aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Utils/SimplifyCFG.cpp
blob: c89ec60d695c69fd4c36f9400047900ec4294081 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Peephole optimize the CFG.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "simplifycfg"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/Type.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include <algorithm>
#include <functional>
#include <set>
#include <map>
using namespace llvm;

/// SafeToMergeTerminators - Return true if it is safe to merge these two
/// terminator instructions together.
///
static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
  if (SI1 == SI2) return false;  // Can't merge with self!
  
  // It is not safe to merge these two switch instructions if they have a common
  // successor, and if that successor has a PHI node, and if *that* PHI node has
  // conflicting incoming values from the two switch blocks.
  BasicBlock *SI1BB = SI1->getParent();
  BasicBlock *SI2BB = SI2->getParent();
  SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
  
  for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
    if (SI1Succs.count(*I))
      for (BasicBlock::iterator BBI = (*I)->begin();
           isa<PHINode>(BBI); ++BBI) {
        PHINode *PN = cast<PHINode>(BBI);
        if (PN->getIncomingValueForBlock(SI1BB) !=
            PN->getIncomingValueForBlock(SI2BB))
          return false;
      }
        
  return true;
}

/// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
/// now be entries in it from the 'NewPred' block.  The values that will be
/// flowing into the PHI nodes will be the same as those coming in from
/// ExistPred, an existing predecessor of Succ.
static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
                                  BasicBlock *ExistPred) {
  assert(std::find(succ_begin(ExistPred), succ_end(ExistPred), Succ) !=
         succ_end(ExistPred) && "ExistPred is not a predecessor of Succ!");
  if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
  
  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
    PHINode *PN = cast<PHINode>(I);
    Value *V = PN->getIncomingValueForBlock(ExistPred);
    PN->addIncoming(V, NewPred);
  }
}

// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
// almost-empty BB ending in an unconditional branch to Succ, into succ.
//
// Assumption: Succ is the single successor for BB.
//
static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
  assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");

  // Check to see if one of the predecessors of BB is already a predecessor of
  // Succ.  If so, we cannot do the transformation if there are any PHI nodes
  // with incompatible values coming in from the two edges!
  //
  if (isa<PHINode>(Succ->front())) {
    SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
    for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
         PI != PE; ++PI)
      if (BBPreds.count(*PI)) {
        // Loop over all of the PHI nodes checking to see if there are
        // incompatible values coming in.
        for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
          PHINode *PN = cast<PHINode>(I);
          // Loop up the entries in the PHI node for BB and for *PI if the
          // values coming in are non-equal, we cannot merge these two blocks
          // (instead we should insert a conditional move or something, then
          // merge the blocks).
          if (PN->getIncomingValueForBlock(BB) !=
              PN->getIncomingValueForBlock(*PI))
            return false;  // Values are not equal...
        }
      }
  }
    
  // Finally, if BB has PHI nodes that are used by things other than the PHIs in
  // Succ and Succ has predecessors that are not Succ and not Pred, we cannot
  // fold these blocks, as we don't know whether BB dominates Succ or not to
  // update the PHI nodes correctly.
  if (!isa<PHINode>(BB->begin()) || Succ->getSinglePredecessor()) return true;

  // If the predecessors of Succ are only BB, handle it.
  bool IsSafe = true;
  for (pred_iterator PI = pred_begin(Succ), E = pred_end(Succ); PI != E; ++PI)
    if (*PI != BB) {
      IsSafe = false;
      break;
    }
  if (IsSafe) return true;
  
  // If the PHI nodes in BB are only used by instructions in Succ, we are ok if
  // BB and Succ have no common predecessors.
  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) {
    PHINode *PN = cast<PHINode>(I);
    for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E;
         ++UI)
      if (cast<Instruction>(*UI)->getParent() != Succ)
        return false;
  }
  
  // Scan the predecessor sets of BB and Succ, making sure there are no common
  // predecessors.  Common predecessors would cause us to build a phi node with
  // differing incoming values, which is not legal.
  SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
  for (pred_iterator PI = pred_begin(Succ), E = pred_end(Succ); PI != E; ++PI)
    if (BBPreds.count(*PI))
      return false;
    
  return true;
}

/// TryToSimplifyUncondBranchFromEmptyBlock - BB contains an unconditional
/// branch to Succ, and contains no instructions other than PHI nodes and the
/// branch.  If possible, eliminate BB.
static bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
                                                    BasicBlock *Succ) {
  // If our successor has PHI nodes, then we need to update them to include
  // entries for BB's predecessors, not for BB itself.  Be careful though,
  // if this transformation fails (returns true) then we cannot do this
  // transformation!
  //
  if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
  
  DOUT << "Killing Trivial BB: \n" << *BB;
  
  if (isa<PHINode>(Succ->begin())) {
    // If there is more than one pred of succ, and there are PHI nodes in
    // the successor, then we need to add incoming edges for the PHI nodes
    //
    const SmallVector<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
    
    // Loop over all of the PHI nodes in the successor of BB.
    for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
      PHINode *PN = cast<PHINode>(I);
      Value *OldVal = PN->removeIncomingValue(BB, false);
      assert(OldVal && "No entry in PHI for Pred BB!");
      
      // If this incoming value is one of the PHI nodes in BB, the new entries
      // in the PHI node are the entries from the old PHI.
      if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
        PHINode *OldValPN = cast<PHINode>(OldVal);
        for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
          PN->addIncoming(OldValPN->getIncomingValue(i),
                          OldValPN->getIncomingBlock(i));
      } else {
        // Add an incoming value for each of the new incoming values.
        for (unsigned i = 0, e = BBPreds.size(); i != e; ++i)
          PN->addIncoming(OldVal, BBPreds[i]);
      }
    }
  }
  
  if (isa<PHINode>(&BB->front())) {
    SmallVector<BasicBlock*, 16>
    OldSuccPreds(pred_begin(Succ), pred_end(Succ));
    
    // Move all PHI nodes in BB to Succ if they are alive, otherwise
    // delete them.
    while (PHINode *PN = dyn_cast<PHINode>(&BB->front()))
      if (PN->use_empty()) {
        // Just remove the dead phi.  This happens if Succ's PHIs were the only
        // users of the PHI nodes.
        PN->eraseFromParent();
      } else {
        // The instruction is alive, so this means that Succ must have
        // *ONLY* had BB as a predecessor, and the PHI node is still valid
        // now.  Simply move it into Succ, because we know that BB
        // strictly dominated Succ.
        Succ->getInstList().splice(Succ->begin(),
                                   BB->getInstList(), BB->begin());
        
        // We need to add new entries for the PHI node to account for
        // predecessors of Succ that the PHI node does not take into
        // account.  At this point, since we know that BB dominated succ,
        // this means that we should any newly added incoming edges should
        // use the PHI node as the value for these edges, because they are
        // loop back edges.
        for (unsigned i = 0, e = OldSuccPreds.size(); i != e; ++i)
          if (OldSuccPreds[i] != BB)
            PN->addIncoming(PN, OldSuccPreds[i]);
      }
  }
    
  // Everything that jumped to BB now goes to Succ.
  BB->replaceAllUsesWith(Succ);
  if (!Succ->hasName()) Succ->takeName(BB);
  BB->eraseFromParent();              // Delete the old basic block.
  return true;
}

/// GetIfCondition - Given a basic block (BB) with two predecessors (and
/// presumably PHI nodes in it), check to see if the merge at this block is due
/// to an "if condition".  If so, return the boolean condition that determines
/// which entry into BB will be taken.  Also, return by references the block
/// that will be entered from if the condition is true, and the block that will
/// be entered if the condition is false.
///
///
static Value *GetIfCondition(BasicBlock *BB,
                             BasicBlock *&IfTrue, BasicBlock *&IfFalse) {
  assert(std::distance(pred_begin(BB), pred_end(BB)) == 2 &&
         "Function can only handle blocks with 2 predecessors!");
  BasicBlock *Pred1 = *pred_begin(BB);
  BasicBlock *Pred2 = *++pred_begin(BB);

  // We can only handle branches.  Other control flow will be lowered to
  // branches if possible anyway.
  if (!isa<BranchInst>(Pred1->getTerminator()) ||
      !isa<BranchInst>(Pred2->getTerminator()))
    return 0;
  BranchInst *Pred1Br = cast<BranchInst>(Pred1->getTerminator());
  BranchInst *Pred2Br = cast<BranchInst>(Pred2->getTerminator());

  // Eliminate code duplication by ensuring that Pred1Br is conditional if
  // either are.
  if (Pred2Br->isConditional()) {
    // If both branches are conditional, we don't have an "if statement".  In
    // reality, we could transform this case, but since the condition will be
    // required anyway, we stand no chance of eliminating it, so the xform is
    // probably not profitable.
    if (Pred1Br->isConditional())
      return 0;

    std::swap(Pred1, Pred2);
    std::swap(Pred1Br, Pred2Br);
  }

  if (Pred1Br->isConditional()) {
    // If we found a conditional branch predecessor, make sure that it branches
    // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
    if (Pred1Br->getSuccessor(0) == BB &&
        Pred1Br->getSuccessor(1) == Pred2) {
      IfTrue = Pred1;
      IfFalse = Pred2;
    } else if (Pred1Br->getSuccessor(0) == Pred2 &&
               Pred1Br->getSuccessor(1) == BB) {
      IfTrue = Pred2;
      IfFalse = Pred1;
    } else {
      // We know that one arm of the conditional goes to BB, so the other must
      // go somewhere unrelated, and this must not be an "if statement".
      return 0;
    }

    // The only thing we have to watch out for here is to make sure that Pred2
    // doesn't have incoming edges from other blocks.  If it does, the condition
    // doesn't dominate BB.
    if (++pred_begin(Pred2) != pred_end(Pred2))
      return 0;

    return Pred1Br->getCondition();
  }

  // Ok, if we got here, both predecessors end with an unconditional branch to
  // BB.  Don't panic!  If both blocks only have a single (identical)
  // predecessor, and THAT is a conditional branch, then we're all ok!
  if (pred_begin(Pred1) == pred_end(Pred1) ||
      ++pred_begin(Pred1) != pred_end(Pred1) ||
      pred_begin(Pred2) == pred_end(Pred2) ||
      ++pred_begin(Pred2) != pred_end(Pred2) ||
      *pred_begin(Pred1) != *pred_begin(Pred2))
    return 0;

  // Otherwise, if this is a conditional branch, then we can use it!
  BasicBlock *CommonPred = *pred_begin(Pred1);
  if (BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator())) {
    assert(BI->isConditional() && "Two successors but not conditional?");
    if (BI->getSuccessor(0) == Pred1) {
      IfTrue = Pred1;
      IfFalse = Pred2;
    } else {
      IfTrue = Pred2;
      IfFalse = Pred1;
    }
    return BI->getCondition();
  }
  return 0;
}


// If we have a merge point of an "if condition" as accepted above, return true
// if the specified value dominates the block.  We don't handle the true
// generality of domination here, just a special case which works well enough
// for us.
//
// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
// see if V (which must be an instruction) is cheap to compute and is
// non-trapping.  If both are true, the instruction is inserted into the set and
// true is returned.
static bool DominatesMergePoint(Value *V, BasicBlock *BB,
                                std::set<Instruction*> *AggressiveInsts) {
  Instruction *I = dyn_cast<Instruction>(V);
  if (!I) {
    // Non-instructions all dominate instructions, but not all constantexprs
    // can be executed unconditionally.
    if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
      if (C->canTrap())
        return false;
    return true;
  }
  BasicBlock *PBB = I->getParent();

  // We don't want to allow weird loops that might have the "if condition" in
  // the bottom of this block.
  if (PBB == BB) return false;

  // If this instruction is defined in a block that contains an unconditional
  // branch to BB, then it must be in the 'conditional' part of the "if
  // statement".
  if (BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()))
    if (BI->isUnconditional() && BI->getSuccessor(0) == BB) {
      if (!AggressiveInsts) return false;
      // Okay, it looks like the instruction IS in the "condition".  Check to
      // see if its a cheap instruction to unconditionally compute, and if it
      // only uses stuff defined outside of the condition.  If so, hoist it out.
      switch (I->getOpcode()) {
      default: return false;  // Cannot hoist this out safely.
      case Instruction::Load:
        // We can hoist loads that are non-volatile and obviously cannot trap.
        if (cast<LoadInst>(I)->isVolatile())
          return false;
        if (!isa<AllocaInst>(I->getOperand(0)) &&
            !isa<Constant>(I->getOperand(0)))
          return false;

        // Finally, we have to check to make sure there are no instructions
        // before the load in its basic block, as we are going to hoist the loop
        // out to its predecessor.
        if (PBB->begin() != BasicBlock::iterator(I))
          return false;
        break;
      case Instruction::Add:
      case Instruction::Sub:
      case Instruction::And:
      case Instruction::Or:
      case Instruction::Xor:
      case Instruction::Shl:
      case Instruction::LShr:
      case Instruction::AShr:
      case Instruction::ICmp:
      case Instruction::FCmp:
        if (I->getOperand(0)->getType()->isFPOrFPVector())
          return false;  // FP arithmetic might trap.
        break;   // These are all cheap and non-trapping instructions.
      }

      // Okay, we can only really hoist these out if their operands are not
      // defined in the conditional region.
      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
        if (!DominatesMergePoint(I->getOperand(i), BB, 0))
          return false;
      // Okay, it's safe to do this!  Remember this instruction.
      AggressiveInsts->insert(I);
    }

  return true;
}

// GatherConstantSetEQs - Given a potentially 'or'd together collection of 
// icmp_eq instructions that compare a value against a constant, return the 
// value being compared, and stick the constant into the Values vector.
static Value *GatherConstantSetEQs(Value *V, std::vector<ConstantInt*> &Values){
  if (Instruction *Inst = dyn_cast<Instruction>(V))
    if (Inst->getOpcode() == Instruction::ICmp &&
        cast<ICmpInst>(Inst)->getPredicate() == ICmpInst::ICMP_EQ) {
      if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
        Values.push_back(C);
        return Inst->getOperand(0);
      } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
        Values.push_back(C);
        return Inst->getOperand(1);
      }
    } else if (Inst->getOpcode() == Instruction::Or) {
      if (Value *LHS = GatherConstantSetEQs(Inst->getOperand(0), Values))
        if (Value *RHS = GatherConstantSetEQs(Inst->getOperand(1), Values))
          if (LHS == RHS)
            return LHS;
    }
  return 0;
}

// GatherConstantSetNEs - Given a potentially 'and'd together collection of
// setne instructions that compare a value against a constant, return the value
// being compared, and stick the constant into the Values vector.
static Value *GatherConstantSetNEs(Value *V, std::vector<ConstantInt*> &Values){
  if (Instruction *Inst = dyn_cast<Instruction>(V))
    if (Inst->getOpcode() == Instruction::ICmp &&
               cast<ICmpInst>(Inst)->getPredicate() == ICmpInst::ICMP_NE) {
      if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
        Values.push_back(C);
        return Inst->getOperand(0);
      } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
        Values.push_back(C);
        return Inst->getOperand(1);
      }
    } else if (Inst->getOpcode() == Instruction::And) {
      if (Value *LHS = GatherConstantSetNEs(Inst->getOperand(0), Values))
        if (Value *RHS = GatherConstantSetNEs(Inst->getOperand(1), Values))
          if (LHS == RHS)
            return LHS;
    }
  return 0;
}



/// GatherValueComparisons - If the specified Cond is an 'and' or 'or' of a
/// bunch of comparisons of one value against constants, return the value and
/// the constants being compared.
static bool GatherValueComparisons(Instruction *Cond, Value *&CompVal,
                                   std::vector<ConstantInt*> &Values) {
  if (Cond->getOpcode() == Instruction::Or) {
    CompVal = GatherConstantSetEQs(Cond, Values);

    // Return true to indicate that the condition is true if the CompVal is
    // equal to one of the constants.
    return true;
  } else if (Cond->getOpcode() == Instruction::And) {
    CompVal = GatherConstantSetNEs(Cond, Values);

    // Return false to indicate that the condition is false if the CompVal is
    // equal to one of the constants.
    return false;
  }
  return false;
}

/// ErasePossiblyDeadInstructionTree - If the specified instruction is dead and
/// has no side effects, nuke it.  If it uses any instructions that become dead
/// because the instruction is now gone, nuke them too.
static void ErasePossiblyDeadInstructionTree(Instruction *I) {
  if (!isInstructionTriviallyDead(I)) return;
  
  SmallVector<Instruction*, 16> InstrsToInspect;
  InstrsToInspect.push_back(I);

  while (!InstrsToInspect.empty()) {
    I = InstrsToInspect.back();
    InstrsToInspect.pop_back();

    if (!isInstructionTriviallyDead(I)) continue;

    // If I is in the work list multiple times, remove previous instances.
    for (unsigned i = 0, e = InstrsToInspect.size(); i != e; ++i)
      if (InstrsToInspect[i] == I) {
        InstrsToInspect.erase(InstrsToInspect.begin()+i);
        --i, --e;
      }

    // Add operands of dead instruction to worklist.
    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
      if (Instruction *OpI = dyn_cast<Instruction>(I->getOperand(i)))
        InstrsToInspect.push_back(OpI);

    // Remove dead instruction.
    I->eraseFromParent();
  }
}

// isValueEqualityComparison - Return true if the specified terminator checks to
// see if a value is equal to constant integer value.
static Value *isValueEqualityComparison(TerminatorInst *TI) {
  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    // Do not permit merging of large switch instructions into their
    // predecessors unless there is only one predecessor.
    if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
                                               pred_end(SI->getParent())) > 128)
      return 0;

    return SI->getCondition();
  }
  if (BranchInst *BI = dyn_cast<BranchInst>(TI))
    if (BI->isConditional() && BI->getCondition()->hasOneUse())
      if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
        if ((ICI->getPredicate() == ICmpInst::ICMP_EQ ||
             ICI->getPredicate() == ICmpInst::ICMP_NE) &&
            isa<ConstantInt>(ICI->getOperand(1)))
          return ICI->getOperand(0);
  return 0;
}

// Given a value comparison instruction, decode all of the 'cases' that it
// represents and return the 'default' block.
static BasicBlock *
GetValueEqualityComparisonCases(TerminatorInst *TI,
                                std::vector<std::pair<ConstantInt*,
                                                      BasicBlock*> > &Cases) {
  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    Cases.reserve(SI->getNumCases());
    for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
      Cases.push_back(std::make_pair(SI->getCaseValue(i), SI->getSuccessor(i)));
    return SI->getDefaultDest();
  }

  BranchInst *BI = cast<BranchInst>(TI);
  ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
  Cases.push_back(std::make_pair(cast<ConstantInt>(ICI->getOperand(1)),
                                 BI->getSuccessor(ICI->getPredicate() ==
                                                  ICmpInst::ICMP_NE)));
  return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
}


// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
// in the list that match the specified block.
static void EliminateBlockCases(BasicBlock *BB,
               std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases) {
  for (unsigned i = 0, e = Cases.size(); i != e; ++i)
    if (Cases[i].second == BB) {
      Cases.erase(Cases.begin()+i);
      --i; --e;
    }
}

// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
// well.
static bool
ValuesOverlap(std::vector<std::pair<ConstantInt*, BasicBlock*> > &C1,
              std::vector<std::pair<ConstantInt*, BasicBlock*> > &C2) {
  std::vector<std::pair<ConstantInt*, BasicBlock*> > *V1 = &C1, *V2 = &C2;

  // Make V1 be smaller than V2.
  if (V1->size() > V2->size())
    std::swap(V1, V2);

  if (V1->size() == 0) return false;
  if (V1->size() == 1) {
    // Just scan V2.
    ConstantInt *TheVal = (*V1)[0].first;
    for (unsigned i = 0, e = V2->size(); i != e; ++i)
      if (TheVal == (*V2)[i].first)
        return true;
  }

  // Otherwise, just sort both lists and compare element by element.
  std::sort(V1->begin(), V1->end());
  std::sort(V2->begin(), V2->end());
  unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
  while (i1 != e1 && i2 != e2) {
    if ((*V1)[i1].first == (*V2)[i2].first)
      return true;
    if ((*V1)[i1].first < (*V2)[i2].first)
      ++i1;
    else
      ++i2;
  }
  return false;
}

// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
// terminator instruction and its block is known to only have a single
// predecessor block, check to see if that predecessor is also a value
// comparison with the same value, and if that comparison determines the outcome
// of this comparison.  If so, simplify TI.  This does a very limited form of
// jump threading.
static bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
                                                          BasicBlock *Pred) {
  Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
  if (!PredVal) return false;  // Not a value comparison in predecessor.

  Value *ThisVal = isValueEqualityComparison(TI);
  assert(ThisVal && "This isn't a value comparison!!");
  if (ThisVal != PredVal) return false;  // Different predicates.

  // Find out information about when control will move from Pred to TI's block.
  std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
  BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
                                                        PredCases);
  EliminateBlockCases(PredDef, PredCases);  // Remove default from cases.

  // Find information about how control leaves this block.
  std::vector<std::pair<ConstantInt*, BasicBlock*> > ThisCases;
  BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
  EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases.

  // If TI's block is the default block from Pred's comparison, potentially
  // simplify TI based on this knowledge.
  if (PredDef == TI->getParent()) {
    // If we are here, we know that the value is none of those cases listed in
    // PredCases.  If there are any cases in ThisCases that are in PredCases, we
    // can simplify TI.
    if (ValuesOverlap(PredCases, ThisCases)) {
      if (BranchInst *BTI = dyn_cast<BranchInst>(TI)) {
        // Okay, one of the successors of this condbr is dead.  Convert it to a
        // uncond br.
        assert(ThisCases.size() == 1 && "Branch can only have one case!");
        Value *Cond = BTI->getCondition();
        // Insert the new branch.
        Instruction *NI = new BranchInst(ThisDef, TI);

        // Remove PHI node entries for the dead edge.
        ThisCases[0].second->removePredecessor(TI->getParent());

        DOUT << "Threading pred instr: " << *Pred->getTerminator()
             << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n";

        TI->eraseFromParent();   // Nuke the old one.
        // If condition is now dead, nuke it.
        if (Instruction *CondI = dyn_cast<Instruction>(Cond))
          ErasePossiblyDeadInstructionTree(CondI);
        return true;

      } else {
        SwitchInst *SI = cast<SwitchInst>(TI);
        // Okay, TI has cases that are statically dead, prune them away.
        SmallPtrSet<Constant*, 16> DeadCases;
        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
          DeadCases.insert(PredCases[i].first);

        DOUT << "Threading pred instr: " << *Pred->getTerminator()
             << "Through successor TI: " << *TI;

        for (unsigned i = SI->getNumCases()-1; i != 0; --i)
          if (DeadCases.count(SI->getCaseValue(i))) {
            SI->getSuccessor(i)->removePredecessor(TI->getParent());
            SI->removeCase(i);
          }

        DOUT << "Leaving: " << *TI << "\n";
        return true;
      }
    }

  } else {
    // Otherwise, TI's block must correspond to some matched value.  Find out
    // which value (or set of values) this is.
    ConstantInt *TIV = 0;
    BasicBlock *TIBB = TI->getParent();
    for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
      if (PredCases[i].second == TIBB)
        if (TIV == 0)
          TIV = PredCases[i].first;
        else
          return false;  // Cannot handle multiple values coming to this block.
    assert(TIV && "No edge from pred to succ?");

    // Okay, we found the one constant that our value can be if we get into TI's
    // BB.  Find out which successor will unconditionally be branched to.
    BasicBlock *TheRealDest = 0;
    for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
      if (ThisCases[i].first == TIV) {
        TheRealDest = ThisCases[i].second;
        break;
      }

    // If not handled by any explicit cases, it is handled by the default case.
    if (TheRealDest == 0) TheRealDest = ThisDef;

    // Remove PHI node entries for dead edges.
    BasicBlock *CheckEdge = TheRealDest;
    for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
      if (*SI != CheckEdge)
        (*SI)->removePredecessor(TIBB);
      else
        CheckEdge = 0;

    // Insert the new branch.
    Instruction *NI = new BranchInst(TheRealDest, TI);

    DOUT << "Threading pred instr: " << *Pred->getTerminator()
         << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n";
    Instruction *Cond = 0;
    if (BranchInst *BI = dyn_cast<BranchInst>(TI))
      Cond = dyn_cast<Instruction>(BI->getCondition());
    TI->eraseFromParent();   // Nuke the old one.

    if (Cond) ErasePossiblyDeadInstructionTree(Cond);
    return true;
  }
  return false;
}

// FoldValueComparisonIntoPredecessors - The specified terminator is a value
// equality comparison instruction (either a switch or a branch on "X == c").
// See if any of the predecessors of the terminator block are value comparisons
// on the same value.  If so, and if safe to do so, fold them together.
static bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI) {
  BasicBlock *BB = TI->getParent();
  Value *CV = isValueEqualityComparison(TI);  // CondVal
  assert(CV && "Not a comparison?");
  bool Changed = false;

  SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
  while (!Preds.empty()) {
    BasicBlock *Pred = Preds.back();
    Preds.pop_back();

    // See if the predecessor is a comparison with the same value.
    TerminatorInst *PTI = Pred->getTerminator();
    Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal

    if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
      // Figure out which 'cases' to copy from SI to PSI.
      std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases;
      BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);

      std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
      BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);

      // Based on whether the default edge from PTI goes to BB or not, fill in
      // PredCases and PredDefault with the new switch cases we would like to
      // build.
      SmallVector<BasicBlock*, 8> NewSuccessors;

      if (PredDefault == BB) {
        // If this is the default destination from PTI, only the edges in TI
        // that don't occur in PTI, or that branch to BB will be activated.
        std::set<ConstantInt*> PTIHandled;
        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
          if (PredCases[i].second != BB)
            PTIHandled.insert(PredCases[i].first);
          else {
            // The default destination is BB, we don't need explicit targets.
            std::swap(PredCases[i], PredCases.back());
            PredCases.pop_back();
            --i; --e;
          }

        // Reconstruct the new switch statement we will be building.
        if (PredDefault != BBDefault) {
          PredDefault->removePredecessor(Pred);
          PredDefault = BBDefault;
          NewSuccessors.push_back(BBDefault);
        }
        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
          if (!PTIHandled.count(BBCases[i].first) &&
              BBCases[i].second != BBDefault) {
            PredCases.push_back(BBCases[i]);
            NewSuccessors.push_back(BBCases[i].second);
          }

      } else {
        // If this is not the default destination from PSI, only the edges
        // in SI that occur in PSI with a destination of BB will be
        // activated.
        std::set<ConstantInt*> PTIHandled;
        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
          if (PredCases[i].second == BB) {
            PTIHandled.insert(PredCases[i].first);
            std::swap(PredCases[i], PredCases.back());
            PredCases.pop_back();
            --i; --e;
          }

        // Okay, now we know which constants were sent to BB from the
        // predecessor.  Figure out where they will all go now.
        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
          if (PTIHandled.count(BBCases[i].first)) {
            // If this is one we are capable of getting...
            PredCases.push_back(BBCases[i]);
            NewSuccessors.push_back(BBCases[i].second);
            PTIHandled.erase(BBCases[i].first);// This constant is taken care of
          }

        // If there are any constants vectored to BB that TI doesn't handle,
        // they must go to the default destination of TI.
        for (std::set<ConstantInt*>::iterator I = PTIHandled.begin(),
               E = PTIHandled.end(); I != E; ++I) {
          PredCases.push_back(std::make_pair(*I, BBDefault));
          NewSuccessors.push_back(BBDefault);
        }
      }

      // Okay, at this point, we know which new successor Pred will get.  Make
      // sure we update the number of entries in the PHI nodes for these
      // successors.
      for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
        AddPredecessorToBlock(NewSuccessors[i], Pred, BB);

      // Now that the successors are updated, create the new Switch instruction.
      SwitchInst *NewSI = new SwitchInst(CV, PredDefault, PredCases.size(),PTI);
      for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
        NewSI->addCase(PredCases[i].first, PredCases[i].second);

      Instruction *DeadCond = 0;
      if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
        // If PTI is a branch, remember the condition.
        DeadCond = dyn_cast<Instruction>(BI->getCondition());
      Pred->getInstList().erase(PTI);

      // If the condition is dead now, remove the instruction tree.
      if (DeadCond) ErasePossiblyDeadInstructionTree(DeadCond);

      // Okay, last check.  If BB is still a successor of PSI, then we must
      // have an infinite loop case.  If so, add an infinitely looping block
      // to handle the case to preserve the behavior of the code.
      BasicBlock *InfLoopBlock = 0;
      for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
        if (NewSI->getSuccessor(i) == BB) {
          if (InfLoopBlock == 0) {
            // Insert it at the end of the loop, because it's either code,
            // or it won't matter if it's hot. :)
            InfLoopBlock = new BasicBlock("infloop", BB->getParent());
            new BranchInst(InfLoopBlock, InfLoopBlock);
          }
          NewSI->setSuccessor(i, InfLoopBlock);
        }

      Changed = true;
    }
  }
  return Changed;
}

/// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
/// BB2, hoist any common code in the two blocks up into the branch block.  The
/// caller of this function guarantees that BI's block dominates BB1 and BB2.
static bool HoistThenElseCodeToIf(BranchInst *BI) {
  // This does very trivial matching, with limited scanning, to find identical
  // instructions in the two blocks.  In particular, we don't want to get into
  // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
  // such, we currently just scan for obviously identical instructions in an
  // identical order.
  BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
  BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination

  Instruction *I1 = BB1->begin(), *I2 = BB2->begin();
  if (I1->getOpcode() != I2->getOpcode() || isa<PHINode>(I1) || 
      isa<InvokeInst>(I1) || !I1->isIdenticalTo(I2))
    return false;

  // If we get here, we can hoist at least one instruction.
  BasicBlock *BIParent = BI->getParent();

  do {
    // If we are hoisting the terminator instruction, don't move one (making a
    // broken BB), instead clone it, and remove BI.
    if (isa<TerminatorInst>(I1))
      goto HoistTerminator;

    // For a normal instruction, we just move one to right before the branch,
    // then replace all uses of the other with the first.  Finally, we remove
    // the now redundant second instruction.
    BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
    if (!I2->use_empty())
      I2->replaceAllUsesWith(I1);
    BB2->getInstList().erase(I2);

    I1 = BB1->begin();
    I2 = BB2->begin();
  } while (I1->getOpcode() == I2->getOpcode() && I1->isIdenticalTo(I2));

  return true;

HoistTerminator:
  // Okay, it is safe to hoist the terminator.
  Instruction *NT = I1->clone();
  BIParent->getInstList().insert(BI, NT);
  if (NT->getType() != Type::VoidTy) {
    I1->replaceAllUsesWith(NT);
    I2->replaceAllUsesWith(NT);
    NT->takeName(I1);
  }

  // Hoisting one of the terminators from our successor is a great thing.
  // Unfortunately, the successors of the if/else blocks may have PHI nodes in
  // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
  // nodes, so we insert select instruction to compute the final result.
  std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
    PHINode *PN;
    for (BasicBlock::iterator BBI = SI->begin();
         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
      Value *BB1V = PN->getIncomingValueForBlock(BB1);
      Value *BB2V = PN->getIncomingValueForBlock(BB2);
      if (BB1V != BB2V) {
        // These values do not agree.  Insert a select instruction before NT
        // that determines the right value.
        SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
        if (SI == 0)
          SI = new SelectInst(BI->getCondition(), BB1V, BB2V,
                              BB1V->getName()+"."+BB2V->getName(), NT);
        // Make the PHI node use the select for all incoming values for BB1/BB2
        for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
          if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
            PN->setIncomingValue(i, SI);
      }
    }
  }

  // Update any PHI nodes in our new successors.
  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
    AddPredecessorToBlock(*SI, BIParent, BB1);

  BI->eraseFromParent();
  return true;
}

/// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
/// across this block.
static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
  unsigned Size = 0;
  
  // If this basic block contains anything other than a PHI (which controls the
  // branch) and branch itself, bail out.  FIXME: improve this in the future.
  for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI, ++Size) {
    if (Size > 10) return false;  // Don't clone large BB's.
    
    // We can only support instructions that are do not define values that are
    // live outside of the current basic block.
    for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
         UI != E; ++UI) {
      Instruction *U = cast<Instruction>(*UI);
      if (U->getParent() != BB || isa<PHINode>(U)) return false;
    }
    
    // Looks ok, continue checking.
  }

  return true;
}

/// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
/// that is defined in the same block as the branch and if any PHI entries are
/// constants, thread edges corresponding to that entry to be branches to their
/// ultimate destination.
static bool FoldCondBranchOnPHI(BranchInst *BI) {
  BasicBlock *BB = BI->getParent();
  PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
  // NOTE: we currently cannot transform this case if the PHI node is used
  // outside of the block.
  if (!PN || PN->getParent() != BB || !PN->hasOneUse())
    return false;
  
  // Degenerate case of a single entry PHI.
  if (PN->getNumIncomingValues() == 1) {
    if (PN->getIncomingValue(0) != PN)
      PN->replaceAllUsesWith(PN->getIncomingValue(0));
    else
      PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
    PN->eraseFromParent();
    return true;    
  }

  // Now we know that this block has multiple preds and two succs.
  if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
  
  // Okay, this is a simple enough basic block.  See if any phi values are
  // constants.
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    ConstantInt *CB;
    if ((CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i))) &&
        CB->getType() == Type::Int1Ty) {
      // Okay, we now know that all edges from PredBB should be revectored to
      // branch to RealDest.
      BasicBlock *PredBB = PN->getIncomingBlock(i);
      BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
      
      if (RealDest == BB) continue;  // Skip self loops.
      
      // The dest block might have PHI nodes, other predecessors and other
      // difficult cases.  Instead of being smart about this, just insert a new
      // block that jumps to the destination block, effectively splitting
      // the edge we are about to create.
      BasicBlock *EdgeBB = new BasicBlock(RealDest->getName()+".critedge",
                                          RealDest->getParent(), RealDest);
      new BranchInst(RealDest, EdgeBB);
      PHINode *PN;
      for (BasicBlock::iterator BBI = RealDest->begin();
           (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
        Value *V = PN->getIncomingValueForBlock(BB);
        PN->addIncoming(V, EdgeBB);
      }

      // BB may have instructions that are being threaded over.  Clone these
      // instructions into EdgeBB.  We know that there will be no uses of the
      // cloned instructions outside of EdgeBB.
      BasicBlock::iterator InsertPt = EdgeBB->begin();
      std::map<Value*, Value*> TranslateMap;  // Track translated values.
      for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
        if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
          TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
        } else {
          // Clone the instruction.
          Instruction *N = BBI->clone();
          if (BBI->hasName()) N->setName(BBI->getName()+".c");
          
          // Update operands due to translation.
          for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
            std::map<Value*, Value*>::iterator PI =
              TranslateMap.find(N->getOperand(i));
            if (PI != TranslateMap.end())
              N->setOperand(i, PI->second);
          }
          
          // Check for trivial simplification.
          if (Constant *C = ConstantFoldInstruction(N)) {
            TranslateMap[BBI] = C;
            delete N;   // Constant folded away, don't need actual inst
          } else {
            // Insert the new instruction into its new home.
            EdgeBB->getInstList().insert(InsertPt, N);
            if (!BBI->use_empty())
              TranslateMap[BBI] = N;
          }
        }
      }

      // Loop over all of the edges from PredBB to BB, changing them to branch
      // to EdgeBB instead.
      TerminatorInst *PredBBTI = PredBB->getTerminator();
      for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
        if (PredBBTI->getSuccessor(i) == BB) {
          BB->removePredecessor(PredBB);
          PredBBTI->setSuccessor(i, EdgeBB);
        }
      
      // Recurse, simplifying any other constants.
      return FoldCondBranchOnPHI(BI) | true;
    }
  }

  return false;
}

/// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
/// PHI node, see if we can eliminate it.
static bool FoldTwoEntryPHINode(PHINode *PN) {
  // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
  // statement", which has a very simple dominance structure.  Basically, we
  // are trying to find the condition that is being branched on, which
  // subsequently causes this merge to happen.  We really want control
  // dependence information for this check, but simplifycfg can't keep it up
  // to date, and this catches most of the cases we care about anyway.
  //
  BasicBlock *BB = PN->getParent();
  BasicBlock *IfTrue, *IfFalse;
  Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
  if (!IfCond) return false;
  
  // Okay, we found that we can merge this two-entry phi node into a select.
  // Doing so would require us to fold *all* two entry phi nodes in this block.
  // At some point this becomes non-profitable (particularly if the target
  // doesn't support cmov's).  Only do this transformation if there are two or
  // fewer PHI nodes in this block.
  unsigned NumPhis = 0;
  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
    if (NumPhis > 2)
      return false;
  
  DOUT << "FOUND IF CONDITION!  " << *IfCond << "  T: "
       << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n";
  
  // Loop over the PHI's seeing if we can promote them all to select
  // instructions.  While we are at it, keep track of the instructions
  // that need to be moved to the dominating block.
  std::set<Instruction*> AggressiveInsts;
  
  BasicBlock::iterator AfterPHIIt = BB->begin();
  while (isa<PHINode>(AfterPHIIt)) {
    PHINode *PN = cast<PHINode>(AfterPHIIt++);
    if (PN->getIncomingValue(0) == PN->getIncomingValue(1)) {
      if (PN->getIncomingValue(0) != PN)
        PN->replaceAllUsesWith(PN->getIncomingValue(0));
      else
        PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
    } else if (!DominatesMergePoint(PN->getIncomingValue(0), BB,
                                    &AggressiveInsts) ||
               !DominatesMergePoint(PN->getIncomingValue(1), BB,
                                    &AggressiveInsts)) {
      return false;
    }
  }
  
  // If we all PHI nodes are promotable, check to make sure that all
  // instructions in the predecessor blocks can be promoted as well.  If
  // not, we won't be able to get rid of the control flow, so it's not
  // worth promoting to select instructions.
  BasicBlock *DomBlock = 0, *IfBlock1 = 0, *IfBlock2 = 0;
  PN = cast<PHINode>(BB->begin());
  BasicBlock *Pred = PN->getIncomingBlock(0);
  if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
    IfBlock1 = Pred;
    DomBlock = *pred_begin(Pred);
    for (BasicBlock::iterator I = Pred->begin();
         !isa<TerminatorInst>(I); ++I)
      if (!AggressiveInsts.count(I)) {
        // This is not an aggressive instruction that we can promote.
        // Because of this, we won't be able to get rid of the control
        // flow, so the xform is not worth it.
        return false;
      }
  }
    
  Pred = PN->getIncomingBlock(1);
  if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
    IfBlock2 = Pred;
    DomBlock = *pred_begin(Pred);
    for (BasicBlock::iterator I = Pred->begin();
         !isa<TerminatorInst>(I); ++I)
      if (!AggressiveInsts.count(I)) {
        // This is not an aggressive instruction that we can promote.
        // Because of this, we won't be able to get rid of the control
        // flow, so the xform is not worth it.
        return false;
      }
  }
      
  // If we can still promote the PHI nodes after this gauntlet of tests,
  // do all of the PHI's now.

  // Move all 'aggressive' instructions, which are defined in the
  // conditional parts of the if's up to the dominating block.
  if (IfBlock1) {
    DomBlock->getInstList().splice(DomBlock->getTerminator(),
                                   IfBlock1->getInstList(),
                                   IfBlock1->begin(),
                                   IfBlock1->getTerminator());
  }
  if (IfBlock2) {
    DomBlock->getInstList().splice(DomBlock->getTerminator(),
                                   IfBlock2->getInstList(),
                                   IfBlock2->begin(),
                                   IfBlock2->getTerminator());
  }
  
  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
    // Change the PHI node into a select instruction.
    Value *TrueVal =
      PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
    Value *FalseVal =
      PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
    
    Value *NV = new SelectInst(IfCond, TrueVal, FalseVal, "", AfterPHIIt);
    PN->replaceAllUsesWith(NV);
    NV->takeName(PN);
    
    BB->getInstList().erase(PN);
  }
  return true;
}

namespace {
  /// ConstantIntOrdering - This class implements a stable ordering of constant
  /// integers that does not depend on their address.  This is important for
  /// applications that sort ConstantInt's to ensure uniqueness.
  struct ConstantIntOrdering {
    bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
      return LHS->getValue().ult(RHS->getValue());
    }
  };
}

// SimplifyCFG - This function is used to do simplification of a CFG.  For
// example, it adjusts branches to branches to eliminate the extra hop, it
// eliminates unreachable basic blocks, and does other "peephole" optimization
// of the CFG.  It returns true if a modification was made.
//
// WARNING:  The entry node of a function may not be simplified.
//
bool llvm::SimplifyCFG(BasicBlock *BB) {
  bool Changed = false;
  Function *M = BB->getParent();

  assert(BB && BB->getParent() && "Block not embedded in function!");
  assert(BB->getTerminator() && "Degenerate basic block encountered!");
  assert(&BB->getParent()->getEntryBlock() != BB &&
         "Can't Simplify entry block!");

  // Remove basic blocks that have no predecessors... which are unreachable.
  if (pred_begin(BB) == pred_end(BB) ||
      *pred_begin(BB) == BB && ++pred_begin(BB) == pred_end(BB)) {
    DOUT << "Removing BB: \n" << *BB;

    // Loop through all of our successors and make sure they know that one
    // of their predecessors is going away.
    for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
      SI->removePredecessor(BB);

    while (!BB->empty()) {
      Instruction &I = BB->back();
      // If this instruction is used, replace uses with an arbitrary
      // value.  Because control flow can't get here, we don't care
      // what we replace the value with.  Note that since this block is
      // unreachable, and all values contained within it must dominate their
      // uses, that all uses will eventually be removed.
      if (!I.use_empty())
        // Make all users of this instruction use undef instead
        I.replaceAllUsesWith(UndefValue::get(I.getType()));

      // Remove the instruction from the basic block
      BB->getInstList().pop_back();
    }
    M->getBasicBlockList().erase(BB);
    return true;
  }

  // Check to see if we can constant propagate this terminator instruction
  // away...
  Changed |= ConstantFoldTerminator(BB);

  // If this is a returning block with only PHI nodes in it, fold the return
  // instruction into any unconditional branch predecessors.
  //
  // If any predecessor is a conditional branch that just selects among
  // different return values, fold the replace the branch/return with a select
  // and return.
  if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
    BasicBlock::iterator BBI = BB->getTerminator();
    if (BBI == BB->begin() || isa<PHINode>(--BBI)) {
      // Find predecessors that end with branches.
      SmallVector<BasicBlock*, 8> UncondBranchPreds;
      SmallVector<BranchInst*, 8> CondBranchPreds;
      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
        TerminatorInst *PTI = (*PI)->getTerminator();
        if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
          if (BI->isUnconditional())
            UncondBranchPreds.push_back(*PI);
          else
            CondBranchPreds.push_back(BI);
      }

      // If we found some, do the transformation!
      if (!UncondBranchPreds.empty()) {
        while (!UncondBranchPreds.empty()) {
          BasicBlock *Pred = UncondBranchPreds.back();
          DOUT << "FOLDING: " << *BB
               << "INTO UNCOND BRANCH PRED: " << *Pred;
          UncondBranchPreds.pop_back();
          Instruction *UncondBranch = Pred->getTerminator();
          // Clone the return and add it to the end of the predecessor.
          Instruction *NewRet = RI->clone();
          Pred->getInstList().push_back(NewRet);

          // If the return instruction returns a value, and if the value was a
          // PHI node in "BB", propagate the right value into the return.
          if (NewRet->getNumOperands() == 1)
            if (PHINode *PN = dyn_cast<PHINode>(NewRet->getOperand(0)))
              if (PN->getParent() == BB)
                NewRet->setOperand(0, PN->getIncomingValueForBlock(Pred));
          // Update any PHI nodes in the returning block to realize that we no
          // longer branch to them.
          BB->removePredecessor(Pred);
          Pred->getInstList().erase(UncondBranch);
        }

        // If we eliminated all predecessors of the block, delete the block now.
        if (pred_begin(BB) == pred_end(BB))
          // We know there are no successors, so just nuke the block.
          M->getBasicBlockList().erase(BB);

        return true;
      }

      // Check out all of the conditional branches going to this return
      // instruction.  If any of them just select between returns, change the
      // branch itself into a select/return pair.
      while (!CondBranchPreds.empty()) {
        BranchInst *BI = CondBranchPreds.back();
        CondBranchPreds.pop_back();
        BasicBlock *TrueSucc = BI->getSuccessor(0);
        BasicBlock *FalseSucc = BI->getSuccessor(1);
        BasicBlock *OtherSucc = TrueSucc == BB ? FalseSucc : TrueSucc;

        // Check to see if the non-BB successor is also a return block.
        if (isa<ReturnInst>(OtherSucc->getTerminator())) {
          // Check to see if there are only PHI instructions in this block.
          BasicBlock::iterator OSI = OtherSucc->getTerminator();
          if (OSI == OtherSucc->begin() || isa<PHINode>(--OSI)) {
            // Okay, we found a branch that is going to two return nodes.  If
            // there is no return value for this function, just change the
            // branch into a return.
            if (RI->getNumOperands() == 0) {
              TrueSucc->removePredecessor(BI->getParent());
              FalseSucc->removePredecessor(BI->getParent());
              new ReturnInst(0, BI);
              BI->getParent()->getInstList().erase(BI);
              return true;
            }

            // Otherwise, figure out what the true and false return values are
            // so we can insert a new select instruction.
            Value *TrueValue = TrueSucc->getTerminator()->getOperand(0);
            Value *FalseValue = FalseSucc->getTerminator()->getOperand(0);

            // Unwrap any PHI nodes in the return blocks.
            if (PHINode *TVPN = dyn_cast<PHINode>(TrueValue))
              if (TVPN->getParent() == TrueSucc)
                TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
            if (PHINode *FVPN = dyn_cast<PHINode>(FalseValue))
              if (FVPN->getParent() == FalseSucc)
                FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());

            // In order for this transformation to be safe, we must be able to
            // unconditionally execute both operands to the return.  This is
            // normally the case, but we could have a potentially-trapping
            // constant expression that prevents this transformation from being
            // safe.
            if ((!isa<ConstantExpr>(TrueValue) ||
                 !cast<ConstantExpr>(TrueValue)->canTrap()) &&
                (!isa<ConstantExpr>(TrueValue) ||
                 !cast<ConstantExpr>(TrueValue)->canTrap())) {
              TrueSucc->removePredecessor(BI->getParent());
              FalseSucc->removePredecessor(BI->getParent());

              // Insert a new select instruction.
              Value *NewRetVal;
              Value *BrCond = BI->getCondition();
              if (TrueValue != FalseValue)
                NewRetVal = new SelectInst(BrCond, TrueValue,
                                           FalseValue, "retval", BI);
              else
                NewRetVal = TrueValue;
              
              DOUT << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
                   << "\n  " << *BI << "Select = " << *NewRetVal
                   << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc;

              new ReturnInst(NewRetVal, BI);
              BI->eraseFromParent();
              if (Instruction *BrCondI = dyn_cast<Instruction>(BrCond))
                if (isInstructionTriviallyDead(BrCondI))
                  BrCondI->eraseFromParent();
              return true;
            }
          }
        }
      }
    }
  } else if (isa<UnwindInst>(BB->begin())) {
    // Check to see if the first instruction in this block is just an unwind.
    // If so, replace any invoke instructions which use this as an exception
    // destination with call instructions, and any unconditional branch
    // predecessor with an unwind.
    //
    SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
    while (!Preds.empty()) {
      BasicBlock *Pred = Preds.back();
      if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator())) {
        if (BI->isUnconditional()) {
          Pred->getInstList().pop_back();  // nuke uncond branch
          new UnwindInst(Pred);            // Use unwind.
          Changed = true;
        }
      } else if (InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator()))
        if (II->getUnwindDest() == BB) {
          // Insert a new branch instruction before the invoke, because this
          // is now a fall through...
          BranchInst *BI = new BranchInst(II->getNormalDest(), II);
          Pred->getInstList().remove(II);   // Take out of symbol table

          // Insert the call now...
          SmallVector<Value*,8> Args(II->op_begin()+3, II->op_end());
          CallInst *CI = new CallInst(II->getCalledValue(),
                                      Args.begin(), Args.end(), II->getName(), BI);
          CI->setCallingConv(II->getCallingConv());
          CI->setParamAttrs(II->getParamAttrs());
          // If the invoke produced a value, the Call now does instead
          II->replaceAllUsesWith(CI);
          delete II;
          Changed = true;
        }

      Preds.pop_back();
    }

    // If this block is now dead, remove it.
    if (pred_begin(BB) == pred_end(BB)) {
      // We know there are no successors, so just nuke the block.
      M->getBasicBlockList().erase(BB);
      return true;
    }

  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
    if (isValueEqualityComparison(SI)) {
      // If we only have one predecessor, and if it is a branch on this value,
      // see if that predecessor totally determines the outcome of this switch.
      if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
        if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred))
          return SimplifyCFG(BB) || 1;

      // If the block only contains the switch, see if we can fold the block
      // away into any preds.
      if (SI == &BB->front())
        if (FoldValueComparisonIntoPredecessors(SI))
          return SimplifyCFG(BB) || 1;
    }
  } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
    if (BI->isUnconditional()) {
      BasicBlock::iterator BBI = BB->begin();  // Skip over phi nodes...
      while (isa<PHINode>(*BBI)) ++BBI;

      BasicBlock *Succ = BI->getSuccessor(0);
      if (BBI->isTerminator() &&  // Terminator is the only non-phi instruction!
          Succ != BB)             // Don't hurt infinite loops!
        if (TryToSimplifyUncondBranchFromEmptyBlock(BB, Succ))
          return 1;
      
    } else {  // Conditional branch
      if (isValueEqualityComparison(BI)) {
        // If we only have one predecessor, and if it is a branch on this value,
        // see if that predecessor totally determines the outcome of this
        // switch.
        if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
          if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred))
            return SimplifyCFG(BB) || 1;

        // This block must be empty, except for the setcond inst, if it exists.
        BasicBlock::iterator I = BB->begin();
        if (&*I == BI ||
            (&*I == cast<Instruction>(BI->getCondition()) &&
             &*++I == BI))
          if (FoldValueComparisonIntoPredecessors(BI))
            return SimplifyCFG(BB) | true;
      }
      
      // If this is a branch on a phi node in the current block, thread control
      // through this block if any PHI node entries are constants.
      if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
        if (PN->getParent() == BI->getParent())
          if (FoldCondBranchOnPHI(BI))
            return SimplifyCFG(BB) | true;

      // If this basic block is ONLY a setcc and a branch, and if a predecessor
      // branches to us and one of our successors, fold the setcc into the
      // predecessor and use logical operations to pick the right destination.
      BasicBlock *TrueDest  = BI->getSuccessor(0);
      BasicBlock *FalseDest = BI->getSuccessor(1);
      if (Instruction *Cond = dyn_cast<Instruction>(BI->getCondition())) {
        BasicBlock::iterator CondIt = Cond;
        if ((isa<CmpInst>(Cond) || isa<BinaryOperator>(Cond)) &&
            Cond->getParent() == BB && &BB->front() == Cond &&
            &*++CondIt == BI && Cond->hasOneUse() &&
            TrueDest != BB && FalseDest != BB)
          for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI!=E; ++PI)
            if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
              if (PBI->isConditional() && SafeToMergeTerminators(BI, PBI)) {
                BasicBlock *PredBlock = *PI;
                if (PBI->getSuccessor(0) == FalseDest ||
                    PBI->getSuccessor(1) == TrueDest) {
                  // Invert the predecessors condition test (xor it with true),
                  // which allows us to write this code once.
                  Value *NewCond =
                    BinaryOperator::createNot(PBI->getCondition(),
                                    PBI->getCondition()->getName()+".not", PBI);
                  PBI->setCondition(NewCond);
                  BasicBlock *OldTrue = PBI->getSuccessor(0);
                  BasicBlock *OldFalse = PBI->getSuccessor(1);
                  PBI->setSuccessor(0, OldFalse);
                  PBI->setSuccessor(1, OldTrue);
                }

                if ((PBI->getSuccessor(0) == TrueDest && FalseDest != BB) ||
                    (PBI->getSuccessor(1) == FalseDest && TrueDest != BB)) {
                  // Clone Cond into the predecessor basic block, and or/and the
                  // two conditions together.
                  Instruction *New = Cond->clone();
                  PredBlock->getInstList().insert(PBI, New);
                  New->takeName(Cond);
                  Cond->setName(New->getName()+".old");
                  Instruction::BinaryOps Opcode =
                    PBI->getSuccessor(0) == TrueDest ?
                    Instruction::Or : Instruction::And;
                  Value *NewCond =
                    BinaryOperator::create(Opcode, PBI->getCondition(),
                                           New, "bothcond", PBI);
                  PBI->setCondition(NewCond);
                  if (PBI->getSuccessor(0) == BB) {
                    AddPredecessorToBlock(TrueDest, PredBlock, BB);
                    PBI->setSuccessor(0, TrueDest);
                  }
                  if (PBI->getSuccessor(1) == BB) {
                    AddPredecessorToBlock(FalseDest, PredBlock, BB);
                    PBI->setSuccessor(1, FalseDest);
                  }
                  return SimplifyCFG(BB) | 1;
                }
              }
      }

      // Scan predessor blocks for conditional branches.
      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
        if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
          if (PBI != BI && PBI->isConditional()) {
              
            // If this block ends with a branch instruction, and if there is a
            // predecessor that ends on a branch of the same condition, make 
            // this conditional branch redundant.
            if (PBI->getCondition() == BI->getCondition() &&
                PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
              // Okay, the outcome of this conditional branch is statically
              // knowable.  If this block had a single pred, handle specially.
              if (BB->getSinglePredecessor()) {
                // Turn this into a branch on constant.
                bool CondIsTrue = PBI->getSuccessor(0) == BB;
                BI->setCondition(ConstantInt::get(Type::Int1Ty, CondIsTrue));
                return SimplifyCFG(BB);  // Nuke the branch on constant.
              }
              
              // Otherwise, if there are multiple predecessors, insert a PHI 
              // that merges in the constant and simplify the block result.
              if (BlockIsSimpleEnoughToThreadThrough(BB)) {
                PHINode *NewPN = new PHINode(Type::Int1Ty,
                                            BI->getCondition()->getName()+".pr",
                                            BB->begin());
                for (PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
                  if ((PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) &&
                      PBI != BI && PBI->isConditional() &&
                      PBI->getCondition() == BI->getCondition() &&
                      PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
                    bool CondIsTrue = PBI->getSuccessor(0) == BB;
                    NewPN->addIncoming(ConstantInt::get(Type::Int1Ty, 
                                                        CondIsTrue), *PI);
                  } else {
                    NewPN->addIncoming(BI->getCondition(), *PI);
                  }
                
                BI->setCondition(NewPN);
                // This will thread the branch.
                return SimplifyCFG(BB) | true;
              }
            }
            
            // If this is a conditional branch in an empty block, and if any
            // predecessors is a conditional branch to one of our destinations,
            // fold the conditions into logical ops and one cond br.
            if (&BB->front() == BI) {
              int PBIOp, BIOp;
              if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
                PBIOp = BIOp = 0;
              } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
                PBIOp = 0; BIOp = 1;
              } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
                PBIOp = 1; BIOp = 0;
              } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
                PBIOp = BIOp = 1;
              } else {
                PBIOp = BIOp = -1;
              }
              
              // Check to make sure that the other destination of this branch
              // isn't BB itself.  If so, this is an infinite loop that will
              // keep getting unwound.
              if (PBIOp != -1 && PBI->getSuccessor(PBIOp) == BB)
                PBIOp = BIOp = -1;
              
              // Do not perform this transformation if it would require 
              // insertion of a large number of select instructions. For targets
              // without predication/cmovs, this is a big pessimization.
              if (PBIOp != -1) {
                BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
           
                unsigned NumPhis = 0;
                for (BasicBlock::iterator II = CommonDest->begin();
                     isa<PHINode>(II); ++II, ++NumPhis) {
                  if (NumPhis > 2) {
                    // Disable this xform.
                    PBIOp = -1;
                    break;
                  }
                }
              }

              // Finally, if everything is ok, fold the branches to logical ops.
              if (PBIOp != -1) {
                BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
                BasicBlock *OtherDest  = BI->getSuccessor(BIOp ^ 1);

                // If OtherDest *is* BB, then this is a basic block with just
                // a conditional branch in it, where one edge (OtherDesg) goes
                // back to the block.  We know that the program doesn't get
                // stuck in the infinite loop, so the condition must be such
                // that OtherDest isn't branched through. Forward to CommonDest,
                // and avoid an infinite loop at optimizer time.
                if (OtherDest == BB)
                  OtherDest = CommonDest;
                
                DOUT << "FOLDING BRs:" << *PBI->getParent()
                     << "AND: " << *BI->getParent();
                                
                // BI may have other predecessors.  Because of this, we leave
                // it alone, but modify PBI.
                
                // Make sure we get to CommonDest on True&True directions.
                Value *PBICond = PBI->getCondition();
                if (PBIOp)
                  PBICond = BinaryOperator::createNot(PBICond,
                                                      PBICond->getName()+".not",
                                                      PBI);
                Value *BICond = BI->getCondition();
                if (BIOp)
                  BICond = BinaryOperator::createNot(BICond,
                                                     BICond->getName()+".not",
                                                     PBI);
                // Merge the conditions.
                Value *Cond =
                  BinaryOperator::createOr(PBICond, BICond, "brmerge", PBI);
                
                // Modify PBI to branch on the new condition to the new dests.
                PBI->setCondition(Cond);
                PBI->setSuccessor(0, CommonDest);
                PBI->setSuccessor(1, OtherDest);

                // OtherDest may have phi nodes.  If so, add an entry from PBI's
                // block that are identical to the entries for BI's block.
                PHINode *PN;
                for (BasicBlock::iterator II = OtherDest->begin();
                     (PN = dyn_cast<PHINode>(II)); ++II) {
                  Value *V = PN->getIncomingValueForBlock(BB);
                  PN->addIncoming(V, PBI->getParent());
                }
                
                // We know that the CommonDest already had an edge from PBI to
                // it.  If it has PHIs though, the PHIs may have different
                // entries for BB and PBI's BB.  If so, insert a select to make
                // them agree.
                for (BasicBlock::iterator II = CommonDest->begin();
                     (PN = dyn_cast<PHINode>(II)); ++II) {
                  Value * BIV = PN->getIncomingValueForBlock(BB);
                  unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
                  Value *PBIV = PN->getIncomingValue(PBBIdx);
                  if (BIV != PBIV) {
                    // Insert a select in PBI to pick the right value.
                    Value *NV = new SelectInst(PBICond, PBIV, BIV,
                                               PBIV->getName()+".mux", PBI);
                    PN->setIncomingValue(PBBIdx, NV);
                  }
                }

                DOUT << "INTO: " << *PBI->getParent();

                // This basic block is probably dead.  We know it has at least
                // one fewer predecessor.
                return SimplifyCFG(BB) | true;
              }
            }
          }
    }
  } else if (isa<UnreachableInst>(BB->getTerminator())) {
    // If there are any instructions immediately before the unreachable that can
    // be removed, do so.
    Instruction *Unreachable = BB->getTerminator();
    while (Unreachable != BB->begin()) {
      BasicBlock::iterator BBI = Unreachable;
      --BBI;
      if (isa<CallInst>(BBI)) break;
      // Delete this instruction
      BB->getInstList().erase(BBI);
      Changed = true;
    }

    // If the unreachable instruction is the first in the block, take a gander
    // at all of the predecessors of this instruction, and simplify them.
    if (&BB->front() == Unreachable) {
      SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
      for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
        TerminatorInst *TI = Preds[i]->getTerminator();

        if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
          if (BI->isUnconditional()) {
            if (BI->getSuccessor(0) == BB) {
              new UnreachableInst(TI);
              TI->eraseFromParent();
              Changed = true;
            }
          } else {
            if (BI->getSuccessor(0) == BB) {
              new BranchInst(BI->getSuccessor(1), BI);
              BI->eraseFromParent();
            } else if (BI->getSuccessor(1) == BB) {
              new BranchInst(BI->getSuccessor(0), BI);
              BI->eraseFromParent();
              Changed = true;
            }
          }
        } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
          for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
            if (SI->getSuccessor(i) == BB) {
              BB->removePredecessor(SI->getParent());
              SI->removeCase(i);
              --i; --e;
              Changed = true;
            }
          // If the default value is unreachable, figure out the most popular
          // destination and make it the default.
          if (SI->getSuccessor(0) == BB) {
            std::map<BasicBlock*, unsigned> Popularity;
            for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
              Popularity[SI->getSuccessor(i)]++;

            // Find the most popular block.
            unsigned MaxPop = 0;
            BasicBlock *MaxBlock = 0;
            for (std::map<BasicBlock*, unsigned>::iterator
                   I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
              if (I->second > MaxPop) {
                MaxPop = I->second;
                MaxBlock = I->first;
              }
            }
            if (MaxBlock) {
              // Make this the new default, allowing us to delete any explicit
              // edges to it.
              SI->setSuccessor(0, MaxBlock);
              Changed = true;

              // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
              // it.
              if (isa<PHINode>(MaxBlock->begin()))
                for (unsigned i = 0; i != MaxPop-1; ++i)
                  MaxBlock->removePredecessor(SI->getParent());

              for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
                if (SI->getSuccessor(i) == MaxBlock) {
                  SI->removeCase(i);
                  --i; --e;
                }
            }
          }
        } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
          if (II->getUnwindDest() == BB) {
            // Convert the invoke to a call instruction.  This would be a good
            // place to note that the call does not throw though.
            BranchInst *BI = new BranchInst(II->getNormalDest(), II);
            II->removeFromParent();   // Take out of symbol table

            // Insert the call now...
            SmallVector<Value*, 8> Args(II->op_begin()+3, II->op_end());
            CallInst *CI = new CallInst(II->getCalledValue(),
                                        Args.begin(), Args.end(),
                                        II->getName(), BI);
            CI->setCallingConv(II->getCallingConv());
            CI->setParamAttrs(II->getParamAttrs());
            // If the invoke produced a value, the Call does now instead.
            II->replaceAllUsesWith(CI);
            delete II;
            Changed = true;
          }
        }
      }

      // If this block is now dead, remove it.
      if (pred_begin(BB) == pred_end(BB)) {
        // We know there are no successors, so just nuke the block.
        M->getBasicBlockList().erase(BB);
        return true;
      }
    }
  }

  // Merge basic blocks into their predecessor if there is only one distinct
  // pred, and if there is only one distinct successor of the predecessor, and
  // if there are no PHI nodes.
  //
  pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
  BasicBlock *OnlyPred = *PI++;
  for (; PI != PE; ++PI)  // Search all predecessors, see if they are all same
    if (*PI != OnlyPred) {
      OnlyPred = 0;       // There are multiple different predecessors...
      break;
    }

  BasicBlock *OnlySucc = 0;
  if (OnlyPred && OnlyPred != BB &&    // Don't break self loops
      OnlyPred->getTerminator()->getOpcode() != Instruction::Invoke) {
    // Check to see if there is only one distinct successor...
    succ_iterator SI(succ_begin(OnlyPred)), SE(succ_end(OnlyPred));
    OnlySucc = BB;
    for (; SI != SE; ++SI)
      if (*SI != OnlySucc) {
        OnlySucc = 0;     // There are multiple distinct successors!
        break;
      }
  }

  if (OnlySucc) {
    DOUT << "Merging: " << *BB << "into: " << *OnlyPred;

    // Resolve any PHI nodes at the start of the block.  They are all
    // guaranteed to have exactly one entry if they exist, unless there are
    // multiple duplicate (but guaranteed to be equal) entries for the
    // incoming edges.  This occurs when there are multiple edges from
    // OnlyPred to OnlySucc.
    //
    while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
      PN->replaceAllUsesWith(PN->getIncomingValue(0));
      BB->getInstList().pop_front();  // Delete the phi node.
    }

    // Delete the unconditional branch from the predecessor.
    OnlyPred->getInstList().pop_back();

    // Move all definitions in the successor to the predecessor.
    OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());

    // Make all PHI nodes that referred to BB now refer to Pred as their
    // source.
    BB->replaceAllUsesWith(OnlyPred);

    // Inherit predecessors name if it exists.
    if (!OnlyPred->hasName())
      OnlyPred->takeName(BB);
    
    // Erase basic block from the function.
    M->getBasicBlockList().erase(BB);

    return true;
  }

  // Otherwise, if this block only has a single predecessor, and if that block
  // is a conditional branch, see if we can hoist any code from this block up
  // into our predecessor.
  if (OnlyPred)
    if (BranchInst *BI = dyn_cast<BranchInst>(OnlyPred->getTerminator()))
      if (BI->isConditional()) {
        // Get the other block.
        BasicBlock *OtherBB = BI->getSuccessor(BI->getSuccessor(0) == BB);
        PI = pred_begin(OtherBB);
        ++PI;
        if (PI == pred_end(OtherBB)) {
          // We have a conditional branch to two blocks that are only reachable
          // from the condbr.  We know that the condbr dominates the two blocks,
          // so see if there is any identical code in the "then" and "else"
          // blocks.  If so, we can hoist it up to the branching block.
          Changed |= HoistThenElseCodeToIf(BI);
        }
      }

  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
    if (BranchInst *BI = dyn_cast<BranchInst>((*PI)->getTerminator()))
      // Change br (X == 0 | X == 1), T, F into a switch instruction.
      if (BI->isConditional() && isa<Instruction>(BI->getCondition())) {
        Instruction *Cond = cast<Instruction>(BI->getCondition());
        // If this is a bunch of seteq's or'd together, or if it's a bunch of
        // 'setne's and'ed together, collect them.
        Value *CompVal = 0;
        std::vector<ConstantInt*> Values;
        bool TrueWhenEqual = GatherValueComparisons(Cond, CompVal, Values);
        if (CompVal && CompVal->getType()->isInteger()) {
          // There might be duplicate constants in the list, which the switch
          // instruction can't handle, remove them now.
          std::sort(Values.begin(), Values.end(), ConstantIntOrdering());
          Values.erase(std::unique(Values.begin(), Values.end()), Values.end());

          // Figure out which block is which destination.
          BasicBlock *DefaultBB = BI->getSuccessor(1);
          BasicBlock *EdgeBB    = BI->getSuccessor(0);
          if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);

          // Create the new switch instruction now.
          SwitchInst *New = new SwitchInst(CompVal, DefaultBB,Values.size(),BI);

          // Add all of the 'cases' to the switch instruction.
          for (unsigned i = 0, e = Values.size(); i != e; ++i)
            New->addCase(Values[i], EdgeBB);

          // We added edges from PI to the EdgeBB.  As such, if there were any
          // PHI nodes in EdgeBB, they need entries to be added corresponding to
          // the number of edges added.
          for (BasicBlock::iterator BBI = EdgeBB->begin();
               isa<PHINode>(BBI); ++BBI) {
            PHINode *PN = cast<PHINode>(BBI);
            Value *InVal = PN->getIncomingValueForBlock(*PI);
            for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
              PN->addIncoming(InVal, *PI);
          }

          // Erase the old branch instruction.
          (*PI)->getInstList().erase(BI);

          // Erase the potentially condition tree that was used to computed the
          // branch condition.
          ErasePossiblyDeadInstructionTree(Cond);
          return true;
        }
      }

  // If there is a trivial two-entry PHI node in this basic block, and we can
  // eliminate it, do so now.
  if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
    if (PN->getNumIncomingValues() == 2)
      Changed |= FoldTwoEntryPHINode(PN); 

  return Changed;
}