator v = StructValues.begin(),
           ve = StructValues.end(); v != ve; ++v)
      ArgTypes.push_back((*v)->getType());

    // Allocate a struct at the beginning of this function
    Type *StructArgTy = Context.getStructType(ArgTypes);
    Struct =
      new AllocaInst(StructArgTy, 0, "structArg",
                     codeReplacer->getParent()->begin()->begin());
    params.push_back(Struct);

    for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
      Value *Idx[2];
      Idx[0] = Context.getNullValue(Type::Int32Ty);
      Idx[1] = Context.getConstantInt(Type::Int32Ty, i);
      GetElementPtrInst *GEP =
        GetElementPtrInst::Create(Struct, Idx, Idx + 2,
                                  "gep_" + StructValues[i]->getName());
      codeReplacer->getInstList().push_back(GEP);
      StoreInst *SI = new StoreInst(StructValues[i], GEP);
      codeReplacer->getInstList().push_back(SI);
    }
  }

  // Emit the call to the function
  CallInst *call = CallInst::Create(newFunction, params.begin(), params.end(),
                                    NumExitBlocks > 1 ? "targetBlock" : "");
  codeReplacer->getInstList().push_back(call);

  Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
  unsigned FirstOut = inputs.size();
  if (!AggregateArgs)
    std::advance(OutputArgBegin, inputs.size());

  // Reload the outputs passed in by reference
  for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
    Value *Output = 0;
    if (AggregateArgs) {
      Value *Idx[2];
      Idx[0] = Context.getNullValue(Type::Int32Ty);
      Idx[1] = Context.getConstantInt(Type::Int32Ty, FirstOut + i);
      GetElementPtrInst *GEP
        = GetElementPtrInst::Create(Struct, Idx, Idx + 2,
                                    "gep_reload_" + outputs[i]->getName());
      codeReplacer->getInstList().push_back(GEP);
      Output = GEP;
    } else {
      Output = ReloadOutputs[i];
    }
    LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload");
    codeReplacer->getInstList().push_back(load);
    std::vector<User*> Users(outputs[i]->use_begin(), outputs[i]->use_end());
    for (unsigned u = 0, e = Users.size(); u != e; ++u) {
      Instruction *inst = cast<Instruction>(Users[u]);
      if (!BlocksToExtract.count(inst->getParent()))
        inst->replaceUsesOfWith(outputs[i], load);
    }
  }

  // Now we can emit a switch statement using the call as a value.
  SwitchInst *TheSwitch =
      SwitchInst::Create(Context.getNullValue(Type::Int16Ty),
                         codeReplacer, 0, codeReplacer);

  // Since there may be multiple exits from the original region, make the new
  // function return an unsigned, switch on that number.  This loop iterates
  // over all of the blocks in the extracted region, updating any terminator
  // instructions in the to-be-extracted region that branch to blocks that are
  // not in the region to be extracted.
  std::map<BasicBlock*, BasicBlock*> ExitBlockMap;

  unsigned switchVal = 0;
  for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(),
         e = BlocksToExtract.end(); i != e; ++i) {
    TerminatorInst *TI = (*i)->getTerminator();
    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
      if (!BlocksToExtract.count(TI->getSuccessor(i))) {
        BasicBlock *OldTarget = TI->getSuccessor(i);
        // add a new basic block which returns the appropriate value
        BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
        if (!NewTarget) {
          // If we don't already have an exit stub for this non-extracted
          // destination, create one now!
          NewTarget = BasicBlock::Create(OldTarget->getName() + ".exitStub",
                                         newFunction);
          unsigned SuccNum = switchVal++;

          Value *brVal = 0;
          switch (NumExitBlocks) {
          case 0:
          case 1: break;  // No value needed.
          case 2:         // Conditional branch, return a bool
            brVal = Context.getConstantInt(Type::Int1Ty, !SuccNum);
            break;
          default:
            brVal = Context.getConstantInt(Type::Int16Ty, SuccNum);
            break;
          }

          ReturnInst *NTRet = ReturnInst::Create(brVal, NewTarget);

          // Update the switch instruction.
          TheSwitch->addCase(Context.getConstantInt(Type::Int16Ty, SuccNum),
                             OldTarget);

          // Restore values just before we exit
          Function::arg_iterator OAI = OutputArgBegin;
          for (unsigned out = 0, e = outputs.size(); out != e; ++out) {
            // For an invoke, the normal destination is the only one that is
            // dominated by the result of the invocation
            BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent();

            bool DominatesDef = true;

            if (InvokeInst *Invoke = dyn_cast<InvokeInst>(outputs[out])) {
              DefBlock = Invoke->getNormalDest();

              // Make sure we are looking at the original successor block, not
              // at a newly inserted exit block, which won't be in the dominator
              // info.
              for (std::map<BasicBlock*, BasicBlock*>::iterator I =
                     ExitBlockMap.begin(), E = ExitBlockMap.end(); I != E; ++I)
                if (DefBlock == I->second) {
                  DefBlock = I->first;
                  break;
                }

              // In the extract block case, if the block we are extracting ends
              // with an invoke instruction, make sure that we don't emit a
              // store of the invoke value for the unwind block.
              if (!DT && DefBlock != OldTarget)
                DominatesDef = false;
            }

            if (DT)
              DominatesDef = DT->dominates(DefBlock, OldTarget);

            if (DominatesDef) {
              if (AggregateArgs) {
                Value *Idx[2];
                Idx[0] = Context.getNullValue(Type::Int32Ty);
                Idx[1] = Context.getConstantInt(Type::Int32Ty,FirstOut+out);
                GetElementPtrInst *GEP =
                  GetElementPtrInst::Create(OAI, Idx, Idx + 2,
                                            "gep_" + outputs[out]->getName(),
                                            NTRet);
                new StoreInst(outputs[out], GEP, NTRet);
              } else {
                new StoreInst(outputs[out], OAI, NTRet);
              }
            }
            // Advance output iterator even if we don't emit a store
            if (!AggregateArgs) ++OAI;
          }
        }

        // rewrite the original branch instruction with this new target
        TI->setSuccessor(i, NewTarget);
      }
  }

  // Now that we've done the deed, simplify the switch instruction.
  const Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
  switch (NumExitBlocks) {
  case 0:
    // There are no successors (the block containing the switch itself), which
    // means that previously this was the last part of the function, and hence
    // this should be rewritten as a `ret'

    // Check if the function should return a value
    if (OldFnRetTy == Type::VoidTy) {
      ReturnInst::Create(0, TheSwitch);  // Return void
    } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
      // return what we have
      ReturnInst::Create(TheSwitch->getCondition(), TheSwitch);
    } else {
      // Otherwise we must have code extracted an unwind or something, just
      // return whatever we want.
      ReturnInst::Create(Context.getNullValue(OldFnRetTy), TheSwitch);
    }

    TheSwitch->eraseFromParent();
    break;
  case 1:
    // Only a single destination, change the switch into an unconditional
    // branch.
    BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
    TheSwitch->eraseFromParent();
    break;
  case 2:
    BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
                       call, TheSwitch);
    TheSwitch->eraseFromParent();
    break;
  default:
    // Otherwise, make the default destination of the switch instruction be one
    // of the other successors.
    TheSwitch->setOperand(0, call);
    TheSwitch->setSuccessor(0, TheSwitch->getSuccessor(NumExitBlocks));
    TheSwitch->removeCase(NumExitBlocks);  // Remove redundant case
    break;
  }
}

void CodeExtractor::moveCodeToFunction(Function *newFunction) {
  Function *oldFunc = (*BlocksToExtract.begin())->getParent();
  Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
  Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();

  for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(),
         e = BlocksToExtract.end(); i != e; ++i) {
    // Delete the basic block from the old function, and the list of blocks
    oldBlocks.remove(*i);

    // Insert this basic block into the new function
    newBlocks.push_back(*i);
  }
}

/// ExtractRegion - Removes a loop from a function, replaces it with a call to
/// new function. Returns pointer to the new function.
///
/// algorithm:
///
/// find inputs and outputs for the region
///
/// for inputs: add to function as args, map input instr* to arg#
/// for outputs: add allocas for scalars,
///             add to func as args, map output instr* to arg#
///
/// rewrite func to use argument #s instead of instr*
///
/// for each scalar output in the function: at every exit, store intermediate
/// computed result back into memory.
///
Function *CodeExtractor::
ExtractCodeRegion(const std::vector<BasicBlock*> &code) {
  if (!isEligible(code))
    return 0;

  // 1) Find inputs, outputs
  // 2) Construct new function
  //  * Add allocas for defs, pass as args by reference
  //  * Pass in uses as args
  // 3) Move code region, add call instr to func
  //
  BlocksToExtract.insert(code.begin(), code.end());

  Values inputs, outputs;

  // Assumption: this is a single-entry code region, and the header is the first
  // block in the region.
  BasicBlock *header = code[0];

  for (unsigned i = 1, e = code.size(); i != e; ++i)
    for (pred_iterator PI = pred_begin(code[i]), E = pred_end(code[i]);
         PI != E; ++PI)
      assert(BlocksToExtract.count(*PI) &&
             "No blocks in this region may have entries from outside the region"
             " except for the first block!");

  // If we have to split PHI nodes or the entry block, do so now.
  severSplitPHINodes(header);

  // If we have any return instructions in the region, split those blocks so
  // that the return is not in the region.
  splitReturnBlocks();

  Function *oldFunction = header->getParent();

  // This takes place of the original loop
  BasicBlock *codeReplacer = BasicBlock::Create("codeRepl", oldFunction,
                                                header);

  // The new function needs a root node because other nodes can branch to the
  // head of the region, but the entry node of a function cannot have preds.
  BasicBlock *newFuncRoot = BasicBlock::Create("newFuncRoot");
  newFuncRoot->getInstList().push_back(BranchInst::Create(header));

  // Find inputs to, outputs from the code region.
  findInputsOutputs(inputs, outputs);

  // Construct new function based on inputs/outputs & add allocas for all defs.
  Function *newFunction = constructFunction(inputs, outputs, header,
                                            newFuncRoot,
                                            codeReplacer, oldFunction,
                                            oldFunction->getParent());

  emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);

  moveCodeToFunction(newFunction);

  // Loop over all of the PHI nodes in the header block, and change any
  // references to the old incoming edge to be the new incoming edge.
  for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
    PHINode *PN = cast<PHINode>(I);
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
      if (!BlocksToExtract.count(PN->getIncomingBlock(i)))
        PN->setIncomingBlock(i, newFuncRoot);
  }

  // Look at all successors of the codeReplacer block.  If any of these blocks
  // had PHI nodes in them, we need to update the "from" block to be the code
  // replacer, not the original block in the extracted region.
  std::vector<BasicBlock*> Succs(succ_begin(codeReplacer),
                                 succ_end(codeReplacer));
  for (unsigned i = 0, e = Succs.size(); i != e; ++i)
    for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) {
      PHINode *PN = cast<PHINode>(I);
      std::set<BasicBlock*> ProcessedPreds;
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
        if (BlocksToExtract.count(PN->getIncomingBlock(i))) {
          if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second)
            PN->setIncomingBlock(i, codeReplacer);
          else {
            // There were multiple entries in the PHI for this block, now there
            // is only one, so remove the duplicated entries.
            PN->removeIncomingValue(i, false);
            --i; --e;
          }
        }
    }

  //cerr << "NEW FUNCTION: " << *newFunction;
  //  verifyFunction(*newFunction);

  //  cerr << "OLD FUNCTION: " << *oldFunction;
  //  verifyFunction(*oldFunction);

  DEBUG(if (verifyFunction(*newFunction)) 
        llvm_report_error("verifyFunction failed!"));
  return newFunction;
}

bool CodeExtractor::isEligible(const std::vector<BasicBlock*> &code) {
  // Deny code region if it contains allocas or vastarts.
  for (std::vector<BasicBlock*>::const_iterator BB = code.begin(), e=code.end();
       BB != e; ++BB)
    for (BasicBlock::const_iterator I = (*BB)->begin(), Ie = (*BB)->end();
         I != Ie; ++I)
      if (isa<AllocaInst>(*I))
        return false;
      else if (const CallInst *CI = dyn_cast<CallInst>(I))
        if (const Function *F = CI->getCalledFunction())
          if (F->getIntrinsicID() == Intrinsic::vastart)
            return false;
  return true;
}


/// ExtractCodeRegion - slurp a sequence of basic blocks into a brand new
/// function
///
Function* llvm::ExtractCodeRegion(DominatorTree &DT,
                                  const std::vector<BasicBlock*> &code,
                                  bool AggregateArgs) {
  return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(code);
}

/// ExtractBasicBlock - slurp a natural loop into a brand new function
///
Function* llvm::ExtractLoop(DominatorTree &DT, Loop *L, bool AggregateArgs) {
  return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(L->getBlocks());
}

/// ExtractBasicBlock - slurp a basic block into a brand new function
///
Function* llvm::ExtractBasicBlock(BasicBlock *BB, bool AggregateArgs) {
  std::vector<BasicBlock*> Blocks;
  Blocks.push_back(BB);
  return CodeExtractor(0, AggregateArgs).ExtractCodeRegion(Blocks);
}