aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Utils/SimplifyCFG.cpp
blob: 4b7071d4e18bb31e3a1d73c3684dc37972395193 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// Peephole optimize the CFG.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "simplifycfg"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/Type.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
#include <algorithm>
#include <functional>
#include <set>
#include <map>
using namespace llvm;

// PropagatePredecessorsForPHIs - This gets "Succ" ready to have the
// predecessors from "BB".  This is a little tricky because "Succ" has PHI
// nodes, which need to have extra slots added to them to hold the merge edges
// from BB's predecessors, and BB itself might have had PHI nodes in it.  This
// function returns true (failure) if the Succ BB already has a predecessor that
// is a predecessor of BB and incoming PHI arguments would not be discernible.
//
// Assumption: Succ is the single successor for BB.
//
static bool PropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
  assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");

  if (!isa<PHINode>(Succ->front()))
    return false;  // We can make the transformation, no problem.

  // If there is more than one predecessor, and there are PHI nodes in
  // the successor, then we need to add incoming edges for the PHI nodes
  //
  const std::vector<BasicBlock*> BBPreds(pred_begin(BB), pred_end(BB));

  // Check to see if one of the predecessors of BB is already a predecessor of
  // Succ.  If so, we cannot do the transformation if there are any PHI nodes
  // with incompatible values coming in from the two edges!
  //
  for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ); PI != PE; ++PI)
    if (std::find(BBPreds.begin(), BBPreds.end(), *PI) != BBPreds.end()) {
      // Loop over all of the PHI nodes checking to see if there are
      // incompatible values coming in.
      for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
        PHINode *PN = cast<PHINode>(I);
        // Loop up the entries in the PHI node for BB and for *PI if the values
        // coming in are non-equal, we cannot merge these two blocks (instead we
        // should insert a conditional move or something, then merge the
        // blocks).
        int Idx1 = PN->getBasicBlockIndex(BB);
        int Idx2 = PN->getBasicBlockIndex(*PI);
        assert(Idx1 != -1 && Idx2 != -1 &&
               "Didn't have entries for my predecessors??");
        if (PN->getIncomingValue(Idx1) != PN->getIncomingValue(Idx2))
          return true;  // Values are not equal...
      }
    }

  // Loop over all of the PHI nodes in the successor BB.
  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
    PHINode *PN = cast<PHINode>(I);
    Value *OldVal = PN->removeIncomingValue(BB, false);
    assert(OldVal && "No entry in PHI for Pred BB!");

    // If this incoming value is one of the PHI nodes in BB, the new entries in
    // the PHI node are the entries from the old PHI.
    if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
      PHINode *OldValPN = cast<PHINode>(OldVal);
      for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
        PN->addIncoming(OldValPN->getIncomingValue(i),
                        OldValPN->getIncomingBlock(i));
    } else {
      for (std::vector<BasicBlock*>::const_iterator PredI = BBPreds.begin(), 
             End = BBPreds.end(); PredI != End; ++PredI) {
        // Add an incoming value for each of the new incoming values...
        PN->addIncoming(OldVal, *PredI);
      }
    }
  }
  return false;
}

/// GetIfCondition - Given a basic block (BB) with two predecessors (and
/// presumably PHI nodes in it), check to see if the merge at this block is due
/// to an "if condition".  If so, return the boolean condition that determines
/// which entry into BB will be taken.  Also, return by references the block
/// that will be entered from if the condition is true, and the block that will
/// be entered if the condition is false.
/// 
///
static Value *GetIfCondition(BasicBlock *BB,
                             BasicBlock *&IfTrue, BasicBlock *&IfFalse) {
  assert(std::distance(pred_begin(BB), pred_end(BB)) == 2 &&
         "Function can only handle blocks with 2 predecessors!");
  BasicBlock *Pred1 = *pred_begin(BB);
  BasicBlock *Pred2 = *++pred_begin(BB);

  // We can only handle branches.  Other control flow will be lowered to
  // branches if possible anyway.
  if (!isa<BranchInst>(Pred1->getTerminator()) ||
      !isa<BranchInst>(Pred2->getTerminator()))
    return 0;
  BranchInst *Pred1Br = cast<BranchInst>(Pred1->getTerminator());
  BranchInst *Pred2Br = cast<BranchInst>(Pred2->getTerminator());

  // Eliminate code duplication by ensuring that Pred1Br is conditional if
  // either are.
  if (Pred2Br->isConditional()) {
    // If both branches are conditional, we don't have an "if statement".  In
    // reality, we could transform this case, but since the condition will be
    // required anyway, we stand no chance of eliminating it, so the xform is
    // probably not profitable.
    if (Pred1Br->isConditional())
      return 0;

    std::swap(Pred1, Pred2);
    std::swap(Pred1Br, Pred2Br);
  }

  if (Pred1Br->isConditional()) {
    // If we found a conditional branch predecessor, make sure that it branches
    // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
    if (Pred1Br->getSuccessor(0) == BB &&
        Pred1Br->getSuccessor(1) == Pred2) {
      IfTrue = Pred1;
      IfFalse = Pred2;
    } else if (Pred1Br->getSuccessor(0) == Pred2 &&
               Pred1Br->getSuccessor(1) == BB) {
      IfTrue = Pred2;
      IfFalse = Pred1;
    } else {
      // We know that one arm of the conditional goes to BB, so the other must
      // go somewhere unrelated, and this must not be an "if statement".
      return 0;
    }

    // The only thing we have to watch out for here is to make sure that Pred2
    // doesn't have incoming edges from other blocks.  If it does, the condition
    // doesn't dominate BB.
    if (++pred_begin(Pred2) != pred_end(Pred2))
      return 0;

    return Pred1Br->getCondition();
  }

  // Ok, if we got here, both predecessors end with an unconditional branch to
  // BB.  Don't panic!  If both blocks only have a single (identical)
  // predecessor, and THAT is a conditional branch, then we're all ok!
  if (pred_begin(Pred1) == pred_end(Pred1) ||
      ++pred_begin(Pred1) != pred_end(Pred1) ||
      pred_begin(Pred2) == pred_end(Pred2) ||
      ++pred_begin(Pred2) != pred_end(Pred2) ||
      *pred_begin(Pred1) != *pred_begin(Pred2))
    return 0;

  // Otherwise, if this is a conditional branch, then we can use it!
  BasicBlock *CommonPred = *pred_begin(Pred1);
  if (BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator())) {
    assert(BI->isConditional() && "Two successors but not conditional?");
    if (BI->getSuccessor(0) == Pred1) {
      IfTrue = Pred1;
      IfFalse = Pred2;
    } else {
      IfTrue = Pred2;
      IfFalse = Pred1;
    }
    return BI->getCondition();
  }
  return 0;
}


// If we have a merge point of an "if condition" as accepted above, return true
// if the specified value dominates the block.  We don't handle the true
// generality of domination here, just a special case which works well enough
// for us.
//
// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
// see if V (which must be an instruction) is cheap to compute and is
// non-trapping.  If both are true, the instruction is inserted into the set and
// true is returned.
static bool DominatesMergePoint(Value *V, BasicBlock *BB,
                                std::set<Instruction*> *AggressiveInsts) {
  Instruction *I = dyn_cast<Instruction>(V);
  if (!I) return true;    // Non-instructions all dominate instructions.
  BasicBlock *PBB = I->getParent();

  // We don't want to allow wierd loops that might have the "if condition" in
  // the bottom of this block.
  if (PBB == BB) return false;

  // If this instruction is defined in a block that contains an unconditional
  // branch to BB, then it must be in the 'conditional' part of the "if
  // statement".
  if (BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()))
    if (BI->isUnconditional() && BI->getSuccessor(0) == BB) {
      if (!AggressiveInsts) return false;
      // Okay, it looks like the instruction IS in the "condition".  Check to
      // see if its a cheap instruction to unconditionally compute, and if it
      // only uses stuff defined outside of the condition.  If so, hoist it out.
      switch (I->getOpcode()) {
      default: return false;  // Cannot hoist this out safely.
      case Instruction::Load:
        // We can hoist loads that are non-volatile and obviously cannot trap.
        if (cast<LoadInst>(I)->isVolatile())
          return false;
        if (!isa<AllocaInst>(I->getOperand(0)) &&
            !isa<Constant>(I->getOperand(0)))
          return false;

        // Finally, we have to check to make sure there are no instructions
        // before the load in its basic block, as we are going to hoist the loop
        // out to its predecessor.
        if (PBB->begin() != BasicBlock::iterator(I))
          return false;
        break;
      case Instruction::Add:
      case Instruction::Sub:
      case Instruction::And:
      case Instruction::Or:
      case Instruction::Xor:
      case Instruction::Shl:
      case Instruction::Shr:
        break;   // These are all cheap and non-trapping instructions.
      }
      
      // Okay, we can only really hoist these out if their operands are not
      // defined in the conditional region.
      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
        if (!DominatesMergePoint(I->getOperand(i), BB, 0))
          return false;
      // Okay, it's safe to do this!  Remember this instruction.
      AggressiveInsts->insert(I);
    }

  return true;
}

// GatherConstantSetEQs - Given a potentially 'or'd together collection of seteq
// instructions that compare a value against a constant, return the value being
// compared, and stick the constant into the Values vector.
static Value *GatherConstantSetEQs(Value *V, std::vector<ConstantInt*> &Values){
  if (Instruction *Inst = dyn_cast<Instruction>(V))
    if (Inst->getOpcode() == Instruction::SetEQ) {
      if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
        Values.push_back(C);
        return Inst->getOperand(0);
      } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
        Values.push_back(C);
        return Inst->getOperand(1);
      }
    } else if (Inst->getOpcode() == Instruction::Or) {
      if (Value *LHS = GatherConstantSetEQs(Inst->getOperand(0), Values))
        if (Value *RHS = GatherConstantSetEQs(Inst->getOperand(1), Values))
          if (LHS == RHS)
            return LHS;
    }
  return 0;
}

// GatherConstantSetNEs - Given a potentially 'and'd together collection of
// setne instructions that compare a value against a constant, return the value
// being compared, and stick the constant into the Values vector.
static Value *GatherConstantSetNEs(Value *V, std::vector<ConstantInt*> &Values){
  if (Instruction *Inst = dyn_cast<Instruction>(V))
    if (Inst->getOpcode() == Instruction::SetNE) {
      if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
        Values.push_back(C);
        return Inst->getOperand(0);
      } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
        Values.push_back(C);
        return Inst->getOperand(1);
      }
    } else if (Inst->getOpcode() == Instruction::Cast) {
      // Cast of X to bool is really a comparison against zero.
      assert(Inst->getType() == Type::BoolTy && "Can only handle bool values!");
      Values.push_back(ConstantInt::get(Inst->getOperand(0)->getType(), 0));
      return Inst->getOperand(0);
    } else if (Inst->getOpcode() == Instruction::And) {
      if (Value *LHS = GatherConstantSetNEs(Inst->getOperand(0), Values))
        if (Value *RHS = GatherConstantSetNEs(Inst->getOperand(1), Values))
          if (LHS == RHS)
            return LHS;
    }
  return 0;
}



/// GatherValueComparisons - If the specified Cond is an 'and' or 'or' of a
/// bunch of comparisons of one value against constants, return the value and
/// the constants being compared.
static bool GatherValueComparisons(Instruction *Cond, Value *&CompVal,
                                   std::vector<ConstantInt*> &Values) {
  if (Cond->getOpcode() == Instruction::Or) {
    CompVal = GatherConstantSetEQs(Cond, Values);

    // Return true to indicate that the condition is true if the CompVal is
    // equal to one of the constants.
    return true;
  } else if (Cond->getOpcode() == Instruction::And) {
    CompVal = GatherConstantSetNEs(Cond, Values);
        
    // Return false to indicate that the condition is false if the CompVal is
    // equal to one of the constants.
    return false;
  }
  return false;
}

/// ErasePossiblyDeadInstructionTree - If the specified instruction is dead and
/// has no side effects, nuke it.  If it uses any instructions that become dead
/// because the instruction is now gone, nuke them too.
static void ErasePossiblyDeadInstructionTree(Instruction *I) {
  if (isInstructionTriviallyDead(I)) {
    std::vector<Value*> Operands(I->op_begin(), I->op_end());
    I->getParent()->getInstList().erase(I);
    for (unsigned i = 0, e = Operands.size(); i != e; ++i)
      if (Instruction *OpI = dyn_cast<Instruction>(Operands[i]))
        ErasePossiblyDeadInstructionTree(OpI);
  }
}

/// SafeToMergeTerminators - Return true if it is safe to merge these two
/// terminator instructions together.
///
static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
  if (SI1 == SI2) return false;  // Can't merge with self!

  // It is not safe to merge these two switch instructions if they have a common
  // successor, and if that successor has a PHI node, and if *that* PHI node has
  // conflicting incoming values from the two switch blocks.
  BasicBlock *SI1BB = SI1->getParent();
  BasicBlock *SI2BB = SI2->getParent();
  std::set<BasicBlock*> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));

  for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
    if (SI1Succs.count(*I))
      for (BasicBlock::iterator BBI = (*I)->begin();
           isa<PHINode>(BBI); ++BBI) {
        PHINode *PN = cast<PHINode>(BBI);
        if (PN->getIncomingValueForBlock(SI1BB) !=
            PN->getIncomingValueForBlock(SI2BB))
          return false;
      }
        
  return true;
}

/// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
/// now be entries in it from the 'NewPred' block.  The values that will be
/// flowing into the PHI nodes will be the same as those coming in from
/// ExistPred, an existing predecessor of Succ.
static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
                                  BasicBlock *ExistPred) {
  assert(std::find(succ_begin(ExistPred), succ_end(ExistPred), Succ) !=
         succ_end(ExistPred) && "ExistPred is not a predecessor of Succ!");
  if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do

  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
    PHINode *PN = cast<PHINode>(I);
    Value *V = PN->getIncomingValueForBlock(ExistPred);
    PN->addIncoming(V, NewPred);
  }
}

// isValueEqualityComparison - Return true if the specified terminator checks to
// see if a value is equal to constant integer value.
static Value *isValueEqualityComparison(TerminatorInst *TI) {
  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    // Do not permit merging of large switch instructions into their
    // predecessors unless there is only one predecessor.
    if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
                                               pred_end(SI->getParent())) > 128)
      return 0;

    return SI->getCondition();
  }
  if (BranchInst *BI = dyn_cast<BranchInst>(TI))
    if (BI->isConditional() && BI->getCondition()->hasOneUse())
      if (SetCondInst *SCI = dyn_cast<SetCondInst>(BI->getCondition()))
        if ((SCI->getOpcode() == Instruction::SetEQ ||
             SCI->getOpcode() == Instruction::SetNE) && 
            isa<ConstantInt>(SCI->getOperand(1)))
          return SCI->getOperand(0);
  return 0;
}

// Given a value comparison instruction, decode all of the 'cases' that it
// represents and return the 'default' block.
static BasicBlock *
GetValueEqualityComparisonCases(TerminatorInst *TI, 
                                std::vector<std::pair<ConstantInt*,
                                                      BasicBlock*> > &Cases) {
  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    Cases.reserve(SI->getNumCases());
    for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
      Cases.push_back(std::make_pair(cast<ConstantInt>(SI->getCaseValue(i)),
                                     SI->getSuccessor(i)));
    return SI->getDefaultDest();
  }

  BranchInst *BI = cast<BranchInst>(TI);
  SetCondInst *SCI = cast<SetCondInst>(BI->getCondition());
  Cases.push_back(std::make_pair(cast<ConstantInt>(SCI->getOperand(1)),
                                 BI->getSuccessor(SCI->getOpcode() ==
                                                        Instruction::SetNE)));
  return BI->getSuccessor(SCI->getOpcode() == Instruction::SetEQ);
}


// FoldValueComparisonIntoPredecessors - The specified terminator is a value
// equality comparison instruction (either a switch or a branch on "X == c").
// See if any of the predecessors of the terminator block are value comparisons
// on the same value.  If so, and if safe to do so, fold them together.
static bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI) {
  BasicBlock *BB = TI->getParent();
  Value *CV = isValueEqualityComparison(TI);  // CondVal
  assert(CV && "Not a comparison?");
  bool Changed = false;

  std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
  while (!Preds.empty()) {
    BasicBlock *Pred = Preds.back();
    Preds.pop_back();
    
    // See if the predecessor is a comparison with the same value.
    TerminatorInst *PTI = Pred->getTerminator();
    Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal

    if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
      // Figure out which 'cases' to copy from SI to PSI.
      std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases;
      BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);

      std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
      BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);

      // Based on whether the default edge from PTI goes to BB or not, fill in
      // PredCases and PredDefault with the new switch cases we would like to
      // build.
      std::vector<BasicBlock*> NewSuccessors;

      if (PredDefault == BB) {
        // If this is the default destination from PTI, only the edges in TI
        // that don't occur in PTI, or that branch to BB will be activated.
        std::set<ConstantInt*> PTIHandled;
        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
          if (PredCases[i].second != BB)
            PTIHandled.insert(PredCases[i].first);
          else {
            // The default destination is BB, we don't need explicit targets.
            std::swap(PredCases[i], PredCases.back());
            PredCases.pop_back();
            --i; --e;
          }

        // Reconstruct the new switch statement we will be building.
        if (PredDefault != BBDefault) {
          PredDefault->removePredecessor(Pred);
          PredDefault = BBDefault;
          NewSuccessors.push_back(BBDefault);
        }
        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
          if (!PTIHandled.count(BBCases[i].first) &&
              BBCases[i].second != BBDefault) {
            PredCases.push_back(BBCases[i]);
            NewSuccessors.push_back(BBCases[i].second);
          }

      } else {
        // If this is not the default destination from PSI, only the edges
        // in SI that occur in PSI with a destination of BB will be
        // activated.
        std::set<ConstantInt*> PTIHandled;
        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
          if (PredCases[i].second == BB) {
            PTIHandled.insert(PredCases[i].first);
            std::swap(PredCases[i], PredCases.back());
            PredCases.pop_back();
            --i; --e;
          }

        // Okay, now we know which constants were sent to BB from the
        // predecessor.  Figure out where they will all go now.
        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
          if (PTIHandled.count(BBCases[i].first)) {
            // If this is one we are capable of getting...
            PredCases.push_back(BBCases[i]);
            NewSuccessors.push_back(BBCases[i].second);
            PTIHandled.erase(BBCases[i].first);// This constant is taken care of
          }

        // If there are any constants vectored to BB that TI doesn't handle,
        // they must go to the default destination of TI.
        for (std::set<ConstantInt*>::iterator I = PTIHandled.begin(),
               E = PTIHandled.end(); I != E; ++I) {
          PredCases.push_back(std::make_pair(*I, BBDefault));
          NewSuccessors.push_back(BBDefault);
        }
      }

      // Okay, at this point, we know which new successor Pred will get.  Make
      // sure we update the number of entries in the PHI nodes for these
      // successors.
      for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
        AddPredecessorToBlock(NewSuccessors[i], Pred, BB);

      // Now that the successors are updated, create the new Switch instruction.
      SwitchInst *NewSI = new SwitchInst(CV, PredDefault, PTI);
      for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
        NewSI->addCase(PredCases[i].first, PredCases[i].second);
      Pred->getInstList().erase(PTI);

      // Okay, last check.  If BB is still a successor of PSI, then we must
      // have an infinite loop case.  If so, add an infinitely looping block
      // to handle the case to preserve the behavior of the code.
      BasicBlock *InfLoopBlock = 0;
      for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
        if (NewSI->getSuccessor(i) == BB) {
          if (InfLoopBlock == 0) {
            // Insert it at the end of the loop, because it's either code,
            // or it won't matter if it's hot. :)
            InfLoopBlock = new BasicBlock("infloop", BB->getParent());
            new BranchInst(InfLoopBlock, InfLoopBlock);
          }
          NewSI->setSuccessor(i, InfLoopBlock);
        }
          
      Changed = true;
    }
  }
  return Changed;
}

/// HoistThenElseCodeToIf - Given a conditional branch that codes to BB1 and
/// BB2, hoist any common code in the two blocks up into the branch block.  The
/// caller of this function guarantees that BI's block dominates BB1 and BB2.
static bool HoistThenElseCodeToIf(BranchInst *BI) {
  // This does very trivial matching, with limited scanning, to find identical
  // instructions in the two blocks.  In particular, we don't want to get into
  // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
  // such, we currently just scan for obviously identical instructions in an
  // identical order.
  BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
  BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination

  Instruction *I1 = BB1->begin(), *I2 = BB2->begin();
  if (I1->getOpcode() != I2->getOpcode() || !I1->isIdenticalTo(I2))
    return false;

  // If we get here, we can hoist at least one instruction.
  BasicBlock *BIParent = BI->getParent();

  do {
    // If we are hoisting the terminator instruction, don't move one (making a
    // broken BB), instead clone it, and remove BI.
    if (isa<TerminatorInst>(I1))
      goto HoistTerminator;
   
    // For a normal instruction, we just move one to right before the branch,
    // then replace all uses of the other with the first.  Finally, we remove
    // the now redundant second instruction.
    BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
    if (!I2->use_empty())
      I2->replaceAllUsesWith(I1);
    BB2->getInstList().erase(I2);
    
    I1 = BB1->begin();
    I2 = BB2->begin();
  } while (I1->getOpcode() == I2->getOpcode() && I1->isIdenticalTo(I2));

  return true;

HoistTerminator:
  // Okay, it is safe to hoist the terminator.
  Instruction *NT = I1->clone();
  BIParent->getInstList().insert(BI, NT);
  if (NT->getType() != Type::VoidTy) {
    I1->replaceAllUsesWith(NT);
    I2->replaceAllUsesWith(NT);
    NT->setName(I1->getName());
  }

  // Hoisting one of the terminators from our successor is a great thing.
  // Unfortunately, the successors of the if/else blocks may have PHI nodes in
  // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
  // nodes, so we insert select instruction to compute the final result.
  std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
    PHINode *PN;
    for (BasicBlock::iterator BBI = SI->begin();
         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
      Value *BB1V = PN->getIncomingValueForBlock(BB1);
      Value *BB2V = PN->getIncomingValueForBlock(BB2);
      if (BB1V != BB2V) {
        // These values do not agree.  Insert a select instruction before NT
        // that determines the right value.
        SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
        if (SI == 0)
          SI = new SelectInst(BI->getCondition(), BB1V, BB2V,
                              BB1V->getName()+"."+BB2V->getName(), NT);
        // Make the PHI node use the select for all incoming values for BB1/BB2
        for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
          if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
            PN->setIncomingValue(i, SI);
      }
    }
  }

  // Update any PHI nodes in our new successors.
  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
    AddPredecessorToBlock(*SI, BIParent, BB1);
  
  BI->eraseFromParent();
  return true;
}

namespace {
  /// ConstantIntOrdering - This class implements a stable ordering of constant
  /// integers that does not depend on their address.  This is important for
  /// applications that sort ConstantInt's to ensure uniqueness.
  struct ConstantIntOrdering {
    bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
      return LHS->getRawValue() < RHS->getRawValue();
    }
  };
}


// SimplifyCFG - This function is used to do simplification of a CFG.  For
// example, it adjusts branches to branches to eliminate the extra hop, it
// eliminates unreachable basic blocks, and does other "peephole" optimization
// of the CFG.  It returns true if a modification was made.
//
// WARNING:  The entry node of a function may not be simplified.
//
bool llvm::SimplifyCFG(BasicBlock *BB) {
  bool Changed = false;
  Function *M = BB->getParent();

  assert(BB && BB->getParent() && "Block not embedded in function!");
  assert(BB->getTerminator() && "Degenerate basic block encountered!");
  assert(&BB->getParent()->front() != BB && "Can't Simplify entry block!");

  // Remove basic blocks that have no predecessors... which are unreachable.
  if (pred_begin(BB) == pred_end(BB) ||
      *pred_begin(BB) == BB && ++pred_begin(BB) == pred_end(BB)) {
    DEBUG(std::cerr << "Removing BB: \n" << *BB);

    // Loop through all of our successors and make sure they know that one
    // of their predecessors is going away.
    for_each(succ_begin(BB), succ_end(BB),
	     std::bind2nd(std::mem_fun(&BasicBlock::removePredecessor), BB));

    while (!BB->empty()) {
      Instruction &I = BB->back();
      // If this instruction is used, replace uses with an arbitrary
      // constant value.  Because control flow can't get here, we don't care
      // what we replace the value with.  Note that since this block is 
      // unreachable, and all values contained within it must dominate their
      // uses, that all uses will eventually be removed.
      if (!I.use_empty()) 
        // Make all users of this instruction reference the constant instead
        I.replaceAllUsesWith(Constant::getNullValue(I.getType()));
      
      // Remove the instruction from the basic block
      BB->getInstList().pop_back();
    }
    M->getBasicBlockList().erase(BB);
    return true;
  }

  // Check to see if we can constant propagate this terminator instruction
  // away...
  Changed |= ConstantFoldTerminator(BB);

  // Check to see if this block has no non-phi instructions and only a single
  // successor.  If so, replace references to this basic block with references
  // to the successor.
  succ_iterator SI(succ_begin(BB));
  if (SI != succ_end(BB) && ++SI == succ_end(BB)) {  // One succ?
    BasicBlock::iterator BBI = BB->begin();  // Skip over phi nodes...
    while (isa<PHINode>(*BBI)) ++BBI;

    BasicBlock *Succ = *succ_begin(BB); // There is exactly one successor.
    if (BBI->isTerminator() &&  // Terminator is the only non-phi instruction!
        Succ != BB) {           // Don't hurt infinite loops!
      // If our successor has PHI nodes, then we need to update them to include
      // entries for BB's predecessors, not for BB itself.  Be careful though,
      // if this transformation fails (returns true) then we cannot do this
      // transformation!
      //
      if (!PropagatePredecessorsForPHIs(BB, Succ)) {
        DEBUG(std::cerr << "Killing Trivial BB: \n" << *BB);
        
        if (isa<PHINode>(&BB->front())) {
          std::vector<BasicBlock*>
            OldSuccPreds(pred_begin(Succ), pred_end(Succ));
        
          // Move all PHI nodes in BB to Succ if they are alive, otherwise
          // delete them.
          while (PHINode *PN = dyn_cast<PHINode>(&BB->front()))
            if (PN->use_empty())
              BB->getInstList().erase(BB->begin());  // Nuke instruction.
            else {
              // The instruction is alive, so this means that Succ must have
              // *ONLY* had BB as a predecessor, and the PHI node is still valid
              // now.  Simply move it into Succ, because we know that BB
              // strictly dominated Succ.
              BB->getInstList().remove(BB->begin());
              Succ->getInstList().push_front(PN);
              
              // We need to add new entries for the PHI node to account for
              // predecessors of Succ that the PHI node does not take into
              // account.  At this point, since we know that BB dominated succ,
              // this means that we should any newly added incoming edges should
              // use the PHI node as the value for these edges, because they are
              // loop back edges.
              for (unsigned i = 0, e = OldSuccPreds.size(); i != e; ++i)
                if (OldSuccPreds[i] != BB)
                  PN->addIncoming(PN, OldSuccPreds[i]);
            }
        }
        
        // Everything that jumped to BB now goes to Succ.
        std::string OldName = BB->getName();
        BB->replaceAllUsesWith(Succ);
        BB->eraseFromParent();              // Delete the old basic block.

        if (!OldName.empty() && !Succ->hasName())  // Transfer name if we can
          Succ->setName(OldName);
        return true;
      }
    }
  }

  // If this is a returning block with only PHI nodes in it, fold the return
  // instruction into any unconditional branch predecessors.
  //
  // If any predecessor is a conditional branch that just selects among
  // different return values, fold the replace the branch/return with a select
  // and return.
  if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
    BasicBlock::iterator BBI = BB->getTerminator();
    if (BBI == BB->begin() || isa<PHINode>(--BBI)) {
      // Find predecessors that end with branches.
      std::vector<BasicBlock*> UncondBranchPreds;
      std::vector<BranchInst*> CondBranchPreds;
      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
        TerminatorInst *PTI = (*PI)->getTerminator();
        if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
          if (BI->isUnconditional())
            UncondBranchPreds.push_back(*PI);
          else
            CondBranchPreds.push_back(BI);
      }
      
      // If we found some, do the transformation!
      if (!UncondBranchPreds.empty()) {
        while (!UncondBranchPreds.empty()) {
          BasicBlock *Pred = UncondBranchPreds.back();
          UncondBranchPreds.pop_back();
          Instruction *UncondBranch = Pred->getTerminator();
          // Clone the return and add it to the end of the predecessor.
          Instruction *NewRet = RI->clone();
          Pred->getInstList().push_back(NewRet);

          // If the return instruction returns a value, and if the value was a
          // PHI node in "BB", propagate the right value into the return.
          if (NewRet->getNumOperands() == 1)
            if (PHINode *PN = dyn_cast<PHINode>(NewRet->getOperand(0)))
              if (PN->getParent() == BB)
                NewRet->setOperand(0, PN->getIncomingValueForBlock(Pred));
          // Update any PHI nodes in the returning block to realize that we no
          // longer branch to them.
          BB->removePredecessor(Pred);
          Pred->getInstList().erase(UncondBranch);
        }

        // If we eliminated all predecessors of the block, delete the block now.
        if (pred_begin(BB) == pred_end(BB))
          // We know there are no successors, so just nuke the block.
          M->getBasicBlockList().erase(BB);

        return true;
      }

      // Check out all of the conditional branches going to this return
      // instruction.  If any of them just select between returns, change the
      // branch itself into a select/return pair.
      while (!CondBranchPreds.empty()) {
        BranchInst *BI = CondBranchPreds.back();
        CondBranchPreds.pop_back();
        BasicBlock *TrueSucc = BI->getSuccessor(0);
        BasicBlock *FalseSucc = BI->getSuccessor(1);
        BasicBlock *OtherSucc = TrueSucc == BB ? FalseSucc : TrueSucc;

        // Check to see if the non-BB successor is also a return block.
        if (isa<ReturnInst>(OtherSucc->getTerminator())) {
          // Check to see if there are only PHI instructions in this block.
          BasicBlock::iterator OSI = OtherSucc->getTerminator();
          if (OSI == OtherSucc->begin() || isa<PHINode>(--OSI)) {
            // Okay, we found a branch that is going to two return nodes.  If
            // there is no return value for this function, just change the
            // branch into a return.
            if (RI->getNumOperands() == 0) {
              TrueSucc->removePredecessor(BI->getParent());
              FalseSucc->removePredecessor(BI->getParent());
              new ReturnInst(0, BI);
              BI->getParent()->getInstList().erase(BI);
              return true;
            }

            // Otherwise, figure out what the true and false return values are
            // so we can insert a new select instruction.
            Value *TrueValue = TrueSucc->getTerminator()->getOperand(0);
            Value *FalseValue = FalseSucc->getTerminator()->getOperand(0);

            // Unwrap any PHI nodes in the return blocks.
            if (PHINode *TVPN = dyn_cast<PHINode>(TrueValue))
              if (TVPN->getParent() == TrueSucc)
                TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
            if (PHINode *FVPN = dyn_cast<PHINode>(FalseValue))
              if (FVPN->getParent() == FalseSucc)
                FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());

            TrueSucc->removePredecessor(BI->getParent());
            FalseSucc->removePredecessor(BI->getParent());

            // Insert a new select instruction.
            Value *NewRetVal;
            Value *BrCond = BI->getCondition();
            if (TrueValue != FalseValue)
              NewRetVal = new SelectInst(BrCond, TrueValue,
                                         FalseValue, "retval", BI);
            else
              NewRetVal = TrueValue;

            new ReturnInst(NewRetVal, BI);
            BI->getParent()->getInstList().erase(BI);
            if (BrCond->use_empty())
              if (Instruction *BrCondI = dyn_cast<Instruction>(BrCond))
                BrCondI->getParent()->getInstList().erase(BrCondI);
            return true;
          }
        }
      }
    }
  } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->begin())) {
    // Check to see if the first instruction in this block is just an unwind.
    // If so, replace any invoke instructions which use this as an exception
    // destination with call instructions, and any unconditional branch
    // predecessor with an unwind.
    //
    std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
    while (!Preds.empty()) {
      BasicBlock *Pred = Preds.back();
      if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator())) {
        if (BI->isUnconditional()) {
          Pred->getInstList().pop_back();  // nuke uncond branch
          new UnwindInst(Pred);            // Use unwind.
          Changed = true;
        }
      } else if (InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator()))
        if (II->getUnwindDest() == BB) {
          // Insert a new branch instruction before the invoke, because this
          // is now a fall through...
          BranchInst *BI = new BranchInst(II->getNormalDest(), II);
          Pred->getInstList().remove(II);   // Take out of symbol table
          
          // Insert the call now...
          std::vector<Value*> Args(II->op_begin()+3, II->op_end());
          CallInst *CI = new CallInst(II->getCalledValue(), Args,
                                      II->getName(), BI);
          // If the invoke produced a value, the Call now does instead
          II->replaceAllUsesWith(CI);
          delete II;
          Changed = true;
        }
      
      Preds.pop_back();
    }

    // If this block is now dead, remove it.
    if (pred_begin(BB) == pred_end(BB)) {
      // We know there are no successors, so just nuke the block.
      M->getBasicBlockList().erase(BB);
      return true;
    }

  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->begin())) {
    if (isValueEqualityComparison(SI))
      if (FoldValueComparisonIntoPredecessors(SI))
        return SimplifyCFG(BB) || 1;
  } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
    if (BI->isConditional()) {
      if (Value *CompVal = isValueEqualityComparison(BI)) {
        // This block must be empty, except for the setcond inst, if it exists.
        BasicBlock::iterator I = BB->begin();
        if (&*I == BI ||
            (&*I == cast<Instruction>(BI->getCondition()) &&
             &*++I == BI))
          if (FoldValueComparisonIntoPredecessors(BI))
            return SimplifyCFG(BB) | true;
      }

      // If this basic block is ONLY a setcc and a branch, and if a predecessor
      // branches to us and one of our successors, fold the setcc into the
      // predecessor and use logical operations to pick the right destination.
      BasicBlock *TrueDest  = BI->getSuccessor(0);
      BasicBlock *FalseDest = BI->getSuccessor(1);
      if (BinaryOperator *Cond = dyn_cast<BinaryOperator>(BI->getCondition()))
        if (Cond->getParent() == BB && &BB->front() == Cond &&
            Cond->getNext() == BI && Cond->hasOneUse() &&
            TrueDest != BB && FalseDest != BB)
          for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI!=E; ++PI)
            if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
              if (PBI->isConditional() && SafeToMergeTerminators(BI, PBI)) {
                BasicBlock *PredBlock = *PI;
                if (PBI->getSuccessor(0) == FalseDest ||
                    PBI->getSuccessor(1) == TrueDest) {
                  // Invert the predecessors condition test (xor it with true),
                  // which allows us to write this code once.
                  Value *NewCond =
                    BinaryOperator::createNot(PBI->getCondition(),
                                    PBI->getCondition()->getName()+".not", PBI);
                  PBI->setCondition(NewCond);
                  BasicBlock *OldTrue = PBI->getSuccessor(0);
                  BasicBlock *OldFalse = PBI->getSuccessor(1);
                  PBI->setSuccessor(0, OldFalse);
                  PBI->setSuccessor(1, OldTrue);
                }

                if (PBI->getSuccessor(0) == TrueDest ||
                    PBI->getSuccessor(1) == FalseDest) {
                  // Clone Cond into the predecessor basic block, and or/and the
                  // two conditions together.
                  Instruction *New = Cond->clone();
                  New->setName(Cond->getName());
                  Cond->setName(Cond->getName()+".old");
                  PredBlock->getInstList().insert(PBI, New);
                  Instruction::BinaryOps Opcode =
                    PBI->getSuccessor(0) == TrueDest ?
                    Instruction::Or : Instruction::And;
                  Value *NewCond = 
                    BinaryOperator::create(Opcode, PBI->getCondition(),
                                           New, "bothcond", PBI);
                  PBI->setCondition(NewCond);
                  if (PBI->getSuccessor(0) == BB) {
                    AddPredecessorToBlock(TrueDest, PredBlock, BB);
                    PBI->setSuccessor(0, TrueDest);
                  }
                  if (PBI->getSuccessor(1) == BB) {
                    AddPredecessorToBlock(FalseDest, PredBlock, BB);
                    PBI->setSuccessor(1, FalseDest);
                  }
                  return SimplifyCFG(BB) | 1;
                }
              }

      // If this block ends with a branch instruction, and if there is one
      // predecessor, see if the previous block ended with a branch on the same
      // condition, which makes this conditional branch redundant.
      pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
      BasicBlock *OnlyPred = *PI++;
      for (; PI != PE; ++PI)// Search all predecessors, see if they are all same
        if (*PI != OnlyPred) {
          OnlyPred = 0;       // There are multiple different predecessors...
          break;
        }
      
      if (OnlyPred)
        if (BranchInst *PBI = dyn_cast<BranchInst>(OnlyPred->getTerminator()))
          if (PBI->isConditional() &&
              PBI->getCondition() == BI->getCondition() &&
              (PBI->getSuccessor(0) != BB || PBI->getSuccessor(1) != BB)) {
            // Okay, the outcome of this conditional branch is statically
            // knowable.  Delete the outgoing CFG edge that is impossible to
            // execute.
            bool CondIsTrue = PBI->getSuccessor(0) == BB;
            BI->getSuccessor(CondIsTrue)->removePredecessor(BB);
            new BranchInst(BI->getSuccessor(!CondIsTrue), BB);
            BB->getInstList().erase(BI);
            return SimplifyCFG(BB) | true;
          }
    }
  } else if (isa<UnreachableInst>(BB->getTerminator())) {
    // If there are any instructions immediately before the unreachable that can
    // be removed, do so.
    Instruction *Unreachable = BB->getTerminator();
    while (Unreachable != BB->begin()) {
      BasicBlock::iterator BBI = Unreachable;
      --BBI;
      if (isa<CallInst>(BBI)) break;
      // Delete this instruction
      BB->getInstList().erase(BBI);
      Changed = true;
    }

    // If the unreachable instruction is the first in the block, take a gander
    // at all of the predecessors of this instruction, and simplify them.
    if (&BB->front() == Unreachable) {
      std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
      for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
        TerminatorInst *TI = Preds[i]->getTerminator();

        if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
          if (BI->isUnconditional()) {
            if (BI->getSuccessor(0) == BB) {
              new UnreachableInst(TI);
              TI->eraseFromParent();
              Changed = true;
            }
          } else {
            if (BI->getSuccessor(0) == BB) {
              new BranchInst(BI->getSuccessor(1), BI);
              BI->eraseFromParent();
            } else if (BI->getSuccessor(1) == BB) {
              new BranchInst(BI->getSuccessor(0), BI);
              BI->eraseFromParent();
              Changed = true;
            }
          }
        } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
          for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
            if (SI->getSuccessor(i) == BB) {
              SI->removeCase(i);
              --i; --e;
              Changed = true;
            }
          // If the default value is unreachable, figure out the most popular
          // destination and make it the default.
          if (SI->getSuccessor(0) == BB) {
            std::map<BasicBlock*, unsigned> Popularity;
            for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
              Popularity[SI->getSuccessor(i)]++;

            // Find the most popular block.
            unsigned MaxPop = 0;
            BasicBlock *MaxBlock = 0;
            for (std::map<BasicBlock*, unsigned>::iterator
                   I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
              if (I->second > MaxPop) {
                MaxPop = I->second;
                MaxBlock = I->first;
              }
            }
            if (MaxBlock) {
              // Make this the new default, allowing us to delete any explicit
              // edges to it.
              SI->setSuccessor(0, MaxBlock);
              Changed = true;

              for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
                if (SI->getSuccessor(i) == MaxBlock) {
                  SI->removeCase(i);
                  --i; --e;
                }
            }
          }
        } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
          if (II->getUnwindDest() == BB) {
            // Convert the invoke to a call instruction.  This would be a good
            // place to note that the call does not throw though.
            BranchInst *BI = new BranchInst(II->getNormalDest(), II);
            II->removeFromParent();   // Take out of symbol table
          
            // Insert the call now...
            std::vector<Value*> Args(II->op_begin()+3, II->op_end());
            CallInst *CI = new CallInst(II->getCalledValue(), Args,
                                        II->getName(), BI);
            // If the invoke produced a value, the Call does now instead.
            II->replaceAllUsesWith(CI);
            delete II;
            Changed = true;
          }
        }
      }

      // If this block is now dead, remove it.
      if (pred_begin(BB) == pred_end(BB)) {
        // We know there are no successors, so just nuke the block.
        M->getBasicBlockList().erase(BB);
        return true;
      }
    }
  }

  // Merge basic blocks into their predecessor if there is only one distinct
  // pred, and if there is only one distinct successor of the predecessor, and
  // if there are no PHI nodes.
  //
  pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
  BasicBlock *OnlyPred = *PI++;
  for (; PI != PE; ++PI)  // Search all predecessors, see if they are all same
    if (*PI != OnlyPred) {
      OnlyPred = 0;       // There are multiple different predecessors...
      break;
    }

  BasicBlock *OnlySucc = 0;
  if (OnlyPred && OnlyPred != BB &&    // Don't break self loops
      OnlyPred->getTerminator()->getOpcode() != Instruction::Invoke) {
    // Check to see if there is only one distinct successor...
    succ_iterator SI(succ_begin(OnlyPred)), SE(succ_end(OnlyPred));
    OnlySucc = BB;
    for (; SI != SE; ++SI)
      if (*SI != OnlySucc) {
        OnlySucc = 0;     // There are multiple distinct successors!
        break;
      }
  }

  if (OnlySucc) {
    DEBUG(std::cerr << "Merging: " << *BB << "into: " << *OnlyPred);
    TerminatorInst *Term = OnlyPred->getTerminator();

    // Resolve any PHI nodes at the start of the block.  They are all
    // guaranteed to have exactly one entry if they exist, unless there are
    // multiple duplicate (but guaranteed to be equal) entries for the
    // incoming edges.  This occurs when there are multiple edges from
    // OnlyPred to OnlySucc.
    //
    while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
      PN->replaceAllUsesWith(PN->getIncomingValue(0));
      BB->getInstList().pop_front();  // Delete the phi node...
    }

    // Delete the unconditional branch from the predecessor...
    OnlyPred->getInstList().pop_back();
      
    // Move all definitions in the successor to the predecessor...
    OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
                                     
    // Make all PHI nodes that referred to BB now refer to Pred as their
    // source...
    BB->replaceAllUsesWith(OnlyPred);

    std::string OldName = BB->getName();

    // Erase basic block from the function... 
    M->getBasicBlockList().erase(BB);

    // Inherit predecessors name if it exists...
    if (!OldName.empty() && !OnlyPred->hasName())
      OnlyPred->setName(OldName);
      
    return true;
  }

  // Otherwise, if this block only has a single predecessor, and if that block
  // is a conditional branch, see if we can hoist any code from this block up
  // into our predecessor.
  if (OnlyPred)
    if (BranchInst *BI = dyn_cast<BranchInst>(OnlyPred->getTerminator())) {
      // This is guaranteed to be a condbr at this point.
      assert(BI->isConditional() && "Should have folded bb into pred!");
      // Get the other block.
      BasicBlock *OtherBB = BI->getSuccessor(BI->getSuccessor(0) == BB);
      PI = pred_begin(OtherBB);
      ++PI;
      if (PI == pred_end(OtherBB)) {
        // We have a conditional branch to two blocks that are only reachable
        // from the condbr.  We know that the condbr dominates the two blocks,
        // so see if there is any identical code in the "then" and "else"
        // blocks.  If so, we can hoist it up to the branching block.
        Changed |= HoistThenElseCodeToIf(BI);
      }
    }

  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
    if (BranchInst *BI = dyn_cast<BranchInst>((*PI)->getTerminator()))
      // Change br (X == 0 | X == 1), T, F into a switch instruction.
      if (BI->isConditional() && isa<Instruction>(BI->getCondition())) {
        Instruction *Cond = cast<Instruction>(BI->getCondition());
        // If this is a bunch of seteq's or'd together, or if it's a bunch of
        // 'setne's and'ed together, collect them.
        Value *CompVal = 0;
        std::vector<ConstantInt*> Values;
        bool TrueWhenEqual = GatherValueComparisons(Cond, CompVal, Values);
        if (CompVal && CompVal->getType()->isInteger()) {
          // There might be duplicate constants in the list, which the switch
          // instruction can't handle, remove them now.
          std::sort(Values.begin(), Values.end(), ConstantIntOrdering());
          Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
          
          // Figure out which block is which destination.
          BasicBlock *DefaultBB = BI->getSuccessor(1);
          BasicBlock *EdgeBB    = BI->getSuccessor(0);
          if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
          
          // Create the new switch instruction now.
          SwitchInst *New = new SwitchInst(CompVal, DefaultBB, BI);
          
          // Add all of the 'cases' to the switch instruction.
          for (unsigned i = 0, e = Values.size(); i != e; ++i)
            New->addCase(Values[i], EdgeBB);
          
          // We added edges from PI to the EdgeBB.  As such, if there were any
          // PHI nodes in EdgeBB, they need entries to be added corresponding to
          // the number of edges added.
          for (BasicBlock::iterator BBI = EdgeBB->begin();
               isa<PHINode>(BBI); ++BBI) {
            PHINode *PN = cast<PHINode>(BBI);
            Value *InVal = PN->getIncomingValueForBlock(*PI);
            for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
              PN->addIncoming(InVal, *PI);
          }

          // Erase the old branch instruction.
          (*PI)->getInstList().erase(BI);

          // Erase the potentially condition tree that was used to computed the
          // branch condition.
          ErasePossiblyDeadInstructionTree(Cond);
          return true;
        }
      }

  // If there is a trivial two-entry PHI node in this basic block, and we can
  // eliminate it, do so now.
  if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
    if (PN->getNumIncomingValues() == 2) {
      // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
      // statement", which has a very simple dominance structure.  Basically, we
      // are trying to find the condition that is being branched on, which
      // subsequently causes this merge to happen.  We really want control
      // dependence information for this check, but simplifycfg can't keep it up
      // to date, and this catches most of the cases we care about anyway.
      //
      BasicBlock *IfTrue, *IfFalse;
      if (Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse)) {
        DEBUG(std::cerr << "FOUND IF CONDITION!  " << *IfCond << "  T: "
              << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");

        // Loop over the PHI's seeing if we can promote them all to select
        // instructions.  While we are at it, keep track of the instructions
        // that need to be moved to the dominating block.
        std::set<Instruction*> AggressiveInsts;
        bool CanPromote = true;

        BasicBlock::iterator AfterPHIIt = BB->begin();
        while (isa<PHINode>(AfterPHIIt)) {
          PHINode *PN = cast<PHINode>(AfterPHIIt++);
          if (PN->getIncomingValue(0) == PN->getIncomingValue(1))
            PN->replaceAllUsesWith(PN->getIncomingValue(0));
          else if (!DominatesMergePoint(PN->getIncomingValue(0), BB,
                                        &AggressiveInsts) ||
                   !DominatesMergePoint(PN->getIncomingValue(1), BB,
                                        &AggressiveInsts)) {
            CanPromote = false;
            break;
          }
        }

        // Did we eliminate all PHI's?
        CanPromote |= AfterPHIIt == BB->begin();

        // If we all PHI nodes are promotable, check to make sure that all
        // instructions in the predecessor blocks can be promoted as well.  If
        // not, we won't be able to get rid of the control flow, so it's not
        // worth promoting to select instructions.
        BasicBlock *DomBlock = 0, *IfBlock1 = 0, *IfBlock2 = 0;
        if (CanPromote) {
          PN = cast<PHINode>(BB->begin());
          BasicBlock *Pred = PN->getIncomingBlock(0);
          if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
            IfBlock1 = Pred;
            DomBlock = *pred_begin(Pred);
            for (BasicBlock::iterator I = Pred->begin();
                 !isa<TerminatorInst>(I); ++I)
              if (!AggressiveInsts.count(I)) {
                // This is not an aggressive instruction that we can promote.
                // Because of this, we won't be able to get rid of the control
                // flow, so the xform is not worth it.
                CanPromote = false;
                break;
              }
          }

          Pred = PN->getIncomingBlock(1);
          if (CanPromote && 
              cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
            IfBlock2 = Pred;
            DomBlock = *pred_begin(Pred);
            for (BasicBlock::iterator I = Pred->begin();
                 !isa<TerminatorInst>(I); ++I)
              if (!AggressiveInsts.count(I)) {
                // This is not an aggressive instruction that we can promote.
                // Because of this, we won't be able to get rid of the control
                // flow, so the xform is not worth it.
                CanPromote = false;
                break;
              }
          }
        }

        // If we can still promote the PHI nodes after this gauntlet of tests,
        // do all of the PHI's now.
        if (CanPromote) {
          // Move all 'aggressive' instructions, which are defined in the
          // conditional parts of the if's up to the dominating block.
          if (IfBlock1) {
            DomBlock->getInstList().splice(DomBlock->getTerminator(),
                                           IfBlock1->getInstList(),
                                           IfBlock1->begin(),
                                           IfBlock1->getTerminator());
          }
          if (IfBlock2) {
            DomBlock->getInstList().splice(DomBlock->getTerminator(),
                                           IfBlock2->getInstList(),
                                           IfBlock2->begin(),
                                           IfBlock2->getTerminator());
          }

          while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
            // Change the PHI node into a select instruction.
            Value *TrueVal =
              PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
            Value *FalseVal =
              PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);

            std::string Name = PN->getName(); PN->setName("");
            PN->replaceAllUsesWith(new SelectInst(IfCond, TrueVal, FalseVal,
                                                  Name, AfterPHIIt));
            BB->getInstList().erase(PN);
          }
          Changed = true;
        }
      }
    }
  
  return Changed;
}