aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Utils/Local.cpp
blob: 52f0499f39b0e2f35ecf27e864059699b9879b6d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
//===-- Local.cpp - Functions to perform local transformations ------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This family of functions perform various local transformations to the
// program.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Constants.h"
#include "llvm/GlobalAlias.h"
#include "llvm/GlobalVariable.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instructions.h"
#include "llvm/Intrinsics.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/ProfileInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/ValueHandle.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;

//===----------------------------------------------------------------------===//
//  Local constant propagation.
//

// ConstantFoldTerminator - If a terminator instruction is predicated on a
// constant value, convert it into an unconditional branch to the constant
// destination.
//
bool llvm::ConstantFoldTerminator(BasicBlock *BB) {
  TerminatorInst *T = BB->getTerminator();

  // Branch - See if we are conditional jumping on constant
  if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
    if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
    BasicBlock *Dest1 = BI->getSuccessor(0);
    BasicBlock *Dest2 = BI->getSuccessor(1);

    if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
      // Are we branching on constant?
      // YES.  Change to unconditional branch...
      BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
      BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;

      //cerr << "Function: " << T->getParent()->getParent()
      //     << "\nRemoving branch from " << T->getParent()
      //     << "\n\nTo: " << OldDest << endl;

      // Let the basic block know that we are letting go of it.  Based on this,
      // it will adjust it's PHI nodes.
      assert(BI->getParent() && "Terminator not inserted in block!");
      OldDest->removePredecessor(BI->getParent());

      // Set the unconditional destination, and change the insn to be an
      // unconditional branch.
      BI->setUnconditionalDest(Destination);
      return true;
    }
    
    if (Dest2 == Dest1) {       // Conditional branch to same location?
      // This branch matches something like this:
      //     br bool %cond, label %Dest, label %Dest
      // and changes it into:  br label %Dest

      // Let the basic block know that we are letting go of one copy of it.
      assert(BI->getParent() && "Terminator not inserted in block!");
      Dest1->removePredecessor(BI->getParent());

      // Change a conditional branch to unconditional.
      BI->setUnconditionalDest(Dest1);
      return true;
    }
    return false;
  }
  
  if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
    // If we are switching on a constant, we can convert the switch into a
    // single branch instruction!
    ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
    BasicBlock *TheOnlyDest = SI->getSuccessor(0);  // The default dest
    BasicBlock *DefaultDest = TheOnlyDest;
    assert(TheOnlyDest == SI->getDefaultDest() &&
           "Default destination is not successor #0?");

    // Figure out which case it goes to.
    for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) {
      // Found case matching a constant operand?
      if (SI->getSuccessorValue(i) == CI) {
        TheOnlyDest = SI->getSuccessor(i);
        break;
      }

      // Check to see if this branch is going to the same place as the default
      // dest.  If so, eliminate it as an explicit compare.
      if (SI->getSuccessor(i) == DefaultDest) {
        // Remove this entry.
        DefaultDest->removePredecessor(SI->getParent());
        SI->removeCase(i);
        --i; --e;  // Don't skip an entry...
        continue;
      }

      // Otherwise, check to see if the switch only branches to one destination.
      // We do this by reseting "TheOnlyDest" to null when we find two non-equal
      // destinations.
      if (SI->getSuccessor(i) != TheOnlyDest) TheOnlyDest = 0;
    }

    if (CI && !TheOnlyDest) {
      // Branching on a constant, but not any of the cases, go to the default
      // successor.
      TheOnlyDest = SI->getDefaultDest();
    }

    // If we found a single destination that we can fold the switch into, do so
    // now.
    if (TheOnlyDest) {
      // Insert the new branch.
      BranchInst::Create(TheOnlyDest, SI);
      BasicBlock *BB = SI->getParent();

      // Remove entries from PHI nodes which we no longer branch to...
      for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
        // Found case matching a constant operand?
        BasicBlock *Succ = SI->getSuccessor(i);
        if (Succ == TheOnlyDest)
          TheOnlyDest = 0;  // Don't modify the first branch to TheOnlyDest
        else
          Succ->removePredecessor(BB);
      }

      // Delete the old switch.
      BB->getInstList().erase(SI);
      return true;
    }
    
    if (SI->getNumSuccessors() == 2) {
      // Otherwise, we can fold this switch into a conditional branch
      // instruction if it has only one non-default destination.
      Value *Cond = new ICmpInst(SI, ICmpInst::ICMP_EQ, SI->getCondition(),
                                 SI->getSuccessorValue(1), "cond");
      // Insert the new branch.
      BranchInst::Create(SI->getSuccessor(1), SI->getSuccessor(0), Cond, SI);

      // Delete the old switch.
      SI->eraseFromParent();
      return true;
    }
    return false;
  }

  if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
    // indirectbr blockaddress(@F, @BB) -> br label @BB
    if (BlockAddress *BA =
          dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
      BasicBlock *TheOnlyDest = BA->getBasicBlock();
      // Insert the new branch.
      BranchInst::Create(TheOnlyDest, IBI);
      
      for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
        if (IBI->getDestination(i) == TheOnlyDest)
          TheOnlyDest = 0;
        else
          IBI->getDestination(i)->removePredecessor(IBI->getParent());
      }
      IBI->eraseFromParent();
      
      // If we didn't find our destination in the IBI successor list, then we
      // have undefined behavior.  Replace the unconditional branch with an
      // 'unreachable' instruction.
      if (TheOnlyDest) {
        BB->getTerminator()->eraseFromParent();
        new UnreachableInst(BB->getContext(), BB);
      }
      
      return true;
    }
  }
  
  return false;
}


//===----------------------------------------------------------------------===//
//  Local dead code elimination.
//

/// isInstructionTriviallyDead - Return true if the result produced by the
/// instruction is not used, and the instruction has no side effects.
///
bool llvm::isInstructionTriviallyDead(Instruction *I) {
  if (!I->use_empty() || isa<TerminatorInst>(I)) return false;

  // We don't want debug info removed by anything this general.
  if (isa<DbgInfoIntrinsic>(I)) return false;

  // Likewise for memory use markers.
  if (isa<MemoryUseIntrinsic>(I)) return false;

  if (!I->mayHaveSideEffects()) return true;

  // Special case intrinsics that "may have side effects" but can be deleted
  // when dead.
  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
    // Safe to delete llvm.stacksave if dead.
    if (II->getIntrinsicID() == Intrinsic::stacksave)
      return true;
  return false;
}

/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
/// trivially dead instruction, delete it.  If that makes any of its operands
/// trivially dead, delete them too, recursively.  Return true if any
/// instructions were deleted.
bool llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V) {
  Instruction *I = dyn_cast<Instruction>(V);
  if (!I || !I->use_empty() || !isInstructionTriviallyDead(I))
    return false;
  
  SmallVector<Instruction*, 16> DeadInsts;
  DeadInsts.push_back(I);
  
  do {
    I = DeadInsts.pop_back_val();

    // Null out all of the instruction's operands to see if any operand becomes
    // dead as we go.
    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
      Value *OpV = I->getOperand(i);
      I->setOperand(i, 0);
      
      if (!OpV->use_empty()) continue;
    
      // If the operand is an instruction that became dead as we nulled out the
      // operand, and if it is 'trivially' dead, delete it in a future loop
      // iteration.
      if (Instruction *OpI = dyn_cast<Instruction>(OpV))
        if (isInstructionTriviallyDead(OpI))
          DeadInsts.push_back(OpI);
    }
    
    I->eraseFromParent();
  } while (!DeadInsts.empty());

  return true;
}

/// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
/// dead PHI node, due to being a def-use chain of single-use nodes that
/// either forms a cycle or is terminated by a trivially dead instruction,
/// delete it.  If that makes any of its operands trivially dead, delete them
/// too, recursively.  Return true if the PHI node is actually deleted.
bool
llvm::RecursivelyDeleteDeadPHINode(PHINode *PN) {
  // We can remove a PHI if it is on a cycle in the def-use graph
  // where each node in the cycle has degree one, i.e. only one use,
  // and is an instruction with no side effects.
  if (!PN->hasOneUse())
    return false;

  bool Changed = false;
  SmallPtrSet<PHINode *, 4> PHIs;
  PHIs.insert(PN);
  for (Instruction *J = cast<Instruction>(*PN->use_begin());
       J->hasOneUse() && !J->mayHaveSideEffects();
       J = cast<Instruction>(*J->use_begin()))
    // If we find a PHI more than once, we're on a cycle that
    // won't prove fruitful.
    if (PHINode *JP = dyn_cast<PHINode>(J))
      if (!PHIs.insert(cast<PHINode>(JP))) {
        // Break the cycle and delete the PHI and its operands.
        JP->replaceAllUsesWith(UndefValue::get(JP->getType()));
        (void)RecursivelyDeleteTriviallyDeadInstructions(JP);
        Changed = true;
        break;
      }
  return Changed;
}

/// SimplifyInstructionsInBlock - Scan the specified basic block and try to
/// simplify any instructions in it and recursively delete dead instructions.
///
/// This returns true if it changed the code, note that it can delete
/// instructions in other blocks as well in this block.
bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const TargetData *TD) {
  bool MadeChange = false;
  for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
    Instruction *Inst = BI++;
    
    if (Value *V = SimplifyInstruction(Inst, TD)) {
      WeakVH BIHandle(BI);
      ReplaceAndSimplifyAllUses(Inst, V, TD);
      MadeChange = true;
      if (BIHandle != BI)
        BI = BB->begin();
      continue;
    }
    
    MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst);
  }
  return MadeChange;
}

//===----------------------------------------------------------------------===//
//  Control Flow Graph Restructuring.
//


/// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
/// method is called when we're about to delete Pred as a predecessor of BB.  If
/// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
///
/// Unlike the removePredecessor method, this attempts to simplify uses of PHI
/// nodes that collapse into identity values.  For example, if we have:
///   x = phi(1, 0, 0, 0)
///   y = and x, z
///
/// .. and delete the predecessor corresponding to the '1', this will attempt to
/// recursively fold the and to 0.
void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
                                        TargetData *TD) {
  // This only adjusts blocks with PHI nodes.
  if (!isa<PHINode>(BB->begin()))
    return;
  
  // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
  // them down.  This will leave us with single entry phi nodes and other phis
  // that can be removed.
  BB->removePredecessor(Pred, true);
  
  WeakVH PhiIt = &BB->front();
  while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
    PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
    
    Value *PNV = PN->hasConstantValue();
    if (PNV == 0) continue;
    
    // If we're able to simplify the phi to a single value, substitute the new
    // value into all of its uses.
    assert(PNV != PN && "hasConstantValue broken");
    
    Value *OldPhiIt = PhiIt;
    ReplaceAndSimplifyAllUses(PN, PNV, TD);
    
    // If recursive simplification ended up deleting the next PHI node we would
    // iterate to, then our iterator is invalid, restart scanning from the top
    // of the block.
    if (PhiIt != OldPhiIt) PhiIt = &BB->front();
  }
}


/// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
/// predecessor is known to have one successor (DestBB!).  Eliminate the edge
/// between them, moving the instructions in the predecessor into DestBB and
/// deleting the predecessor block.
///
void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) {
  // If BB has single-entry PHI nodes, fold them.
  while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
    Value *NewVal = PN->getIncomingValue(0);
    // Replace self referencing PHI with undef, it must be dead.
    if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
    PN->replaceAllUsesWith(NewVal);
    PN->eraseFromParent();
  }
  
  BasicBlock *PredBB = DestBB->getSinglePredecessor();
  assert(PredBB && "Block doesn't have a single predecessor!");
  
  // Splice all the instructions from PredBB to DestBB.
  PredBB->getTerminator()->eraseFromParent();
  DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());

  // Zap anything that took the address of DestBB.  Not doing this will give the
  // address an invalid value.
  if (DestBB->hasAddressTaken()) {
    BlockAddress *BA = BlockAddress::get(DestBB);
    Constant *Replacement =
      ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
    BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
                                                     BA->getType()));
    BA->destroyConstant();
  }
  
  // Anything that branched to PredBB now branches to DestBB.
  PredBB->replaceAllUsesWith(DestBB);
  
  if (P) {
    ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
    if (PI) {
      PI->replaceAllUses(PredBB, DestBB);
      PI->removeEdge(ProfileInfo::getEdge(PredBB, DestBB));
    }
  }
  // Nuke BB.
  PredBB->eraseFromParent();
}

/// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
/// almost-empty BB ending in an unconditional branch to Succ, into succ.
///
/// Assumption: Succ is the single successor for BB.
///
static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
  assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");

  DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 
        << Succ->getName() << "\n");
  // Shortcut, if there is only a single predecessor it must be BB and merging
  // is always safe
  if (Succ->getSinglePredecessor()) return true;

  // Make a list of the predecessors of BB
  typedef SmallPtrSet<BasicBlock*, 16> BlockSet;
  BlockSet BBPreds(pred_begin(BB), pred_end(BB));

  // Use that list to make another list of common predecessors of BB and Succ
  BlockSet CommonPreds;
  for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
       PI != PE; ++PI) {
    BasicBlock *P = *PI;
    if (BBPreds.count(P))
      CommonPreds.insert(P);
  }

  // Shortcut, if there are no common predecessors, merging is always safe
  if (CommonPreds.empty())
    return true;
  
  // Look at all the phi nodes in Succ, to see if they present a conflict when
  // merging these blocks
  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
    PHINode *PN = cast<PHINode>(I);

    // If the incoming value from BB is again a PHINode in
    // BB which has the same incoming value for *PI as PN does, we can
    // merge the phi nodes and then the blocks can still be merged
    PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
    if (BBPN && BBPN->getParent() == BB) {
      for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
            PI != PE; PI++) {
        if (BBPN->getIncomingValueForBlock(*PI) 
              != PN->getIncomingValueForBlock(*PI)) {
          DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 
                << Succ->getName() << " is conflicting with " 
                << BBPN->getName() << " with regard to common predecessor "
                << (*PI)->getName() << "\n");
          return false;
        }
      }
    } else {
      Value* Val = PN->getIncomingValueForBlock(BB);
      for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
            PI != PE; PI++) {
        // See if the incoming value for the common predecessor is equal to the
        // one for BB, in which case this phi node will not prevent the merging
        // of the block.
        if (Val != PN->getIncomingValueForBlock(*PI)) {
          DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 
                << Succ->getName() << " is conflicting with regard to common "
                << "predecessor " << (*PI)->getName() << "\n");
          return false;
        }
      }
    }
  }

  return true;
}

/// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
/// unconditional branch, and contains no instructions other than PHI nodes,
/// potential debug intrinsics and the branch.  If possible, eliminate BB by
/// rewriting all the predecessors to branch to the successor block and return
/// true.  If we can't transform, return false.
bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
  assert(BB != &BB->getParent()->getEntryBlock() &&
         "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");

  // We can't eliminate infinite loops.
  BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
  if (BB == Succ) return false;
  
  // Check to see if merging these blocks would cause conflicts for any of the
  // phi nodes in BB or Succ. If not, we can safely merge.
  if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;

  // Check for cases where Succ has multiple predecessors and a PHI node in BB
  // has uses which will not disappear when the PHI nodes are merged.  It is
  // possible to handle such cases, but difficult: it requires checking whether
  // BB dominates Succ, which is non-trivial to calculate in the case where
  // Succ has multiple predecessors.  Also, it requires checking whether
  // constructing the necessary self-referential PHI node doesn't intoduce any
  // conflicts; this isn't too difficult, but the previous code for doing this
  // was incorrect.
  //
  // Note that if this check finds a live use, BB dominates Succ, so BB is
  // something like a loop pre-header (or rarely, a part of an irreducible CFG);
  // folding the branch isn't profitable in that case anyway.
  if (!Succ->getSinglePredecessor()) {
    BasicBlock::iterator BBI = BB->begin();
    while (isa<PHINode>(*BBI)) {
      for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
           UI != E; ++UI) {
        if (PHINode* PN = dyn_cast<PHINode>(*UI)) {
          if (PN->getIncomingBlock(UI) != BB)
            return false;
        } else {
          return false;
        }
      }
      ++BBI;
    }
  }

  DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
  
  if (isa<PHINode>(Succ->begin())) {
    // If there is more than one pred of succ, and there are PHI nodes in
    // the successor, then we need to add incoming edges for the PHI nodes
    //
    const SmallVector<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
    
    // Loop over all of the PHI nodes in the successor of BB.
    for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
      PHINode *PN = cast<PHINode>(I);
      Value *OldVal = PN->removeIncomingValue(BB, false);
      assert(OldVal && "No entry in PHI for Pred BB!");
      
      // If this incoming value is one of the PHI nodes in BB, the new entries
      // in the PHI node are the entries from the old PHI.
      if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
        PHINode *OldValPN = cast<PHINode>(OldVal);
        for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
          // Note that, since we are merging phi nodes and BB and Succ might
          // have common predecessors, we could end up with a phi node with
          // identical incoming branches. This will be cleaned up later (and
          // will trigger asserts if we try to clean it up now, without also
          // simplifying the corresponding conditional branch).
          PN->addIncoming(OldValPN->getIncomingValue(i),
                          OldValPN->getIncomingBlock(i));
      } else {
        // Add an incoming value for each of the new incoming values.
        for (unsigned i = 0, e = BBPreds.size(); i != e; ++i)
          PN->addIncoming(OldVal, BBPreds[i]);
      }
    }
  }
  
  while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
    if (Succ->getSinglePredecessor()) {
      // BB is the only predecessor of Succ, so Succ will end up with exactly
      // the same predecessors BB had.
      Succ->getInstList().splice(Succ->begin(),
                                 BB->getInstList(), BB->begin());
    } else {
      // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
      assert(PN->use_empty() && "There shouldn't be any uses here!");
      PN->eraseFromParent();
    }
  }
    
  // Everything that jumped to BB now goes to Succ.
  BB->replaceAllUsesWith(Succ);
  if (!Succ->hasName()) Succ->takeName(BB);
  BB->eraseFromParent();              // Delete the old basic block.
  return true;
}

/// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
/// nodes in this block. This doesn't try to be clever about PHI nodes
/// which differ only in the order of the incoming values, but instcombine
/// orders them so it usually won't matter.
///
bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
  bool Changed = false;

  // This implementation doesn't currently consider undef operands
  // specially. Theroetically, two phis which are identical except for
  // one having an undef where the other doesn't could be collapsed.

  // Map from PHI hash values to PHI nodes. If multiple PHIs have
  // the same hash value, the element is the first PHI in the
  // linked list in CollisionMap.
  DenseMap<uintptr_t, PHINode *> HashMap;

  // Maintain linked lists of PHI nodes with common hash values.
  DenseMap<PHINode *, PHINode *> CollisionMap;

  // Examine each PHI.
  for (BasicBlock::iterator I = BB->begin();
       PHINode *PN = dyn_cast<PHINode>(I++); ) {
    // Compute a hash value on the operands. Instcombine will likely have sorted
    // them, which helps expose duplicates, but we have to check all the
    // operands to be safe in case instcombine hasn't run.
    uintptr_t Hash = 0;
    for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) {
      // This hash algorithm is quite weak as hash functions go, but it seems
      // to do a good enough job for this particular purpose, and is very quick.
      Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I));
      Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
    }
    // If we've never seen this hash value before, it's a unique PHI.
    std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair =
      HashMap.insert(std::make_pair(Hash, PN));
    if (Pair.second) continue;
    // Otherwise it's either a duplicate or a hash collision.
    for (PHINode *OtherPN = Pair.first->second; ; ) {
      if (OtherPN->isIdenticalTo(PN)) {
        // A duplicate. Replace this PHI with its duplicate.
        PN->replaceAllUsesWith(OtherPN);
        PN->eraseFromParent();
        Changed = true;
        break;
      }
      // A non-duplicate hash collision.
      DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN);
      if (I == CollisionMap.end()) {
        // Set this PHI to be the head of the linked list of colliding PHIs.
        PHINode *Old = Pair.first->second;
        Pair.first->second = PN;
        CollisionMap[PN] = Old;
        break;
      }
      // Procede to the next PHI in the list.
      OtherPN = I->second;
    }
  }

  return Changed;
}