aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Utils/SimplifyCFG.cpp
blob: b0fc6bca742beb464609c9e6555822dab1398c97 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// Peephole optimize the CFG.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/Support/CFG.h"
#include <algorithm>
#include <functional>
using namespace llvm;

// PropagatePredecessors - This gets "Succ" ready to have the predecessors from
// "BB".  This is a little tricky because "Succ" has PHI nodes, which need to
// have extra slots added to them to hold the merge edges from BB's
// predecessors, and BB itself might have had PHI nodes in it.  This function
// returns true (failure) if the Succ BB already has a predecessor that is a
// predecessor of BB and incoming PHI arguments would not be discernible.
//
// Assumption: Succ is the single successor for BB.
//
static bool PropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
  assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");

  if (!isa<PHINode>(Succ->front()))
    return false;  // We can make the transformation, no problem.

  // If there is more than one predecessor, and there are PHI nodes in
  // the successor, then we need to add incoming edges for the PHI nodes
  //
  const std::vector<BasicBlock*> BBPreds(pred_begin(BB), pred_end(BB));

  // Check to see if one of the predecessors of BB is already a predecessor of
  // Succ.  If so, we cannot do the transformation if there are any PHI nodes
  // with incompatible values coming in from the two edges!
  //
  for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ); PI != PE; ++PI)
    if (find(BBPreds.begin(), BBPreds.end(), *PI) != BBPreds.end()) {
      // Loop over all of the PHI nodes checking to see if there are
      // incompatible values coming in.
      for (BasicBlock::iterator I = Succ->begin();
           PHINode *PN = dyn_cast<PHINode>(I); ++I) {
        // Loop up the entries in the PHI node for BB and for *PI if the values
        // coming in are non-equal, we cannot merge these two blocks (instead we
        // should insert a conditional move or something, then merge the
        // blocks).
        int Idx1 = PN->getBasicBlockIndex(BB);
        int Idx2 = PN->getBasicBlockIndex(*PI);
        assert(Idx1 != -1 && Idx2 != -1 &&
               "Didn't have entries for my predecessors??");
        if (PN->getIncomingValue(Idx1) != PN->getIncomingValue(Idx2))
          return true;  // Values are not equal...
      }
    }

  // Loop over all of the PHI nodes in the successor BB
  for (BasicBlock::iterator I = Succ->begin();
       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
    Value *OldVal = PN->removeIncomingValue(BB, false);
    assert(OldVal && "No entry in PHI for Pred BB!");

    // If this incoming value is one of the PHI nodes in BB...
    if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
      PHINode *OldValPN = cast<PHINode>(OldVal);
      for (std::vector<BasicBlock*>::const_iterator PredI = BBPreds.begin(), 
             End = BBPreds.end(); PredI != End; ++PredI) {
        PN->addIncoming(OldValPN->getIncomingValueForBlock(*PredI), *PredI);
      }
    } else {
      for (std::vector<BasicBlock*>::const_iterator PredI = BBPreds.begin(), 
             End = BBPreds.end(); PredI != End; ++PredI) {
        // Add an incoming value for each of the new incoming values...
        PN->addIncoming(OldVal, *PredI);
      }
    }
  }
  return false;
}

/// GetIfCondition - Given a basic block (BB) with two predecessors (and
/// presumably PHI nodes in it), check to see if the merge at this block is due
/// to an "if condition".  If so, return the boolean condition that determines
/// which entry into BB will be taken.  Also, return by references the block
/// that will be entered from if the condition is true, and the block that will
/// be entered if the condition is false.
/// 
///
static Value *GetIfCondition(BasicBlock *BB,
                             BasicBlock *&IfTrue, BasicBlock *&IfFalse) {
  assert(std::distance(pred_begin(BB), pred_end(BB)) == 2 &&
         "Function can only handle blocks with 2 predecessors!");
  BasicBlock *Pred1 = *pred_begin(BB);
  BasicBlock *Pred2 = *++pred_begin(BB);

  // We can only handle branches.  Other control flow will be lowered to
  // branches if possible anyway.
  if (!isa<BranchInst>(Pred1->getTerminator()) ||
      !isa<BranchInst>(Pred2->getTerminator()))
    return 0;
  BranchInst *Pred1Br = cast<BranchInst>(Pred1->getTerminator());
  BranchInst *Pred2Br = cast<BranchInst>(Pred2->getTerminator());

  // Eliminate code duplication by ensuring that Pred1Br is conditional if
  // either are.
  if (Pred2Br->isConditional()) {
    // If both branches are conditional, we don't have an "if statement".  In
    // reality, we could transform this case, but since the condition will be
    // required anyway, we stand no chance of eliminating it, so the xform is
    // probably not profitable.
    if (Pred1Br->isConditional())
      return 0;

    std::swap(Pred1, Pred2);
    std::swap(Pred1Br, Pred2Br);
  }

  if (Pred1Br->isConditional()) {
    // If we found a conditional branch predecessor, make sure that it branches
    // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
    if (Pred1Br->getSuccessor(0) == BB &&
        Pred1Br->getSuccessor(1) == Pred2) {
      IfTrue = Pred1;
      IfFalse = Pred2;
    } else if (Pred1Br->getSuccessor(0) == Pred2 &&
               Pred1Br->getSuccessor(1) == BB) {
      IfTrue = Pred2;
      IfFalse = Pred1;
    } else {
      // We know that one arm of the conditional goes to BB, so the other must
      // go somewhere unrelated, and this must not be an "if statement".
      return 0;
    }

    // The only thing we have to watch out for here is to make sure that Pred2
    // doesn't have incoming edges from other blocks.  If it does, the condition
    // doesn't dominate BB.
    if (++pred_begin(Pred2) != pred_end(Pred2))
      return 0;

    return Pred1Br->getCondition();
  }

  // Ok, if we got here, both predecessors end with an unconditional branch to
  // BB.  Don't panic!  If both blocks only have a single (identical)
  // predecessor, and THAT is a conditional branch, then we're all ok!
  if (pred_begin(Pred1) == pred_end(Pred1) ||
      ++pred_begin(Pred1) != pred_end(Pred1) ||
      pred_begin(Pred2) == pred_end(Pred2) ||
      ++pred_begin(Pred2) != pred_end(Pred2) ||
      *pred_begin(Pred1) != *pred_begin(Pred2))
    return 0;

  // Otherwise, if this is a conditional branch, then we can use it!
  BasicBlock *CommonPred = *pred_begin(Pred1);
  if (BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator())) {
    assert(BI->isConditional() && "Two successors but not conditional?");
    if (BI->getSuccessor(0) == Pred1) {
      IfTrue = Pred1;
      IfFalse = Pred2;
    } else {
      IfTrue = Pred2;
      IfFalse = Pred1;
    }
    return BI->getCondition();
  }
  return 0;
}


// If we have a merge point of an "if condition" as accepted above, return true
// if the specified value dominates the block.  We don't handle the true
// generality of domination here, just a special case which works well enough
// for us.
static bool DominatesMergePoint(Value *V, BasicBlock *BB) {
  if (Instruction *I = dyn_cast<Instruction>(V)) {
    BasicBlock *PBB = I->getParent();
    // If this instruction is defined in a block that contains an unconditional
    // branch to BB, then it must be in the 'conditional' part of the "if
    // statement".
    if (isa<BranchInst>(PBB->getTerminator()) && 
        cast<BranchInst>(PBB->getTerminator())->isUnconditional() && 
        cast<BranchInst>(PBB->getTerminator())->getSuccessor(0) == BB)
      return false;

    // We also don't want to allow wierd loops that might have the "if
    // condition" in the bottom of this block.
    if (PBB == BB) return false;
  }

  // Non-instructions all dominate instructions.
  return true;
}

// SimplifyCFG - This function is used to do simplification of a CFG.  For
// example, it adjusts branches to branches to eliminate the extra hop, it
// eliminates unreachable basic blocks, and does other "peephole" optimization
// of the CFG.  It returns true if a modification was made.
//
// WARNING:  The entry node of a function may not be simplified.
//
bool llvm::SimplifyCFG(BasicBlock *BB) {
  bool Changed = false;
  Function *M = BB->getParent();

  assert(BB && BB->getParent() && "Block not embedded in function!");
  assert(BB->getTerminator() && "Degenerate basic block encountered!");
  assert(&BB->getParent()->front() != BB && "Can't Simplify entry block!");

  // Check to see if the first instruction in this block is just an unwind.  If
  // so, replace any invoke instructions which use this as an exception
  // destination with call instructions.
  //
  if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator()))
    if (BB->begin() == BasicBlock::iterator(UI)) {  // Empty block?
      std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
      while (!Preds.empty()) {
        BasicBlock *Pred = Preds.back();
        if (InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator()))
          if (II->getUnwindDest() == BB) {
            // Insert a new branch instruction before the invoke, because this
            // is now a fall through...
            BranchInst *BI = new BranchInst(II->getNormalDest(), II);
            Pred->getInstList().remove(II);   // Take out of symbol table
            
            // Insert the call now...
            std::vector<Value*> Args(II->op_begin()+3, II->op_end());
            CallInst *CI = new CallInst(II->getCalledValue(), Args,
                                        II->getName(), BI);
            // If the invoke produced a value, the Call now does instead
            II->replaceAllUsesWith(CI);
            delete II;
            Changed = true;
          }
        
        Preds.pop_back();
      }
    }

  // Remove basic blocks that have no predecessors... which are unreachable.
  if (pred_begin(BB) == pred_end(BB)) {
    //cerr << "Removing BB: \n" << BB;

    // Loop through all of our successors and make sure they know that one
    // of their predecessors is going away.
    for_each(succ_begin(BB), succ_end(BB),
	     std::bind2nd(std::mem_fun(&BasicBlock::removePredecessor), BB));

    while (!BB->empty()) {
      Instruction &I = BB->back();
      // If this instruction is used, replace uses with an arbitrary
      // constant value.  Because control flow can't get here, we don't care
      // what we replace the value with.  Note that since this block is 
      // unreachable, and all values contained within it must dominate their
      // uses, that all uses will eventually be removed.
      if (!I.use_empty()) 
        // Make all users of this instruction reference the constant instead
        I.replaceAllUsesWith(Constant::getNullValue(I.getType()));
      
      // Remove the instruction from the basic block
      BB->getInstList().pop_back();
    }
    M->getBasicBlockList().erase(BB);
    return true;
  }

  // Check to see if we can constant propagate this terminator instruction
  // away...
  Changed |= ConstantFoldTerminator(BB);

  // Check to see if this block has no non-phi instructions and only a single
  // successor.  If so, replace references to this basic block with references
  // to the successor.
  succ_iterator SI(succ_begin(BB));
  if (SI != succ_end(BB) && ++SI == succ_end(BB)) {  // One succ?

    BasicBlock::iterator BBI = BB->begin();  // Skip over phi nodes...
    while (isa<PHINode>(*BBI)) ++BBI;

    if (BBI->isTerminator()) {   // Terminator is the only non-phi instruction!
      BasicBlock *Succ = *succ_begin(BB); // There is exactly one successor
     
      if (Succ != BB) {   // Arg, don't hurt infinite loops!
        // If our successor has PHI nodes, then we need to update them to
        // include entries for BB's predecessors, not for BB itself.
        // Be careful though, if this transformation fails (returns true) then
        // we cannot do this transformation!
        //
	if (!PropagatePredecessorsForPHIs(BB, Succ)) {
          //cerr << "Killing Trivial BB: \n" << BB;
          std::string OldName = BB->getName();

          std::vector<BasicBlock*>
            OldSuccPreds(pred_begin(Succ), pred_end(Succ));

          // Move all PHI nodes in BB to Succ if they are alive, otherwise
          // delete them.
          while (PHINode *PN = dyn_cast<PHINode>(&BB->front()))
            if (PN->use_empty())
              BB->getInstList().erase(BB->begin());  // Nuke instruction...
            else {
              // The instruction is alive, so this means that Succ must have
              // *ONLY* had BB as a predecessor, and the PHI node is still valid
              // now.  Simply move it into Succ, because we know that BB
              // strictly dominated Succ.
              BB->getInstList().remove(BB->begin());
              Succ->getInstList().push_front(PN);

              // We need to add new entries for the PHI node to account for
              // predecessors of Succ that the PHI node does not take into
              // account.  At this point, since we know that BB dominated succ,
              // this means that we should any newly added incoming edges should
              // use the PHI node as the value for these edges, because they are
              // loop back edges.
              
              for (unsigned i = 0, e = OldSuccPreds.size(); i != e; ++i)
                if (OldSuccPreds[i] != BB)
                  PN->addIncoming(PN, OldSuccPreds[i]);
            }

          // Everything that jumped to BB now goes to Succ...
          BB->replaceAllUsesWith(Succ);

          // Delete the old basic block...
          M->getBasicBlockList().erase(BB);
	
          if (!OldName.empty() && !Succ->hasName())  // Transfer name if we can
            Succ->setName(OldName);
          
          //cerr << "Function after removal: \n" << M;
          return true;
	}
      }
    }
  }

  // If this is a returning block with only PHI nodes in it, fold the return
  // instruction into any unconditional branch predecessors.
  if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
    BasicBlock::iterator BBI = BB->getTerminator();
    if (BBI == BB->begin() || isa<PHINode>(--BBI)) {
      // Find predecessors that end with unconditional branches.
      std::vector<BasicBlock*> UncondBranchPreds;
      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
        TerminatorInst *PTI = (*PI)->getTerminator();
        if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
          if (BI->isUnconditional())
            UncondBranchPreds.push_back(*PI);
      }
      
      // If we found some, do the transformation!
      if (!UncondBranchPreds.empty()) {
        while (!UncondBranchPreds.empty()) {
          BasicBlock *Pred = UncondBranchPreds.back();
          UncondBranchPreds.pop_back();
          Instruction *UncondBranch = Pred->getTerminator();
          // Clone the return and add it to the end of the predecessor.
          Instruction *NewRet = RI->clone();
          Pred->getInstList().push_back(NewRet);

          // If the return instruction returns a value, and if the value was a
          // PHI node in "BB", propagate the right value into the return.
          if (NewRet->getNumOperands() == 1)
            if (PHINode *PN = dyn_cast<PHINode>(NewRet->getOperand(0)))
              if (PN->getParent() == BB)
                NewRet->setOperand(0, PN->getIncomingValueForBlock(Pred));
          // Update any PHI nodes in the returning block to realize that we no
          // longer branch to them.
          BB->removePredecessor(Pred);
          Pred->getInstList().erase(UncondBranch);
        }

        // If we eliminated all predecessors of the block, delete the block now.
        if (pred_begin(BB) == pred_end(BB))
          // We know there are no successors, so just nuke the block.
          M->getBasicBlockList().erase(BB);

        
        return true;
      }
    }
  }


  // Merge basic blocks into their predecessor if there is only one distinct
  // pred, and if there is only one distinct successor of the predecessor, and
  // if there are no PHI nodes.
  //
  pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
  BasicBlock *OnlyPred = *PI++;
  for (; PI != PE; ++PI)  // Search all predecessors, see if they are all same
    if (*PI != OnlyPred) {
      OnlyPred = 0;       // There are multiple different predecessors...
      break;
    }
  
  BasicBlock *OnlySucc = 0;
  if (OnlyPred && OnlyPred != BB &&    // Don't break self loops
      OnlyPred->getTerminator()->getOpcode() != Instruction::Invoke) {
    // Check to see if there is only one distinct successor...
    succ_iterator SI(succ_begin(OnlyPred)), SE(succ_end(OnlyPred));
    OnlySucc = BB;
    for (; SI != SE; ++SI)
      if (*SI != OnlySucc) {
        OnlySucc = 0;     // There are multiple distinct successors!
        break;
      }
  }

  if (OnlySucc) {
    //cerr << "Merging: " << BB << "into: " << OnlyPred;
    TerminatorInst *Term = OnlyPred->getTerminator();

    // Resolve any PHI nodes at the start of the block.  They are all
    // guaranteed to have exactly one entry if they exist, unless there are
    // multiple duplicate (but guaranteed to be equal) entries for the
    // incoming edges.  This occurs when there are multiple edges from
    // OnlyPred to OnlySucc.
    //
    while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
      PN->replaceAllUsesWith(PN->getIncomingValue(0));
      BB->getInstList().pop_front();  // Delete the phi node...
    }

    // Delete the unconditional branch from the predecessor...
    OnlyPred->getInstList().pop_back();
      
    // Move all definitions in the successor to the predecessor...
    OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
                                     
    // Make all PHI nodes that referred to BB now refer to Pred as their
    // source...
    BB->replaceAllUsesWith(OnlyPred);

    std::string OldName = BB->getName();

    // Erase basic block from the function... 
    M->getBasicBlockList().erase(BB);

    // Inherit predecessors name if it exists...
    if (!OldName.empty() && !OnlyPred->hasName())
      OnlyPred->setName(OldName);
      
    return true;
  }

  // If there is a trivial two-entry PHI node in this basic block, and we can
  // eliminate it, do so now.
  if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
    if (PN->getNumIncomingValues() == 2) {
      // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
      // statement", which has a very simple dominance structure.  Basically, we
      // are trying to find the condition that is being branched on, which
      // subsequently causes this merge to happen.  We really want control
      // dependence information for this check, but simplifycfg can't keep it up
      // to date, and this catches most of the cases we care about anyway.
      //
      BasicBlock *IfTrue, *IfFalse;
      if (Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse)) {
        //std::cerr << "FOUND IF CONDITION!  " << *IfCond << "  T: "
        //       << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n";

        // Figure out where to insert instructions as necessary.
        BasicBlock::iterator AfterPHIIt = BB->begin();
        while (isa<PHINode>(AfterPHIIt)) ++AfterPHIIt;

        BasicBlock::iterator I = BB->begin();
        while (PHINode *PN = dyn_cast<PHINode>(I)) {
          ++I;

          // If we can eliminate this PHI by directly computing it based on the
          // condition, do so now.  We can't eliminate PHI nodes where the
          // incoming values are defined in the conditional parts of the branch,
          // so check for this.
          //
          if (DominatesMergePoint(PN->getIncomingValue(0), BB) &&
              DominatesMergePoint(PN->getIncomingValue(1), BB)) {
            Value *TrueVal =
              PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
            Value *FalseVal =
              PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);

            // FIXME: when we have a 'select' statement, we can be completely
            // generic and clean here and let the instcombine pass clean up
            // after us, by folding the select instructions away when possible.
            //
            if (TrueVal == FalseVal) {
              // Degenerate case...
              PN->replaceAllUsesWith(TrueVal);
              BB->getInstList().erase(PN);
              Changed = true;
            } else if (isa<ConstantBool>(TrueVal) &&
                       isa<ConstantBool>(FalseVal)) {
              if (TrueVal == ConstantBool::True) {
                // The PHI node produces the same thing as the condition.
                PN->replaceAllUsesWith(IfCond);
              } else {
                // The PHI node produces the inverse of the condition.  Insert a
                // "NOT" instruction, which is really a XOR.
                Value *InverseCond =
                  BinaryOperator::createNot(IfCond, IfCond->getName()+".inv",
                                            AfterPHIIt);
                PN->replaceAllUsesWith(InverseCond);
              }
              BB->getInstList().erase(PN);
              Changed = true;
            } else if (isa<ConstantInt>(TrueVal) && isa<ConstantInt>(FalseVal)){
              // If this is a PHI of two constant integers, we insert a cast of
              // the boolean to the integer type in question, giving us 0 or 1.
              // Then we multiply this by the difference of the two constants,
              // giving us 0 if false, and the difference if true.  We add this
              // result to the base constant, giving us our final value.  We
              // rely on the instruction combiner to eliminate many special
              // cases, like turning multiplies into shifts when possible.
              std::string Name = PN->getName(); PN->setName("");
              Value *TheCast = new CastInst(IfCond, TrueVal->getType(),
                                            Name, AfterPHIIt);
              Constant *TheDiff = ConstantExpr::get(Instruction::Sub,
                                                    cast<Constant>(TrueVal),
                                                    cast<Constant>(FalseVal));
              Value *V = TheCast;
              if (TheDiff != ConstantInt::get(TrueVal->getType(), 1))
                V = BinaryOperator::create(Instruction::Mul, TheCast,
                                           TheDiff, TheCast->getName()+".scale",
                                           AfterPHIIt);
              if (!cast<Constant>(FalseVal)->isNullValue())
                V = BinaryOperator::create(Instruction::Add, V, FalseVal,
                                           V->getName()+".offs", AfterPHIIt);
              PN->replaceAllUsesWith(V);
              BB->getInstList().erase(PN);
              Changed = true;
            } else if (isa<ConstantInt>(FalseVal) &&
                       cast<Constant>(FalseVal)->isNullValue()) {
              // If the false condition is an integral zero value, we can
              // compute the PHI by multiplying the condition by the other
              // value.
              std::string Name = PN->getName(); PN->setName("");
              Value *TheCast = new CastInst(IfCond, TrueVal->getType(),
                                            Name+".c", AfterPHIIt);
              Value *V = BinaryOperator::create(Instruction::Mul, TrueVal,
                                                TheCast, Name, AfterPHIIt);
              PN->replaceAllUsesWith(V);
              BB->getInstList().erase(PN);
              Changed = true;
            } else if (isa<ConstantInt>(TrueVal) &&
                       cast<Constant>(TrueVal)->isNullValue()) {
              // If the true condition is an integral zero value, we can compute
              // the PHI by multiplying the inverse condition by the other
              // value.
              std::string Name = PN->getName(); PN->setName("");
              Value *NotCond = BinaryOperator::createNot(IfCond, Name+".inv",
                                                         AfterPHIIt);
              Value *TheCast = new CastInst(NotCond, TrueVal->getType(),
                                            Name+".inv", AfterPHIIt);
              Value *V = BinaryOperator::create(Instruction::Mul, FalseVal,
                                                TheCast, Name, AfterPHIIt);
              PN->replaceAllUsesWith(V);
              BB->getInstList().erase(PN);
              Changed = true;
            }
          }
        }
      }
    }
  
  return Changed;
}