1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
|
//===-- Local.cpp - Functions to perform local transformations ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This family of functions perform various local transformations to the
// program.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/DIBuilder.h"
#include "llvm/DebugInfo.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/ValueHandle.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
//===----------------------------------------------------------------------===//
// Local constant propagation.
//
/// ConstantFoldTerminator - If a terminator instruction is predicated on a
/// constant value, convert it into an unconditional branch to the constant
/// destination. This is a nontrivial operation because the successors of this
/// basic block must have their PHI nodes updated.
/// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
/// conditions and indirectbr addresses this might make dead if
/// DeleteDeadConditions is true.
bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
const TargetLibraryInfo *TLI) {
TerminatorInst *T = BB->getTerminator();
IRBuilder<> Builder(T);
// Branch - See if we are conditional jumping on constant
if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
if (BI->isUnconditional()) return false; // Can't optimize uncond branch
BasicBlock *Dest1 = BI->getSuccessor(0);
BasicBlock *Dest2 = BI->getSuccessor(1);
if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
// Are we branching on constant?
// YES. Change to unconditional branch...
BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1;
//cerr << "Function: " << T->getParent()->getParent()
// << "\nRemoving branch from " << T->getParent()
// << "\n\nTo: " << OldDest << endl;
// Let the basic block know that we are letting go of it. Based on this,
// it will adjust it's PHI nodes.
OldDest->removePredecessor(BB);
// Replace the conditional branch with an unconditional one.
Builder.CreateBr(Destination);
BI->eraseFromParent();
return true;
}
if (Dest2 == Dest1) { // Conditional branch to same location?
// This branch matches something like this:
// br bool %cond, label %Dest, label %Dest
// and changes it into: br label %Dest
// Let the basic block know that we are letting go of one copy of it.
assert(BI->getParent() && "Terminator not inserted in block!");
Dest1->removePredecessor(BI->getParent());
// Replace the conditional branch with an unconditional one.
Builder.CreateBr(Dest1);
Value *Cond = BI->getCondition();
BI->eraseFromParent();
if (DeleteDeadConditions)
RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
return true;
}
return false;
}
if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
// If we are switching on a constant, we can convert the switch into a
// single branch instruction!
ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
BasicBlock *TheOnlyDest = SI->getDefaultDest();
BasicBlock *DefaultDest = TheOnlyDest;
// Figure out which case it goes to.
for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
i != e; ++i) {
// Found case matching a constant operand?
if (i.getCaseValue() == CI) {
TheOnlyDest = i.getCaseSuccessor();
break;
}
// Check to see if this branch is going to the same place as the default
// dest. If so, eliminate it as an explicit compare.
if (i.getCaseSuccessor() == DefaultDest) {
MDNode* MD = SI->getMetadata(LLVMContext::MD_prof);
// MD should have 2 + NumCases operands.
if (MD && MD->getNumOperands() == 2 + SI->getNumCases()) {
// Collect branch weights into a vector.
SmallVector<uint32_t, 8> Weights;
for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
++MD_i) {
ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(MD_i));
assert(CI);
Weights.push_back(CI->getValue().getZExtValue());
}
// Merge weight of this case to the default weight.
unsigned idx = i.getCaseIndex();
Weights[0] += Weights[idx+1];
// Remove weight for this case.
std::swap(Weights[idx+1], Weights.back());
Weights.pop_back();
SI->setMetadata(LLVMContext::MD_prof,
MDBuilder(BB->getContext()).
createBranchWeights(Weights));
}
// Remove this entry.
DefaultDest->removePredecessor(SI->getParent());
SI->removeCase(i);
--i; --e;
continue;
}
// Otherwise, check to see if the switch only branches to one destination.
// We do this by reseting "TheOnlyDest" to null when we find two non-equal
// destinations.
if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = 0;
}
if (CI && !TheOnlyDest) {
// Branching on a constant, but not any of the cases, go to the default
// successor.
TheOnlyDest = SI->getDefaultDest();
}
// If we found a single destination that we can fold the switch into, do so
// now.
if (TheOnlyDest) {
// Insert the new branch.
Builder.CreateBr(TheOnlyDest);
BasicBlock *BB = SI->getParent();
// Remove entries from PHI nodes which we no longer branch to...
for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
// Found case matching a constant operand?
BasicBlock *Succ = SI->getSuccessor(i);
if (Succ == TheOnlyDest)
TheOnlyDest = 0; // Don't modify the first branch to TheOnlyDest
else
Succ->removePredecessor(BB);
}
// Delete the old switch.
Value *Cond = SI->getCondition();
SI->eraseFromParent();
if (DeleteDeadConditions)
RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
return true;
}
if (SI->getNumCases() == 1) {
// Otherwise, we can fold this switch into a conditional branch
// instruction if it has only one non-default destination.
SwitchInst::CaseIt FirstCase = SI->case_begin();
Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
FirstCase.getCaseValue(), "cond");
// Insert the new branch.
BranchInst *NewBr = Builder.CreateCondBr(Cond,
FirstCase.getCaseSuccessor(),
SI->getDefaultDest());
MDNode* MD = SI->getMetadata(LLVMContext::MD_prof);
if (MD && MD->getNumOperands() == 3) {
ConstantInt *SICase = dyn_cast<ConstantInt>(MD->getOperand(2));
ConstantInt *SIDef = dyn_cast<ConstantInt>(MD->getOperand(1));
assert(SICase && SIDef);
// The TrueWeight should be the weight for the single case of SI.
NewBr->setMetadata(LLVMContext::MD_prof,
MDBuilder(BB->getContext()).
createBranchWeights(SICase->getValue().getZExtValue(),
SIDef->getValue().getZExtValue()));
}
// Delete the old switch.
SI->eraseFromParent();
return true;
}
return false;
}
if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
// indirectbr blockaddress(@F, @BB) -> br label @BB
if (BlockAddress *BA =
dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
BasicBlock *TheOnlyDest = BA->getBasicBlock();
// Insert the new branch.
Builder.CreateBr(TheOnlyDest);
for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
if (IBI->getDestination(i) == TheOnlyDest)
TheOnlyDest = 0;
else
IBI->getDestination(i)->removePredecessor(IBI->getParent());
}
Value *Address = IBI->getAddress();
IBI->eraseFromParent();
if (DeleteDeadConditions)
RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
// If we didn't find our destination in the IBI successor list, then we
// have undefined behavior. Replace the unconditional branch with an
// 'unreachable' instruction.
if (TheOnlyDest) {
BB->getTerminator()->eraseFromParent();
new UnreachableInst(BB->getContext(), BB);
}
return true;
}
}
return false;
}
//===----------------------------------------------------------------------===//
// Local dead code elimination.
//
/// isInstructionTriviallyDead - Return true if the result produced by the
/// instruction is not used, and the instruction has no side effects.
///
bool llvm::isInstructionTriviallyDead(Instruction *I,
const TargetLibraryInfo *TLI) {
if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
// We don't want the landingpad instruction removed by anything this general.
if (isa<LandingPadInst>(I))
return false;
// We don't want debug info removed by anything this general, unless
// debug info is empty.
if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
if (DDI->getAddress())
return false;
return true;
}
if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
if (DVI->getValue())
return false;
return true;
}
if (!I->mayHaveSideEffects()) return true;
// Special case intrinsics that "may have side effects" but can be deleted
// when dead.
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
// Safe to delete llvm.stacksave if dead.
if (II->getIntrinsicID() == Intrinsic::stacksave)
return true;
// Lifetime intrinsics are dead when their right-hand is undef.
if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
II->getIntrinsicID() == Intrinsic::lifetime_end)
return isa<UndefValue>(II->getArgOperand(1));
}
if (isAllocLikeFn(I, TLI)) return true;
if (CallInst *CI = isFreeCall(I, TLI))
if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
return C->isNullValue() || isa<UndefValue>(C);
return false;
}
/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
/// trivially dead instruction, delete it. If that makes any of its operands
/// trivially dead, delete them too, recursively. Return true if any
/// instructions were deleted.
bool
llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V,
const TargetLibraryInfo *TLI) {
Instruction *I = dyn_cast<Instruction>(V);
if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI))
return false;
SmallVector<Instruction*, 16> DeadInsts;
DeadInsts.push_back(I);
do {
I = DeadInsts.pop_back_val();
// Null out all of the instruction's operands to see if any operand becomes
// dead as we go.
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Value *OpV = I->getOperand(i);
I->setOperand(i, 0);
if (!OpV->use_empty()) continue;
// If the operand is an instruction that became dead as we nulled out the
// operand, and if it is 'trivially' dead, delete it in a future loop
// iteration.
if (Instruction *OpI = dyn_cast<Instruction>(OpV))
if (isInstructionTriviallyDead(OpI, TLI))
DeadInsts.push_back(OpI);
}
I->eraseFromParent();
} while (!DeadInsts.empty());
return true;
}
/// areAllUsesEqual - Check whether the uses of a value are all the same.
/// This is similar to Instruction::hasOneUse() except this will also return
/// true when there are no uses or multiple uses that all refer to the same
/// value.
static bool areAllUsesEqual(Instruction *I) {
Value::use_iterator UI = I->use_begin();
Value::use_iterator UE = I->use_end();
if (UI == UE)
return true;
User *TheUse = *UI;
for (++UI; UI != UE; ++UI) {
if (*UI != TheUse)
return false;
}
return true;
}
/// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
/// dead PHI node, due to being a def-use chain of single-use nodes that
/// either forms a cycle or is terminated by a trivially dead instruction,
/// delete it. If that makes any of its operands trivially dead, delete them
/// too, recursively. Return true if a change was made.
bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
const TargetLibraryInfo *TLI) {
SmallPtrSet<Instruction*, 4> Visited;
for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
I = cast<Instruction>(*I->use_begin())) {
if (I->use_empty())
return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
// If we find an instruction more than once, we're on a cycle that
// won't prove fruitful.
if (!Visited.insert(I)) {
// Break the cycle and delete the instruction and its operands.
I->replaceAllUsesWith(UndefValue::get(I->getType()));
(void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
return true;
}
}
return false;
}
/// SimplifyInstructionsInBlock - Scan the specified basic block and try to
/// simplify any instructions in it and recursively delete dead instructions.
///
/// This returns true if it changed the code, note that it can delete
/// instructions in other blocks as well in this block.
bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const DataLayout *TD,
const TargetLibraryInfo *TLI) {
bool MadeChange = false;
#ifndef NDEBUG
// In debug builds, ensure that the terminator of the block is never replaced
// or deleted by these simplifications. The idea of simplification is that it
// cannot introduce new instructions, and there is no way to replace the
// terminator of a block without introducing a new instruction.
AssertingVH<Instruction> TerminatorVH(--BB->end());
#endif
for (BasicBlock::iterator BI = BB->begin(), E = --BB->end(); BI != E; ) {
assert(!BI->isTerminator());
Instruction *Inst = BI++;
WeakVH BIHandle(BI);
if (recursivelySimplifyInstruction(Inst, TD, TLI)) {
MadeChange = true;
if (BIHandle != BI)
BI = BB->begin();
continue;
}
MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
if (BIHandle != BI)
BI = BB->begin();
}
return MadeChange;
}
//===----------------------------------------------------------------------===//
// Control Flow Graph Restructuring.
//
/// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
/// method is called when we're about to delete Pred as a predecessor of BB. If
/// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
///
/// Unlike the removePredecessor method, this attempts to simplify uses of PHI
/// nodes that collapse into identity values. For example, if we have:
/// x = phi(1, 0, 0, 0)
/// y = and x, z
///
/// .. and delete the predecessor corresponding to the '1', this will attempt to
/// recursively fold the and to 0.
void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
DataLayout *TD) {
// This only adjusts blocks with PHI nodes.
if (!isa<PHINode>(BB->begin()))
return;
// Remove the entries for Pred from the PHI nodes in BB, but do not simplify
// them down. This will leave us with single entry phi nodes and other phis
// that can be removed.
BB->removePredecessor(Pred, true);
WeakVH PhiIt = &BB->front();
while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
Value *OldPhiIt = PhiIt;
if (!recursivelySimplifyInstruction(PN, TD))
continue;
// If recursive simplification ended up deleting the next PHI node we would
// iterate to, then our iterator is invalid, restart scanning from the top
// of the block.
if (PhiIt != OldPhiIt) PhiIt = &BB->front();
}
}
/// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
/// predecessor is known to have one successor (DestBB!). Eliminate the edge
/// between them, moving the instructions in the predecessor into DestBB and
/// deleting the predecessor block.
///
void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) {
// If BB has single-entry PHI nodes, fold them.
while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
Value *NewVal = PN->getIncomingValue(0);
// Replace self referencing PHI with undef, it must be dead.
if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
PN->replaceAllUsesWith(NewVal);
PN->eraseFromParent();
}
BasicBlock *PredBB = DestBB->getSinglePredecessor();
assert(PredBB && "Block doesn't have a single predecessor!");
// Zap anything that took the address of DestBB. Not doing this will give the
// address an invalid value.
if (DestBB->hasAddressTaken()) {
BlockAddress *BA = BlockAddress::get(DestBB);
Constant *Replacement =
ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
BA->getType()));
BA->destroyConstant();
}
// Anything that branched to PredBB now branches to DestBB.
PredBB->replaceAllUsesWith(DestBB);
// Splice all the instructions from PredBB to DestBB.
PredBB->getTerminator()->eraseFromParent();
DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
if (P) {
DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>();
if (DT) {
BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock();
DT->changeImmediateDominator(DestBB, PredBBIDom);
DT->eraseNode(PredBB);
}
}
// Nuke BB.
PredBB->eraseFromParent();
}
/// CanMergeValues - Return true if we can choose one of these values to use
/// in place of the other. Note that we will always choose the non-undef
/// value to keep.
static bool CanMergeValues(Value *First, Value *Second) {
return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
}
/// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
/// almost-empty BB ending in an unconditional branch to Succ, into Succ.
///
/// Assumption: Succ is the single successor for BB.
///
static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
<< Succ->getName() << "\n");
// Shortcut, if there is only a single predecessor it must be BB and merging
// is always safe
if (Succ->getSinglePredecessor()) return true;
// Make a list of the predecessors of BB
SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
// Look at all the phi nodes in Succ, to see if they present a conflict when
// merging these blocks
for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
PHINode *PN = cast<PHINode>(I);
// If the incoming value from BB is again a PHINode in
// BB which has the same incoming value for *PI as PN does, we can
// merge the phi nodes and then the blocks can still be merged
PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
if (BBPN && BBPN->getParent() == BB) {
for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
BasicBlock *IBB = PN->getIncomingBlock(PI);
if (BBPreds.count(IBB) &&
!CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
PN->getIncomingValue(PI))) {
DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
<< Succ->getName() << " is conflicting with "
<< BBPN->getName() << " with regard to common predecessor "
<< IBB->getName() << "\n");
return false;
}
}
} else {
Value* Val = PN->getIncomingValueForBlock(BB);
for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
// See if the incoming value for the common predecessor is equal to the
// one for BB, in which case this phi node will not prevent the merging
// of the block.
BasicBlock *IBB = PN->getIncomingBlock(PI);
if (BBPreds.count(IBB) &&
!CanMergeValues(Val, PN->getIncomingValue(PI))) {
DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
<< Succ->getName() << " is conflicting with regard to common "
<< "predecessor " << IBB->getName() << "\n");
return false;
}
}
}
}
return true;
}
typedef SmallVector<BasicBlock *, 16> PredBlockVector;
typedef DenseMap<BasicBlock *, Value *> IncomingValueMap;
/// \brief Determines the value to use as the phi node input for a block.
///
/// Select between \p OldVal any value that we know flows from \p BB
/// to a particular phi on the basis of which one (if either) is not
/// undef. Update IncomingValues based on the selected value.
///
/// \param OldVal The value we are considering selecting.
/// \param BB The block that the value flows in from.
/// \param IncomingValues A map from block-to-value for other phi inputs
/// that we have examined.
///
/// \returns the selected value.
static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
IncomingValueMap &IncomingValues) {
if (!isa<UndefValue>(OldVal)) {
assert((!IncomingValues.count(BB) ||
IncomingValues.find(BB)->second == OldVal) &&
"Expected OldVal to match incoming value from BB!");
IncomingValues.insert(std::make_pair(BB, OldVal));
return OldVal;
}
IncomingValueMap::const_iterator It = IncomingValues.find(BB);
if (It != IncomingValues.end()) return It->second;
return OldVal;
}
/// \brief Create a map from block to value for the operands of a
/// given phi.
///
/// Create a map from block to value for each non-undef value flowing
/// into \p PN.
///
/// \param PN The phi we are collecting the map for.
/// \param IncomingValues [out] The map from block to value for this phi.
static void gatherIncomingValuesToPhi(PHINode *PN,
IncomingValueMap &IncomingValues) {
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
BasicBlock *BB = PN->getIncomingBlock(i);
Value *V = PN->getIncomingValue(i);
if (!isa<UndefValue>(V))
IncomingValues.insert(std::make_pair(BB, V));
}
}
/// \brief Replace the incoming undef values to a phi with the values
/// from a block-to-value map.
///
/// \param PN The phi we are replacing the undefs in.
/// \param IncomingValues A map from block to value.
static void replaceUndefValuesInPhi(PHINode *PN,
const IncomingValueMap &IncomingValues) {
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
Value *V = PN->getIncomingValue(i);
if (!isa<UndefValue>(V)) continue;
BasicBlock *BB = PN->getIncomingBlock(i);
IncomingValueMap::const_iterator It = IncomingValues.find(BB);
if (It == IncomingValues.end()) continue;
PN->setIncomingValue(i, It->second);
}
}
/// \brief Replace a value flowing from a block to a phi with
/// potentially multiple instances of that value flowing from the
/// block's predecessors to the phi.
///
/// \param BB The block with the value flowing into the phi.
/// \param BBPreds The predecessors of BB.
/// \param PN The phi that we are updating.
static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
const PredBlockVector &BBPreds,
PHINode *PN) {
Value *OldVal = PN->removeIncomingValue(BB, false);
assert(OldVal && "No entry in PHI for Pred BB!");
IncomingValueMap IncomingValues;
// We are merging two blocks - BB, and the block containing PN - and
// as a result we need to redirect edges from the predecessors of BB
// to go to the block containing PN, and update PN
// accordingly. Since we allow merging blocks in the case where the
// predecessor and successor blocks both share some predecessors,
// and where some of those common predecessors might have undef
// values flowing into PN, we want to rewrite those values to be
// consistent with the non-undef values.
gatherIncomingValuesToPhi(PN, IncomingValues);
// If this incoming value is one of the PHI nodes in BB, the new entries
// in the PHI node are the entries from the old PHI.
if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
PHINode *OldValPN = cast<PHINode>(OldVal);
for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
// Note that, since we are merging phi nodes and BB and Succ might
// have common predecessors, we could end up with a phi node with
// identical incoming branches. This will be cleaned up later (and
// will trigger asserts if we try to clean it up now, without also
// simplifying the corresponding conditional branch).
BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
Value *PredVal = OldValPN->getIncomingValue(i);
Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
IncomingValues);
// And add a new incoming value for this predecessor for the
// newly retargeted branch.
PN->addIncoming(Selected, PredBB);
}
} else {
for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
// Update existing incoming values in PN for this
// predecessor of BB.
BasicBlock *PredBB = BBPreds[i];
Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
IncomingValues);
// And add a new incoming value for this predecessor for the
// newly retargeted branch.
PN->addIncoming(Selected, PredBB);
}
}
replaceUndefValuesInPhi(PN, IncomingValues);
}
/// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
/// unconditional branch, and contains no instructions other than PHI nodes,
/// potential side-effect free intrinsics and the branch. If possible,
/// eliminate BB by rewriting all the predecessors to branch to the successor
/// block and return true. If we can't transform, return false.
bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
assert(BB != &BB->getParent()->getEntryBlock() &&
"TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
// We can't eliminate infinite loops.
BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
if (BB == Succ) return false;
// Check to see if merging these blocks would cause conflicts for any of the
// phi nodes in BB or Succ. If not, we can safely merge.
if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
// Check for cases where Succ has multiple predecessors and a PHI node in BB
// has uses which will not disappear when the PHI nodes are merged. It is
// possible to handle such cases, but difficult: it requires checking whether
// BB dominates Succ, which is non-trivial to calculate in the case where
// Succ has multiple predecessors. Also, it requires checking whether
// constructing the necessary self-referential PHI node doesn't introduce any
// conflicts; this isn't too difficult, but the previous code for doing this
// was incorrect.
//
// Note that if this check finds a live use, BB dominates Succ, so BB is
// something like a loop pre-header (or rarely, a part of an irreducible CFG);
// folding the branch isn't profitable in that case anyway.
if (!Succ->getSinglePredecessor()) {
BasicBlock::iterator BBI = BB->begin();
while (isa<PHINode>(*BBI)) {
for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
UI != E; ++UI) {
if (PHINode* PN = dyn_cast<PHINode>(*UI)) {
if (PN->getIncomingBlock(UI) != BB)
return false;
} else {
return false;
}
}
++BBI;
}
}
DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
if (isa<PHINode>(Succ->begin())) {
// If there is more than one pred of succ, and there are PHI nodes in
// the successor, then we need to add incoming edges for the PHI nodes
//
const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
// Loop over all of the PHI nodes in the successor of BB.
for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
PHINode *PN = cast<PHINode>(I);
redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
}
}
if (Succ->getSinglePredecessor()) {
// BB is the only predecessor of Succ, so Succ will end up with exactly
// the same predecessors BB had.
// Copy over any phi, debug or lifetime instruction.
BB->getTerminator()->eraseFromParent();
Succ->getInstList().splice(Succ->getFirstNonPHI(), BB->getInstList());
} else {
while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
// We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
assert(PN->use_empty() && "There shouldn't be any uses here!");
PN->eraseFromParent();
}
}
// Everything that jumped to BB now goes to Succ.
BB->replaceAllUsesWith(Succ);
if (!Succ->hasName()) Succ->takeName(BB);
BB->eraseFromParent(); // Delete the old basic block.
return true;
}
/// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
/// nodes in this block. This doesn't try to be clever about PHI nodes
/// which differ only in the order of the incoming values, but instcombine
/// orders them so it usually won't matter.
///
bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
bool Changed = false;
// This implementation doesn't currently consider undef operands
// specially. Theoretically, two phis which are identical except for
// one having an undef where the other doesn't could be collapsed.
// Map from PHI hash values to PHI nodes. If multiple PHIs have
// the same hash value, the element is the first PHI in the
// linked list in CollisionMap.
DenseMap<uintptr_t, PHINode *> HashMap;
// Maintain linked lists of PHI nodes with common hash values.
DenseMap<PHINode *, PHINode *> CollisionMap;
// Examine each PHI.
for (BasicBlock::iterator I = BB->begin();
PHINode *PN = dyn_cast<PHINode>(I++); ) {
// Compute a hash value on the operands. Instcombine will likely have sorted
// them, which helps expose duplicates, but we have to check all the
// operands to be safe in case instcombine hasn't run.
uintptr_t Hash = 0;
// This hash algorithm is quite weak as hash functions go, but it seems
// to do a good enough job for this particular purpose, and is very quick.
for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) {
Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I));
Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
}
for (PHINode::block_iterator I = PN->block_begin(), E = PN->block_end();
I != E; ++I) {
Hash ^= reinterpret_cast<uintptr_t>(static_cast<BasicBlock *>(*I));
Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
}
// Avoid colliding with the DenseMap sentinels ~0 and ~0-1.
Hash >>= 1;
// If we've never seen this hash value before, it's a unique PHI.
std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair =
HashMap.insert(std::make_pair(Hash, PN));
if (Pair.second) continue;
// Otherwise it's either a duplicate or a hash collision.
for (PHINode *OtherPN = Pair.first->second; ; ) {
if (OtherPN->isIdenticalTo(PN)) {
// A duplicate. Replace this PHI with its duplicate.
PN->replaceAllUsesWith(OtherPN);
PN->eraseFromParent();
Changed = true;
break;
}
// A non-duplicate hash collision.
DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN);
if (I == CollisionMap.end()) {
// Set this PHI to be the head of the linked list of colliding PHIs.
PHINode *Old = Pair.first->second;
Pair.first->second = PN;
CollisionMap[PN] = Old;
break;
}
// Proceed to the next PHI in the list.
OtherPN = I->second;
}
}
return Changed;
}
/// enforceKnownAlignment - If the specified pointer points to an object that
/// we control, modify the object's alignment to PrefAlign. This isn't
/// often possible though. If alignment is important, a more reliable approach
/// is to simply align all global variables and allocation instructions to
/// their preferred alignment from the beginning.
///
static unsigned enforceKnownAlignment(Value *V, unsigned Align,
unsigned PrefAlign, const DataLayout *TD) {
V = V->stripPointerCasts();
if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
// If the preferred alignment is greater than the natural stack alignment
// then don't round up. This avoids dynamic stack realignment.
if (TD && TD->exceedsNaturalStackAlignment(PrefAlign))
return Align;
// If there is a requested alignment and if this is an alloca, round up.
if (AI->getAlignment() >= PrefAlign)
return AI->getAlignment();
AI->setAlignment(PrefAlign);
return PrefAlign;
}
if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
// If there is a large requested alignment and we can, bump up the alignment
// of the global.
if (GV->isDeclaration()) return Align;
// If the memory we set aside for the global may not be the memory used by
// the final program then it is impossible for us to reliably enforce the
// preferred alignment.
if (GV->isWeakForLinker()) return Align;
if (GV->getAlignment() >= PrefAlign)
return GV->getAlignment();
// We can only increase the alignment of the global if it has no alignment
// specified or if it is not assigned a section. If it is assigned a
// section, the global could be densely packed with other objects in the
// section, increasing the alignment could cause padding issues.
if (!GV->hasSection() || GV->getAlignment() == 0)
GV->setAlignment(PrefAlign);
return GV->getAlignment();
}
return Align;
}
/// getOrEnforceKnownAlignment - If the specified pointer has an alignment that
/// we can determine, return it, otherwise return 0. If PrefAlign is specified,
/// and it is more than the alignment of the ultimate object, see if we can
/// increase the alignment of the ultimate object, making this check succeed.
unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
const DataLayout *DL) {
assert(V->getType()->isPointerTy() &&
"getOrEnforceKnownAlignment expects a pointer!");
unsigned BitWidth = DL ? DL->getPointerTypeSizeInBits(V->getType()) : 64;
APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
ComputeMaskedBits(V, KnownZero, KnownOne, DL);
unsigned TrailZ = KnownZero.countTrailingOnes();
// Avoid trouble with ridiculously large TrailZ values, such as
// those computed from a null pointer.
TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
// LLVM doesn't support alignments larger than this currently.
Align = std::min(Align, +Value::MaximumAlignment);
if (PrefAlign > Align)
Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
// We don't need to make any adjustment.
return Align;
}
///===---------------------------------------------------------------------===//
/// Dbg Intrinsic utilities
///
/// See if there is a dbg.value intrinsic for DIVar before I.
static bool LdStHasDebugValue(DIVariable &DIVar, Instruction *I) {
// Since we can't guarantee that the original dbg.declare instrinsic
// is removed by LowerDbgDeclare(), we need to make sure that we are
// not inserting the same dbg.value intrinsic over and over.
llvm::BasicBlock::InstListType::iterator PrevI(I);
if (PrevI != I->getParent()->getInstList().begin()) {
--PrevI;
if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
if (DVI->getValue() == I->getOperand(0) &&
DVI->getOffset() == 0 &&
DVI->getVariable() == DIVar)
return true;
}
return false;
}
/// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
/// that has an associated llvm.dbg.decl intrinsic.
bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
StoreInst *SI, DIBuilder &Builder) {
DIVariable DIVar(DDI->getVariable());
assert((!DIVar || DIVar.isVariable()) &&
"Variable in DbgDeclareInst should be either null or a DIVariable.");
if (!DIVar)
return false;
if (LdStHasDebugValue(DIVar, SI))
return true;
Instruction *DbgVal = NULL;
// If an argument is zero extended then use argument directly. The ZExt
// may be zapped by an optimization pass in future.
Argument *ExtendedArg = NULL;
if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
if (ExtendedArg)
DbgVal = Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, SI);
else
DbgVal = Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, SI);
// Propagate any debug metadata from the store onto the dbg.value.
DebugLoc SIDL = SI->getDebugLoc();
if (!SIDL.isUnknown())
DbgVal->setDebugLoc(SIDL);
// Otherwise propagate debug metadata from dbg.declare.
else
DbgVal->setDebugLoc(DDI->getDebugLoc());
return true;
}
/// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
/// that has an associated llvm.dbg.decl intrinsic.
bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
LoadInst *LI, DIBuilder &Builder) {
DIVariable DIVar(DDI->getVariable());
assert((!DIVar || DIVar.isVariable()) &&
"Variable in DbgDeclareInst should be either null or a DIVariable.");
if (!DIVar)
return false;
if (LdStHasDebugValue(DIVar, LI))
return true;
Instruction *DbgVal =
Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0,
DIVar, LI);
// Propagate any debug metadata from the store onto the dbg.value.
DebugLoc LIDL = LI->getDebugLoc();
if (!LIDL.isUnknown())
DbgVal->setDebugLoc(LIDL);
// Otherwise propagate debug metadata from dbg.declare.
else
DbgVal->setDebugLoc(DDI->getDebugLoc());
return true;
}
/// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
/// of llvm.dbg.value intrinsics.
bool llvm::LowerDbgDeclare(Function &F) {
DIBuilder DIB(*F.getParent());
SmallVector<DbgDeclareInst *, 4> Dbgs;
for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) {
if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(BI))
Dbgs.push_back(DDI);
}
if (Dbgs.empty())
return false;
for (SmallVectorImpl<DbgDeclareInst *>::iterator I = Dbgs.begin(),
E = Dbgs.end(); I != E; ++I) {
DbgDeclareInst *DDI = *I;
if (AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress())) {
// We only remove the dbg.declare intrinsic if all uses are
// converted to dbg.value intrinsics.
bool RemoveDDI = true;
for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
UI != E; ++UI)
if (StoreInst *SI = dyn_cast<StoreInst>(*UI))
ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
else if (LoadInst *LI = dyn_cast<LoadInst>(*UI))
ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
else
RemoveDDI = false;
if (RemoveDDI)
DDI->eraseFromParent();
}
}
return true;
}
/// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the
/// alloca 'V', if any.
DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) {
if (MDNode *DebugNode = MDNode::getIfExists(V->getContext(), V))
for (Value::use_iterator UI = DebugNode->use_begin(),
E = DebugNode->use_end(); UI != E; ++UI)
if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
return DDI;
return 0;
}
bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
DIBuilder &Builder) {
DbgDeclareInst *DDI = FindAllocaDbgDeclare(AI);
if (!DDI)
return false;
DIVariable DIVar(DDI->getVariable());
assert((!DIVar || DIVar.isVariable()) &&
"Variable in DbgDeclareInst should be either null or a DIVariable.");
if (!DIVar)
return false;
// Create a copy of the original DIDescriptor for user variable, appending
// "deref" operation to a list of address elements, as new llvm.dbg.declare
// will take a value storing address of the memory for variable, not
// alloca itself.
Type *Int64Ty = Type::getInt64Ty(AI->getContext());
SmallVector<Value*, 4> NewDIVarAddress;
if (DIVar.hasComplexAddress()) {
for (unsigned i = 0, n = DIVar.getNumAddrElements(); i < n; ++i) {
NewDIVarAddress.push_back(
ConstantInt::get(Int64Ty, DIVar.getAddrElement(i)));
}
}
NewDIVarAddress.push_back(ConstantInt::get(Int64Ty, DIBuilder::OpDeref));
DIVariable NewDIVar = Builder.createComplexVariable(
DIVar.getTag(), DIVar.getContext(), DIVar.getName(),
DIVar.getFile(), DIVar.getLineNumber(), DIVar.getType(),
NewDIVarAddress, DIVar.getArgNumber());
// Insert llvm.dbg.declare in the same basic block as the original alloca,
// and remove old llvm.dbg.declare.
BasicBlock *BB = AI->getParent();
Builder.insertDeclare(NewAllocaAddress, NewDIVar, BB);
DDI->eraseFromParent();
return true;
}
/// changeToUnreachable - Insert an unreachable instruction before the specified
/// instruction, making it and the rest of the code in the block dead.
static void changeToUnreachable(Instruction *I, bool UseLLVMTrap) {
BasicBlock *BB = I->getParent();
// Loop over all of the successors, removing BB's entry from any PHI
// nodes.
for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
(*SI)->removePredecessor(BB);
// Insert a call to llvm.trap right before this. This turns the undefined
// behavior into a hard fail instead of falling through into random code.
if (UseLLVMTrap) {
Function *TrapFn =
Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
CallTrap->setDebugLoc(I->getDebugLoc());
}
new UnreachableInst(I->getContext(), I);
// All instructions after this are dead.
BasicBlock::iterator BBI = I, BBE = BB->end();
while (BBI != BBE) {
if (!BBI->use_empty())
BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
BB->getInstList().erase(BBI++);
}
}
/// changeToCall - Convert the specified invoke into a normal call.
static void changeToCall(InvokeInst *II) {
SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, "", II);
NewCall->takeName(II);
NewCall->setCallingConv(II->getCallingConv());
NewCall->setAttributes(II->getAttributes());
NewCall->setDebugLoc(II->getDebugLoc());
II->replaceAllUsesWith(NewCall);
// Follow the call by a branch to the normal destination.
BranchInst::Create(II->getNormalDest(), II);
// Update PHI nodes in the unwind destination
II->getUnwindDest()->removePredecessor(II->getParent());
II->eraseFromParent();
}
static bool markAliveBlocks(BasicBlock *BB,
SmallPtrSet<BasicBlock*, 128> &Reachable) {
SmallVector<BasicBlock*, 128> Worklist;
Worklist.push_back(BB);
Reachable.insert(BB);
bool Changed = false;
do {
BB = Worklist.pop_back_val();
// Do a quick scan of the basic block, turning any obviously unreachable
// instructions into LLVM unreachable insts. The instruction combining pass
// canonicalizes unreachable insts into stores to null or undef.
for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;++BBI){
if (CallInst *CI = dyn_cast<CallInst>(BBI)) {
if (CI->doesNotReturn()) {
// If we found a call to a no-return function, insert an unreachable
// instruction after it. Make sure there isn't *already* one there
// though.
++BBI;
if (!isa<UnreachableInst>(BBI)) {
// Don't insert a call to llvm.trap right before the unreachable.
changeToUnreachable(BBI, false);
Changed = true;
}
break;
}
}
// Store to undef and store to null are undefined and used to signal that
// they should be changed to unreachable by passes that can't modify the
// CFG.
if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
// Don't touch volatile stores.
if (SI->isVolatile()) continue;
Value *Ptr = SI->getOperand(1);
if (isa<UndefValue>(Ptr) ||
(isa<ConstantPointerNull>(Ptr) &&
SI->getPointerAddressSpace() == 0)) {
changeToUnreachable(SI, true);
Changed = true;
break;
}
}
}
// Turn invokes that call 'nounwind' functions into ordinary calls.
if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
Value *Callee = II->getCalledValue();
if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
changeToUnreachable(II, true);
Changed = true;
} else if (II->doesNotThrow()) {
if (II->use_empty() && II->onlyReadsMemory()) {
// jump to the normal destination branch.
BranchInst::Create(II->getNormalDest(), II);
II->getUnwindDest()->removePredecessor(II->getParent());
II->eraseFromParent();
} else
changeToCall(II);
Changed = true;
}
}
Changed |= ConstantFoldTerminator(BB, true);
for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
if (Reachable.insert(*SI))
Worklist.push_back(*SI);
} while (!Worklist.empty());
return Changed;
}
/// removeUnreachableBlocksFromFn - Remove blocks that are not reachable, even
/// if they are in a dead cycle. Return true if a change was made, false
/// otherwise.
bool llvm::removeUnreachableBlocks(Function &F) {
SmallPtrSet<BasicBlock*, 128> Reachable;
bool Changed = markAliveBlocks(F.begin(), Reachable);
// If there are unreachable blocks in the CFG...
if (Reachable.size() == F.size())
return Changed;
assert(Reachable.size() < F.size());
NumRemoved += F.size()-Reachable.size();
// Loop over all of the basic blocks that are not reachable, dropping all of
// their internal references...
for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) {
if (Reachable.count(BB))
continue;
for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
if (Reachable.count(*SI))
(*SI)->removePredecessor(BB);
BB->dropAllReferences();
}
for (Function::iterator I = ++F.begin(); I != F.end();)
if (!Reachable.count(I))
I = F.getBasicBlockList().erase(I);
else
++I;
return true;
}
|