1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
|
//===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements some loop unrolling utilities for loops with run-time
// trip counts. See LoopUnroll.cpp for unrolling loops with compile-time
// trip counts.
//
// The functions in this file are used to generate extra code when the
// run-time trip count modulo the unroll factor is not 0. When this is the
// case, we need to generate code to execute these 'left over' iterations.
//
// The current strategy generates an if-then-else sequence prior to the
// unrolled loop to execute the 'left over' iterations. Other strategies
// include generate a loop before or after the unrolled loop.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "loop-unroll"
#include "llvm/Transforms/Utils/UnrollLoop.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include <algorithm>
using namespace llvm;
STATISTIC(NumRuntimeUnrolled,
"Number of loops unrolled with run-time trip counts");
/// Connect the unrolling prolog code to the original loop.
/// The unrolling prolog code contains code to execute the
/// 'extra' iterations if the run-time trip count modulo the
/// unroll count is non-zero.
///
/// This function performs the following:
/// - Create PHI nodes at prolog end block to combine values
/// that exit the prolog code and jump around the prolog.
/// - Add a PHI operand to a PHI node at the loop exit block
/// for values that exit the prolog and go around the loop.
/// - Branch around the original loop if the trip count is less
/// than the unroll factor.
///
static void ConnectProlog(Loop *L, Value *TripCount, unsigned Count,
BasicBlock *LastPrologBB, BasicBlock *PrologEnd,
BasicBlock *OrigPH, BasicBlock *NewPH,
ValueToValueMapTy &LVMap, Pass *P) {
BasicBlock *Latch = L->getLoopLatch();
assert(Latch != 0 && "Loop must have a latch");
// Create a PHI node for each outgoing value from the original loop
// (which means it is an outgoing value from the prolog code too).
// The new PHI node is inserted in the prolog end basic block.
// The new PHI name is added as an operand of a PHI node in either
// the loop header or the loop exit block.
for (succ_iterator SBI = succ_begin(Latch), SBE = succ_end(Latch);
SBI != SBE; ++SBI) {
for (BasicBlock::iterator BBI = (*SBI)->begin();
PHINode *PN = dyn_cast<PHINode>(BBI); ++BBI) {
// Add a new PHI node to the prolog end block and add the
// appropriate incoming values.
PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName()+".unr",
PrologEnd->getTerminator());
// Adding a value to the new PHI node from the original loop preheader.
// This is the value that skips all the prolog code.
if (L->contains(PN)) {
NewPN->addIncoming(PN->getIncomingValueForBlock(NewPH), OrigPH);
} else {
NewPN->addIncoming(Constant::getNullValue(PN->getType()), OrigPH);
}
Value *V = PN->getIncomingValueForBlock(Latch);
if (Instruction *I = dyn_cast<Instruction>(V)) {
if (L->contains(I)) {
V = LVMap[I];
}
}
// Adding a value to the new PHI node from the last prolog block
// that was created.
NewPN->addIncoming(V, LastPrologBB);
// Update the existing PHI node operand with the value from the
// new PHI node. How this is done depends on if the existing
// PHI node is in the original loop block, or the exit block.
if (L->contains(PN)) {
PN->setIncomingValue(PN->getBasicBlockIndex(NewPH), NewPN);
} else {
PN->addIncoming(NewPN, PrologEnd);
}
}
}
// Create a branch around the orignal loop, which is taken if the
// trip count is less than the unroll factor.
Instruction *InsertPt = PrologEnd->getTerminator();
Instruction *BrLoopExit =
new ICmpInst(InsertPt, ICmpInst::ICMP_ULT, TripCount,
ConstantInt::get(TripCount->getType(), Count));
BasicBlock *Exit = L->getUniqueExitBlock();
assert(Exit != 0 && "Loop must have a single exit block only");
// Split the exit to maintain loop canonicalization guarantees
SmallVector<BasicBlock*, 4> Preds(pred_begin(Exit), pred_end(Exit));
if (!Exit->isLandingPad()) {
SplitBlockPredecessors(Exit, Preds, ".unr-lcssa", P);
} else {
SmallVector<BasicBlock*, 2> NewBBs;
SplitLandingPadPredecessors(Exit, Preds, ".unr1-lcssa", ".unr2-lcssa",
P, NewBBs);
}
// Add the branch to the exit block (around the unrolled loop)
BranchInst::Create(Exit, NewPH, BrLoopExit, InsertPt);
InsertPt->eraseFromParent();
}
/// Create a clone of the blocks in a loop and connect them together.
/// This function doesn't create a clone of the loop structure.
///
/// There are two value maps that are defined and used. VMap is
/// for the values in the current loop instance. LVMap contains
/// the values from the last loop instance. We need the LVMap values
/// to update the initial values for the current loop instance.
///
static void CloneLoopBlocks(Loop *L,
bool FirstCopy,
BasicBlock *InsertTop,
BasicBlock *InsertBot,
std::vector<BasicBlock *> &NewBlocks,
LoopBlocksDFS &LoopBlocks,
ValueToValueMapTy &VMap,
ValueToValueMapTy &LVMap,
LoopInfo *LI) {
BasicBlock *Preheader = L->getLoopPreheader();
BasicBlock *Header = L->getHeader();
BasicBlock *Latch = L->getLoopLatch();
Function *F = Header->getParent();
LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
// For each block in the original loop, create a new copy,
// and update the value map with the newly created values.
for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".unr", F);
NewBlocks.push_back(NewBB);
if (Loop *ParentLoop = L->getParentLoop())
ParentLoop->addBasicBlockToLoop(NewBB, LI->getBase());
VMap[*BB] = NewBB;
if (Header == *BB) {
// For the first block, add a CFG connection to this newly
// created block
InsertTop->getTerminator()->setSuccessor(0, NewBB);
// Change the incoming values to the ones defined in the
// previously cloned loop.
for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
PHINode *NewPHI = cast<PHINode>(VMap[I]);
if (FirstCopy) {
// We replace the first phi node with the value from the preheader
VMap[I] = NewPHI->getIncomingValueForBlock(Preheader);
NewBB->getInstList().erase(NewPHI);
} else {
// Update VMap with values from the previous block
unsigned idx = NewPHI->getBasicBlockIndex(Latch);
Value *InVal = NewPHI->getIncomingValue(idx);
if (Instruction *I = dyn_cast<Instruction>(InVal))
if (L->contains(I))
InVal = LVMap[InVal];
NewPHI->setIncomingValue(idx, InVal);
NewPHI->setIncomingBlock(idx, InsertTop);
}
}
}
if (Latch == *BB) {
VMap.erase((*BB)->getTerminator());
NewBB->getTerminator()->eraseFromParent();
BranchInst::Create(InsertBot, NewBB);
}
}
// LastValueMap is updated with the values for the current loop
// which are used the next time this function is called.
for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
VI != VE; ++VI) {
LVMap[VI->first] = VI->second;
}
}
/// Insert code in the prolog code when unrolling a loop with a
/// run-time trip-count.
///
/// This method assumes that the loop unroll factor is total number
/// of loop bodes in the loop after unrolling. (Some folks refer
/// to the unroll factor as the number of *extra* copies added).
/// We assume also that the loop unroll factor is a power-of-two. So, after
/// unrolling the loop, the number of loop bodies executed is 2,
/// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch
/// instruction in SimplifyCFG.cpp. Then, the backend decides how code for
/// the switch instruction is generated.
///
/// extraiters = tripcount % loopfactor
/// if (extraiters == 0) jump Loop:
/// if (extraiters == loopfactor) jump L1
/// if (extraiters == loopfactor-1) jump L2
/// ...
/// L1: LoopBody;
/// L2: LoopBody;
/// ...
/// if tripcount < loopfactor jump End
/// Loop:
/// ...
/// End:
///
bool llvm::UnrollRuntimeLoopProlog(Loop *L, unsigned Count, LoopInfo *LI,
LPPassManager *LPM) {
// for now, only unroll loops that contain a single exit
if (!L->getExitingBlock())
return false;
// Make sure the loop is in canonical form, and there is a single
// exit block only.
if (!L->isLoopSimplifyForm() || L->getUniqueExitBlock() == 0)
return false;
// Use Scalar Evolution to compute the trip count. This allows more
// loops to be unrolled than relying on induction var simplification
if (!LPM)
return false;
ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>();
if (SE == 0)
return false;
// Only unroll loops with a computable trip count and the trip count needs
// to be an int value (allowing a pointer type is a TODO item)
const SCEV *BECount = SE->getBackedgeTakenCount(L);
if (isa<SCEVCouldNotCompute>(BECount) || !BECount->getType()->isIntegerTy())
return false;
// Add 1 since the backedge count doesn't include the first loop iteration
const SCEV *TripCountSC =
SE->getAddExpr(BECount, SE->getConstant(BECount->getType(), 1));
if (isa<SCEVCouldNotCompute>(TripCountSC))
return false;
// We only handle cases when the unroll factor is a power of 2.
// Count is the loop unroll factor, the number of extra copies added + 1.
if ((Count & (Count-1)) != 0)
return false;
// If this loop is nested, then the loop unroller changes the code in
// parent loop, so the Scalar Evolution pass needs to be run again
if (Loop *ParentLoop = L->getParentLoop())
SE->forgetLoop(ParentLoop);
BasicBlock *PH = L->getLoopPreheader();
BasicBlock *Header = L->getHeader();
BasicBlock *Latch = L->getLoopLatch();
// It helps to splits the original preheader twice, one for the end of the
// prolog code and one for a new loop preheader
BasicBlock *PEnd = SplitEdge(PH, Header, LPM->getAsPass());
BasicBlock *NewPH = SplitBlock(PEnd, PEnd->getTerminator(), LPM->getAsPass());
BranchInst *PreHeaderBR = cast<BranchInst>(PH->getTerminator());
// Compute the number of extra iterations required, which is:
// extra iterations = run-time trip count % (loop unroll factor + 1)
SCEVExpander Expander(*SE, "loop-unroll");
Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
PreHeaderBR);
Type *CountTy = TripCount->getType();
BinaryOperator *ModVal =
BinaryOperator::CreateURem(TripCount,
ConstantInt::get(CountTy, Count),
"xtraiter");
ModVal->insertBefore(PreHeaderBR);
// Check if for no extra iterations, then jump to unrolled loop
Value *BranchVal = new ICmpInst(PreHeaderBR,
ICmpInst::ICMP_NE, ModVal,
ConstantInt::get(CountTy, 0), "lcmp");
// Branch to either the extra iterations or the unrolled loop
// We will fix up the true branch label when adding loop body copies
BranchInst::Create(PEnd, PEnd, BranchVal, PreHeaderBR);
assert(PreHeaderBR->isUnconditional() &&
PreHeaderBR->getSuccessor(0) == PEnd &&
"CFG edges in Preheader are not correct");
PreHeaderBR->eraseFromParent();
ValueToValueMapTy LVMap;
Function *F = Header->getParent();
// These variables are used to update the CFG links in each iteration
BasicBlock *CompareBB = 0;
BasicBlock *LastLoopBB = PH;
// Get an ordered list of blocks in the loop to help with the ordering of the
// cloned blocks in the prolog code
LoopBlocksDFS LoopBlocks(L);
LoopBlocks.perform(LI);
//
// For each extra loop iteration, create a copy of the loop's basic blocks
// and generate a condition that branches to the copy depending on the
// number of 'left over' iterations.
//
for (unsigned leftOverIters = Count-1; leftOverIters > 0; --leftOverIters) {
std::vector<BasicBlock*> NewBlocks;
ValueToValueMapTy VMap;
// Clone all the basic blocks in the loop, but we don't clone the loop
// This function adds the appropriate CFG connections.
CloneLoopBlocks(L, (leftOverIters == Count-1), LastLoopBB, PEnd, NewBlocks,
LoopBlocks, VMap, LVMap, LI);
LastLoopBB = cast<BasicBlock>(VMap[Latch]);
// Insert the cloned blocks into function just before the original loop
F->getBasicBlockList().splice(PEnd, F->getBasicBlockList(),
NewBlocks[0], F->end());
// Generate the code for the comparison which determines if the loop
// prolog code needs to be executed.
if (leftOverIters == Count-1) {
// There is no compare block for the fall-thru case when for the last
// left over iteration
CompareBB = NewBlocks[0];
} else {
// Create a new block for the comparison
BasicBlock *NewBB = BasicBlock::Create(CompareBB->getContext(), "unr.cmp",
F, CompareBB);
if (Loop *ParentLoop = L->getParentLoop()) {
// Add the new block to the parent loop, if needed
ParentLoop->addBasicBlockToLoop(NewBB, LI->getBase());
}
// The comparison w/ the extra iteration value and branch
Value *BranchVal = new ICmpInst(*NewBB, ICmpInst::ICMP_EQ, ModVal,
ConstantInt::get(CountTy, leftOverIters),
"un.tmp");
// Branch to either the extra iterations or the unrolled loop
BranchInst::Create(NewBlocks[0], CompareBB,
BranchVal, NewBB);
CompareBB = NewBB;
PH->getTerminator()->setSuccessor(0, NewBB);
VMap[NewPH] = CompareBB;
}
// Rewrite the cloned instruction operands to use the values
// created when the clone is created.
for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) {
for (BasicBlock::iterator I = NewBlocks[i]->begin(),
E = NewBlocks[i]->end(); I != E; ++I) {
RemapInstruction(I, VMap,
RF_NoModuleLevelChanges|RF_IgnoreMissingEntries);
}
}
}
// Connect the prolog code to the original loop and update the
// PHI functions.
ConnectProlog(L, TripCount, Count, LastLoopBB, PEnd, PH, NewPH, LVMap,
LPM->getAsPass());
NumRuntimeUnrolled++;
return true;
}
|