aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Utils/LCSSA.cpp
blob: 7d4f3a343e6253e6cd247c6a51863da31353e8d0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
//===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass transforms loops by placing phi nodes at the end of the loops for
// all values that are live across the loop boundary.  For example, it turns
// the left into the right code:
// 
// for (...)                for (...)
//   if (c)                   if (c)
//     X1 = ...                 X1 = ...
//   else                     else
//     X2 = ...                 X2 = ...
//   X3 = phi(X1, X2)         X3 = phi(X1, X2)
// ... = X3 + 4             X4 = phi(X3)
//                          ... = X4 + 4
//
// This is still valid LLVM; the extra phi nodes are purely redundant, and will
// be trivially eliminated by InstCombine.  The major benefit of this 
// transformation is that it makes many other loop optimizations, such as 
// LoopUnswitching, simpler.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "lcssa"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Constants.h"
#include "llvm/Pass.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/PredIteratorCache.h"
#include <algorithm>
#include <map>
using namespace llvm;

STATISTIC(NumLCSSA, "Number of live out of a loop variables");

namespace {
  struct VISIBILITY_HIDDEN LCSSA : public LoopPass {
    static char ID; // Pass identification, replacement for typeid
    LCSSA() : LoopPass(&ID) {}

    // Cached analysis information for the current function.
    LoopInfo *LI;
    DominatorTree *DT;
    std::vector<BasicBlock*> LoopBlocks;
    PredIteratorCache PredCache;
    
    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);

    void ProcessInstruction(Instruction* Instr,
                            const SmallVector<BasicBlock*, 8>& exitBlocks);
    
    /// This transformation requires natural loop information & requires that
    /// loop preheaders be inserted into the CFG.  It maintains both of these,
    /// as well as the CFG.  It also requires dominator information.
    ///
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.setPreservesCFG();
      AU.addRequiredID(LoopSimplifyID);
      AU.addPreservedID(LoopSimplifyID);
      AU.addRequired<LoopInfo>();
      AU.addPreserved<LoopInfo>();
      AU.addRequired<DominatorTree>();
      AU.addPreserved<ScalarEvolution>();
      AU.addPreserved<DominatorTree>();

      // Request DominanceFrontier now, even though LCSSA does
      // not use it. This allows Pass Manager to schedule Dominance
      // Frontier early enough such that one LPPassManager can handle
      // multiple loop transformation passes.
      AU.addRequired<DominanceFrontier>(); 
      AU.addPreserved<DominanceFrontier>();
    }
  private:
    void getLoopValuesUsedOutsideLoop(Loop *L,
                                      SetVector<Instruction*> &AffectedValues,
                                 const SmallVector<BasicBlock*, 8>& exitBlocks);

    Value *GetValueForBlock(DomTreeNode *BB, Instruction *OrigInst,
                            DenseMap<DomTreeNode*, Value*> &Phis);

    /// inLoop - returns true if the given block is within the current loop
    bool inLoop(BasicBlock* B) {
      return std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), B);
    }
  };
}
  
char LCSSA::ID = 0;
static RegisterPass<LCSSA> X("lcssa", "Loop-Closed SSA Form Pass");

Pass *llvm::createLCSSAPass() { return new LCSSA(); }
const PassInfo *const llvm::LCSSAID = &X;

/// runOnFunction - Process all loops in the function, inner-most out.
bool LCSSA::runOnLoop(Loop *L, LPPassManager &LPM) {
  PredCache.clear();
  
  LI = &LPM.getAnalysis<LoopInfo>();
  DT = &getAnalysis<DominatorTree>();

  // Speed up queries by creating a sorted list of blocks
  LoopBlocks.clear();
  LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
  std::sort(LoopBlocks.begin(), LoopBlocks.end());
  
  SmallVector<BasicBlock*, 8> exitBlocks;
  L->getExitBlocks(exitBlocks);
  
  SetVector<Instruction*> AffectedValues;
  getLoopValuesUsedOutsideLoop(L, AffectedValues, exitBlocks);
  
  // If no values are affected, we can save a lot of work, since we know that
  // nothing will be changed.
  if (AffectedValues.empty())
    return false;
  
  // Iterate over all affected values for this loop and insert Phi nodes
  // for them in the appropriate exit blocks
  
  for (SetVector<Instruction*>::iterator I = AffectedValues.begin(),
       E = AffectedValues.end(); I != E; ++I)
    ProcessInstruction(*I, exitBlocks);
  
  assert(L->isLCSSAForm());
  
  return true;
}

/// processInstruction - Given a live-out instruction, insert LCSSA Phi nodes,
/// eliminate all out-of-loop uses.
void LCSSA::ProcessInstruction(Instruction *Instr,
                               const SmallVector<BasicBlock*, 8>& exitBlocks) {
  ++NumLCSSA; // We are applying the transformation

  // Keep track of the blocks that have the value available already.
  DenseMap<DomTreeNode*, Value*> Phis;

  DomTreeNode *InstrNode = DT->getNode(Instr->getParent());

  // Insert the LCSSA phi's into the exit blocks (dominated by the value), and
  // add them to the Phi's map.
  for (SmallVector<BasicBlock*, 8>::const_iterator BBI = exitBlocks.begin(),
      BBE = exitBlocks.end(); BBI != BBE; ++BBI) {
    BasicBlock *BB = *BBI;
    DomTreeNode *ExitBBNode = DT->getNode(BB);
    Value *&Phi = Phis[ExitBBNode];
    if (!Phi && DT->dominates(InstrNode, ExitBBNode)) {
      PHINode *PN = PHINode::Create(Instr->getType(), Instr->getName()+".lcssa",
                                    BB->begin());
      PN->reserveOperandSpace(PredCache.GetNumPreds(BB));

      // Remember that this phi makes the value alive in this block.
      Phi = PN;

      // Add inputs from inside the loop for this PHI.
      for (BasicBlock** PI = PredCache.GetPreds(BB); *PI; ++PI)
        PN->addIncoming(Instr, *PI);
    }
  }
  
  
  // Record all uses of Instr outside the loop.  We need to rewrite these.  The
  // LCSSA phis won't be included because they use the value in the loop.
  for (Value::use_iterator UI = Instr->use_begin(), E = Instr->use_end();
       UI != E;) {
    BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
    if (PHINode *P = dyn_cast<PHINode>(*UI)) {
      UserBB = P->getIncomingBlock(UI);
    }
    
    // If the user is in the loop, don't rewrite it!
    if (UserBB == Instr->getParent() || inLoop(UserBB)) {
      ++UI;
      continue;
    }
    
    // Otherwise, patch up uses of the value with the appropriate LCSSA Phi,
    // inserting PHI nodes into join points where needed.
    Value *Val = GetValueForBlock(DT->getNode(UserBB), Instr, Phis);
    
    // Preincrement the iterator to avoid invalidating it when we change the
    // value.
    Use &U = UI.getUse();
    ++UI;
    U.set(Val);
  }
}

/// getLoopValuesUsedOutsideLoop - Return any values defined in the loop that
/// are used by instructions outside of it.
void LCSSA::getLoopValuesUsedOutsideLoop(Loop *L,
                                      SetVector<Instruction*> &AffectedValues,
                                const SmallVector<BasicBlock*, 8>& exitBlocks) {
  // FIXME: For large loops, we may be able to avoid a lot of use-scanning
  // by using dominance information.  In particular, if a block does not
  // dominate any of the loop exits, then none of the values defined in the
  // block could be used outside the loop.
  for (Loop::block_iterator BB = L->block_begin(), BE = L->block_end();
       BB != BE; ++BB) {
    for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I)
      for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
           ++UI) {
        BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
        if (PHINode* p = dyn_cast<PHINode>(*UI)) {
          UserBB = p->getIncomingBlock(UI);
        }
        
        if (*BB != UserBB && !inLoop(UserBB)) {
          AffectedValues.insert(I);
          break;
        }
      }
  }
}

/// GetValueForBlock - Get the value to use within the specified basic block.
/// available values are in Phis.
Value *LCSSA::GetValueForBlock(DomTreeNode *BB, Instruction *OrigInst,
                               DenseMap<DomTreeNode*, Value*> &Phis) {
  // If there is no dominator info for this BB, it is unreachable.
  if (BB == 0)
    return UndefValue::get(OrigInst->getType());
                                 
  // If we have already computed this value, return the previously computed val.
  if (Phis.count(BB)) return Phis[BB];

  DomTreeNode *IDom = BB->getIDom();

  // Otherwise, there are two cases: we either have to insert a PHI node or we
  // don't.  We need to insert a PHI node if this block is not dominated by one
  // of the exit nodes from the loop (the loop could have multiple exits, and
  // though the value defined *inside* the loop dominated all its uses, each
  // exit by itself may not dominate all the uses).
  //
  // The simplest way to check for this condition is by checking to see if the
  // idom is in the loop.  If so, we *know* that none of the exit blocks
  // dominate this block.  Note that we *know* that the block defining the
  // original instruction is in the idom chain, because if it weren't, then the
  // original value didn't dominate this use.
  if (!inLoop(IDom->getBlock())) {
    // Idom is not in the loop, we must still be "below" the exit block and must
    // be fully dominated by the value live in the idom.
    Value* val = GetValueForBlock(IDom, OrigInst, Phis);
    Phis.insert(std::make_pair(BB, val));
    return val;
  }
  
  BasicBlock *BBN = BB->getBlock();
  
  // Otherwise, the idom is the loop, so we need to insert a PHI node.  Do so
  // now, then get values to fill in the incoming values for the PHI.
  PHINode *PN = PHINode::Create(OrigInst->getType(),
                                OrigInst->getName() + ".lcssa", BBN->begin());
  PN->reserveOperandSpace(PredCache.GetNumPreds(BBN));
  Phis.insert(std::make_pair(BB, PN));
                                 
  // Fill in the incoming values for the block.
  for (BasicBlock** PI = PredCache.GetPreds(BBN); *PI; ++PI)
    PN->addIncoming(GetValueForBlock(DT->getNode(*PI), OrigInst, Phis), *PI);
  return PN;
}