aboutsummaryrefslogtreecommitdiffstats
path: root/lib/VMCore/AsmWriter.cpp
blob: 7f862dfbc593f32bfcf186a8bee3558596615679 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This library implements the functionality defined in llvm/Assembly/Writer.h
//
// Note that these routines must be extremely tolerant of various errors in the
// LLVM code, because it can be used for debugging transformations.
//
//===----------------------------------------------------------------------===//

#include "llvm/Assembly/CachedWriter.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Assembly/PrintModulePass.h"
#include "llvm/Assembly/AsmAnnotationWriter.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instruction.h"
#include "llvm/Instructions.h"
#include "llvm/Module.h"
#include "llvm/SymbolTable.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Support/CFG.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/STLExtras.h"
#include <algorithm>
using namespace llvm;

namespace llvm {

/// This class provides computation of slot numbers for LLVM Assembly writing.
/// @brief LLVM Assembly Writing Slot Computation.
class SlotMachine {

/// @name Types
/// @{
public:

  /// @brief A mapping of Values to slot numbers
  typedef std::map<const Value*, unsigned> ValueMap;
  typedef std::map<const Type*, unsigned> TypeMap;

  /// @brief A plane with next slot number and ValueMap
  struct ValuePlane { 
    unsigned next_slot;        ///< The next slot number to use
    ValueMap map;              ///< The map of Value* -> unsigned
    ValuePlane() { next_slot = 0; } ///< Make sure we start at 0
  };

  struct TypePlane {
    unsigned next_slot;
    TypeMap map;
    TypePlane() { next_slot = 0; }
    void clear() { map.clear(); next_slot = 0; }
  };

  /// @brief The map of planes by Type
  typedef std::map<const Type*, ValuePlane> TypedPlanes;

/// @}
/// @name Constructors
/// @{
public:
  /// @brief Construct from a module
  SlotMachine(const Module *M );

  /// @brief Construct from a function, starting out in incorp state.
  SlotMachine(const Function *F );

/// @}
/// @name Accessors
/// @{
public:
  /// Return the slot number of the specified value in it's type
  /// plane.  Its an error to ask for something not in the SlotMachine.
  /// Its an error to ask for a Type*
  int getSlot(const Value *V);
  int getSlot(const Type*Ty);

  /// Determine if a Value has a slot or not
  bool hasSlot(const Value* V);
  bool hasSlot(const Type* Ty);

/// @}
/// @name Mutators
/// @{
public:
  /// If you'd like to deal with a function instead of just a module, use 
  /// this method to get its data into the SlotMachine.
  void incorporateFunction(const Function *F) { 
    TheFunction = F;  
    FunctionProcessed = false;
  }

  /// After calling incorporateFunction, use this method to remove the 
  /// most recently incorporated function from the SlotMachine. This 
  /// will reset the state of the machine back to just the module contents.
  void purgeFunction();

/// @}
/// @name Implementation Details
/// @{
private:
  /// This function does the actual initialization.
  inline void initialize();

  /// Values can be crammed into here at will. If they haven't 
  /// been inserted already, they get inserted, otherwise they are ignored.
  /// Either way, the slot number for the Value* is returned.
  unsigned createSlot(const Value *V);
  unsigned createSlot(const Type* Ty);

  /// Insert a value into the value table. Return the slot number
  /// that it now occupies.  BadThings(TM) will happen if you insert a
  /// Value that's already been inserted. 
  unsigned insertValue( const Value *V );
  unsigned insertValue( const Type* Ty);

  /// Add all of the module level global variables (and their initializers)
  /// and function declarations, but not the contents of those functions.
  void processModule();

  /// Add all of the functions arguments, basic blocks, and instructions
  void processFunction();

  SlotMachine(const SlotMachine &);  // DO NOT IMPLEMENT
  void operator=(const SlotMachine &);  // DO NOT IMPLEMENT

/// @}
/// @name Data
/// @{
public:

  /// @brief The module for which we are holding slot numbers
  const Module* TheModule;

  /// @brief The function for which we are holding slot numbers
  const Function* TheFunction;
  bool FunctionProcessed;

  /// @brief The TypePlanes map for the module level data
  TypedPlanes mMap;
  TypePlane mTypes;

  /// @brief The TypePlanes map for the function level data
  TypedPlanes fMap;
  TypePlane fTypes;

/// @}

};

}  // end namespace llvm

static RegisterPass<PrintModulePass>
X("printm", "Print module to stderr",PassInfo::Analysis|PassInfo::Optimization);
static RegisterPass<PrintFunctionPass>
Y("print","Print function to stderr",PassInfo::Analysis|PassInfo::Optimization);

static void WriteAsOperandInternal(std::ostream &Out, const Value *V, 
                                   bool PrintName,
                                 std::map<const Type *, std::string> &TypeTable,
                                   SlotMachine *Machine);

static void WriteAsOperandInternal(std::ostream &Out, const Type *T, 
                                   bool PrintName,
                                 std::map<const Type *, std::string> &TypeTable,
                                   SlotMachine *Machine);

static const Module *getModuleFromVal(const Value *V) {
  if (const Argument *MA = dyn_cast<Argument>(V))
    return MA->getParent() ? MA->getParent()->getParent() : 0;
  else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
    return BB->getParent() ? BB->getParent()->getParent() : 0;
  else if (const Instruction *I = dyn_cast<Instruction>(V)) {
    const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
    return M ? M->getParent() : 0;
  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
    return GV->getParent();
  return 0;
}

static SlotMachine *createSlotMachine(const Value *V) {
  if (const Argument *FA = dyn_cast<Argument>(V)) {
    return new SlotMachine(FA->getParent());
  } else if (const Instruction *I = dyn_cast<Instruction>(V)) {
    return new SlotMachine(I->getParent()->getParent());
  } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
    return new SlotMachine(BB->getParent());
  } else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)){
    return new SlotMachine(GV->getParent());
  } else if (const Function *Func = dyn_cast<Function>(V)) {
    return new SlotMachine(Func);
  }
  return 0;
}

// getLLVMName - Turn the specified string into an 'LLVM name', which is either
// prefixed with % (if the string only contains simple characters) or is
// surrounded with ""'s (if it has special chars in it).
static std::string getLLVMName(const std::string &Name) {
  assert(!Name.empty() && "Cannot get empty name!");

  // First character cannot start with a number...
  if (Name[0] >= '0' && Name[0] <= '9')
    return "\"" + Name + "\"";

  // Scan to see if we have any characters that are not on the "white list"
  for (unsigned i = 0, e = Name.size(); i != e; ++i) {
    char C = Name[i];
    assert(C != '"' && "Illegal character in LLVM value name!");
    if ((C < 'a' || C > 'z') && (C < 'A' || C > 'Z') && (C < '0' || C > '9') &&
        C != '-' && C != '.' && C != '_')
      return "\"" + Name + "\"";
  }
  
  // If we get here, then the identifier is legal to use as a "VarID".
  return "%"+Name;
}


/// fillTypeNameTable - If the module has a symbol table, take all global types
/// and stuff their names into the TypeNames map.
///
static void fillTypeNameTable(const Module *M,
                              std::map<const Type *, std::string> &TypeNames) {
  if (!M) return;
  const SymbolTable &ST = M->getSymbolTable();
  SymbolTable::type_const_iterator TI = ST.type_begin();
  for (; TI != ST.type_end(); ++TI ) {
    // As a heuristic, don't insert pointer to primitive types, because
    // they are used too often to have a single useful name.
    //
    const Type *Ty = cast<Type>(TI->second);
    if (!isa<PointerType>(Ty) ||
        !cast<PointerType>(Ty)->getElementType()->isPrimitiveType() ||
        isa<OpaqueType>(cast<PointerType>(Ty)->getElementType()))
      TypeNames.insert(std::make_pair(Ty, getLLVMName(TI->first)));
  }
}



static void calcTypeName(const Type *Ty, 
                         std::vector<const Type *> &TypeStack,
                         std::map<const Type *, std::string> &TypeNames,
                         std::string & Result){
  if (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty)) {
    Result += Ty->getDescription();  // Base case
    return;
  }

  // Check to see if the type is named.
  std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
  if (I != TypeNames.end()) {
    Result += I->second;
    return;
  }

  if (isa<OpaqueType>(Ty)) {
    Result += "opaque";
    return;
  }

  // Check to see if the Type is already on the stack...
  unsigned Slot = 0, CurSize = TypeStack.size();
  while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type

  // This is another base case for the recursion.  In this case, we know 
  // that we have looped back to a type that we have previously visited.
  // Generate the appropriate upreference to handle this.
  if (Slot < CurSize) {
    Result += "\\" + utostr(CurSize-Slot);     // Here's the upreference
    return;
  }

  TypeStack.push_back(Ty);    // Recursive case: Add us to the stack..
  
  switch (Ty->getTypeID()) {
  case Type::FunctionTyID: {
    const FunctionType *FTy = cast<FunctionType>(Ty);
    calcTypeName(FTy->getReturnType(), TypeStack, TypeNames, Result);
    Result += " (";
    for (FunctionType::param_iterator I = FTy->param_begin(),
           E = FTy->param_end(); I != E; ++I) {
      if (I != FTy->param_begin())
        Result += ", ";
      calcTypeName(*I, TypeStack, TypeNames, Result);
    }
    if (FTy->isVarArg()) {
      if (FTy->getNumParams()) Result += ", ";
      Result += "...";
    }
    Result += ")";
    break;
  }
  case Type::StructTyID: {
    const StructType *STy = cast<StructType>(Ty);
    Result += "{ ";
    for (StructType::element_iterator I = STy->element_begin(),
           E = STy->element_end(); I != E; ++I) {
      if (I != STy->element_begin())
        Result += ", ";
      calcTypeName(*I, TypeStack, TypeNames, Result);
    }
    Result += " }";
    break;
  }
  case Type::PointerTyID:
    calcTypeName(cast<PointerType>(Ty)->getElementType(), 
                          TypeStack, TypeNames, Result);
    Result += "*";
    break;
  case Type::ArrayTyID: {
    const ArrayType *ATy = cast<ArrayType>(Ty);
    Result += "[" + utostr(ATy->getNumElements()) + " x ";
    calcTypeName(ATy->getElementType(), TypeStack, TypeNames, Result);
    Result += "]";
    break;
  }
  case Type::PackedTyID: {
    const PackedType *PTy = cast<PackedType>(Ty);
    Result += "<" + utostr(PTy->getNumElements()) + " x ";
    calcTypeName(PTy->getElementType(), TypeStack, TypeNames, Result);
    Result += ">";
    break;
  }
  case Type::OpaqueTyID:
    Result += "opaque";
    break;
  default:
    Result += "<unrecognized-type>";
  }

  TypeStack.pop_back();       // Remove self from stack...
  return;
}


/// printTypeInt - The internal guts of printing out a type that has a
/// potentially named portion.
///
static std::ostream &printTypeInt(std::ostream &Out, const Type *Ty,
                              std::map<const Type *, std::string> &TypeNames) {
  // Primitive types always print out their description, regardless of whether
  // they have been named or not.
  //
  if (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty))
    return Out << Ty->getDescription();

  // Check to see if the type is named.
  std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
  if (I != TypeNames.end()) return Out << I->second;

  // Otherwise we have a type that has not been named but is a derived type.
  // Carefully recurse the type hierarchy to print out any contained symbolic
  // names.
  //
  std::vector<const Type *> TypeStack;
  std::string TypeName;
  calcTypeName(Ty, TypeStack, TypeNames, TypeName);
  TypeNames.insert(std::make_pair(Ty, TypeName));//Cache type name for later use
  return (Out << TypeName);
}


/// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
/// type, iff there is an entry in the modules symbol table for the specified
/// type or one of it's component types. This is slower than a simple x << Type
///
std::ostream &llvm::WriteTypeSymbolic(std::ostream &Out, const Type *Ty,
                                      const Module *M) {
  Out << ' '; 

  // If they want us to print out a type, attempt to make it symbolic if there
  // is a symbol table in the module...
  if (M) {
    std::map<const Type *, std::string> TypeNames;
    fillTypeNameTable(M, TypeNames);
    
    return printTypeInt(Out, Ty, TypeNames);
  } else {
    return Out << Ty->getDescription();
  }
}

/// @brief Internal constant writer. 
static void WriteConstantInt(std::ostream &Out, const Constant *CV, 
                             bool PrintName,
                             std::map<const Type *, std::string> &TypeTable,
                             SlotMachine *Machine) {
  if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
    Out << (CB == ConstantBool::True ? "true" : "false");
  } else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV)) {
    Out << CI->getValue();
  } else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV)) {
    Out << CI->getValue();
  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
    // We would like to output the FP constant value in exponential notation,
    // but we cannot do this if doing so will lose precision.  Check here to
    // make sure that we only output it in exponential format if we can parse
    // the value back and get the same value.
    //
    std::string StrVal = ftostr(CFP->getValue());

    // Check to make sure that the stringized number is not some string like
    // "Inf" or NaN, that atof will accept, but the lexer will not.  Check that
    // the string matches the "[-+]?[0-9]" regex.
    //
    if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
        ((StrVal[0] == '-' || StrVal[0] == '+') &&
         (StrVal[1] >= '0' && StrVal[1] <= '9')))
      // Reparse stringized version!
      if (atof(StrVal.c_str()) == CFP->getValue()) {
        Out << StrVal; return;
      }
    
    // Otherwise we could not reparse it to exactly the same value, so we must
    // output the string in hexadecimal format!
    //
    // Behave nicely in the face of C TBAA rules... see:
    // http://www.nullstone.com/htmls/category/aliastyp.htm
    //
    double Val = CFP->getValue();
    char *Ptr = (char*)&Val;
    assert(sizeof(double) == sizeof(uint64_t) && sizeof(double) == 8 &&
           "assuming that double is 64 bits!");
    Out << "0x" << utohexstr(*(uint64_t*)Ptr);

  } else if (isa<ConstantAggregateZero>(CV)) {
    Out << "zeroinitializer";
  } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
    // As a special case, print the array as a string if it is an array of
    // ubytes or an array of sbytes with positive values.
    // 
    const Type *ETy = CA->getType()->getElementType();
    bool isString = (ETy == Type::SByteTy || ETy == Type::UByteTy);

    if (ETy == Type::SByteTy)
      for (unsigned i = 0; i < CA->getNumOperands(); ++i)
        if (cast<ConstantSInt>(CA->getOperand(i))->getValue() < 0) {
          isString = false;
          break;
        }

    if (isString) {
      Out << "c\"";
      for (unsigned i = 0; i < CA->getNumOperands(); ++i) {
        unsigned char C = 
          (unsigned char)cast<ConstantInt>(CA->getOperand(i))->getRawValue();
        
        if (isprint(C) && C != '"' && C != '\\') {
          Out << C;
        } else {
          Out << '\\'
              << (char) ((C/16  < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
              << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
        }
      }
      Out << "\"";

    } else {                // Cannot output in string format...
      Out << '[';
      if (CA->getNumOperands()) {
        Out << ' ';
        printTypeInt(Out, ETy, TypeTable);
        WriteAsOperandInternal(Out, CA->getOperand(0),
                               PrintName, TypeTable, Machine);
        for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
          Out << ", ";
          printTypeInt(Out, ETy, TypeTable);
          WriteAsOperandInternal(Out, CA->getOperand(i), PrintName,
                                 TypeTable, Machine);
        }
      }
      Out << " ]";
    }
  } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
    Out << '{';
    if (CS->getNumOperands()) {
      Out << ' ';
      printTypeInt(Out, CS->getOperand(0)->getType(), TypeTable);

      WriteAsOperandInternal(Out, CS->getOperand(0),
                             PrintName, TypeTable, Machine);

      for (unsigned i = 1; i < CS->getNumOperands(); i++) {
        Out << ", ";
        printTypeInt(Out, CS->getOperand(i)->getType(), TypeTable);

        WriteAsOperandInternal(Out, CS->getOperand(i),
                               PrintName, TypeTable, Machine);
      }
    }

    Out << " }";
  } else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(CV)) {
      const Type *ETy = CP->getType()->getElementType();
      assert(CP->getNumOperands() > 0 && 
             "Number of operands for a PackedConst must be > 0");
      Out << '<';
      Out << ' ';
      printTypeInt(Out, ETy, TypeTable);
      WriteAsOperandInternal(Out, CP->getOperand(0),
                             PrintName, TypeTable, Machine);
      for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
          Out << ", ";
          printTypeInt(Out, ETy, TypeTable);
          WriteAsOperandInternal(Out, CP->getOperand(i), PrintName,
                                 TypeTable, Machine);
      }
      Out << " >";
  } else if (isa<ConstantPointerNull>(CV)) {
    Out << "null";

  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
    Out << CE->getOpcodeName() << " (";
    
    for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
      printTypeInt(Out, (*OI)->getType(), TypeTable);
      WriteAsOperandInternal(Out, *OI, PrintName, TypeTable, Machine);
      if (OI+1 != CE->op_end())
        Out << ", ";
    }
    
    if (CE->getOpcode() == Instruction::Cast) {
      Out << " to ";
      printTypeInt(Out, CE->getType(), TypeTable);
    }
    Out << ')';

  } else {
    Out << "<placeholder or erroneous Constant>";
  }
}


/// WriteAsOperand - Write the name of the specified value out to the specified
/// ostream.  This can be useful when you just want to print int %reg126, not
/// the whole instruction that generated it.
///
static void WriteAsOperandInternal(std::ostream &Out, const Value *V, 
                                   bool PrintName,
                                  std::map<const Type*, std::string> &TypeTable,
                                   SlotMachine *Machine) {
  Out << ' ';
  if ((PrintName || isa<GlobalValue>(V)) && V->hasName())
    Out << getLLVMName(V->getName());
  else {
    const Constant *CV = dyn_cast<Constant>(V);
    if (CV && !isa<GlobalValue>(CV))
      WriteConstantInt(Out, CV, PrintName, TypeTable, Machine);
    else {
      int Slot;
      if (Machine) {
        Slot = Machine->getSlot(V);
      } else {
        Machine = createSlotMachine(V);
        if (Machine == 0) 
          Slot = Machine->getSlot(V);
        else
          Slot = -1;
        delete Machine;
      }
      if (Slot != -1)
        Out << '%' << Slot;
      else
        Out << "<badref>";
    }
  }
}

/// WriteAsOperand - Write the name of the specified value out to the specified
/// ostream.  This can be useful when you just want to print int %reg126, not
/// the whole instruction that generated it.
///
std::ostream &llvm::WriteAsOperand(std::ostream &Out, const Value *V,
                                   bool PrintType, bool PrintName, 
                                   const Module *Context) {
  std::map<const Type *, std::string> TypeNames;
  if (Context == 0) Context = getModuleFromVal(V);

  if (Context)
    fillTypeNameTable(Context, TypeNames);

  if (PrintType)
    printTypeInt(Out, V->getType(), TypeNames);
  
  WriteAsOperandInternal(Out, V, PrintName, TypeNames, 0);
  return Out;
}

/// WriteAsOperandInternal - Write the name of the specified value out to 
/// the specified ostream.  This can be useful when you just want to print 
/// int %reg126, not the whole instruction that generated it.
///
static void WriteAsOperandInternal(std::ostream &Out, const Type *T, 
                                   bool PrintName,
                                  std::map<const Type*, std::string> &TypeTable,
                                   SlotMachine *Machine) {
  Out << ' ';
  int Slot;
  if (Machine) {
    Slot = Machine->getSlot(T);
    if (Slot != -1)
      Out << '%' << Slot;
    else
      Out << "<badref>";
  } else {
    Out << T->getDescription();
  }
}

/// WriteAsOperand - Write the name of the specified value out to the specified
/// ostream.  This can be useful when you just want to print int %reg126, not
/// the whole instruction that generated it.
///
std::ostream &llvm::WriteAsOperand(std::ostream &Out, const Type *Ty,
                                   bool PrintType, bool PrintName, 
                                   const Module *Context) {
  std::map<const Type *, std::string> TypeNames;
  assert(Context != 0 && "Can't write types as operand without module context");

  fillTypeNameTable(Context, TypeNames);

  // if (PrintType)
    // printTypeInt(Out, V->getType(), TypeNames);
  
  printTypeInt(Out, Ty, TypeNames);

  WriteAsOperandInternal(Out, Ty, PrintName, TypeNames, 0);
  return Out;
}

namespace llvm {

class AssemblyWriter {
  std::ostream &Out;
  SlotMachine &Machine;
  const Module *TheModule;
  std::map<const Type *, std::string> TypeNames;
  AssemblyAnnotationWriter *AnnotationWriter;
public:
  inline AssemblyWriter(std::ostream &o, SlotMachine &Mac, const Module *M,
                        AssemblyAnnotationWriter *AAW)
    : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) {

    // If the module has a symbol table, take all global types and stuff their
    // names into the TypeNames map.
    //
    fillTypeNameTable(M, TypeNames);
  }

  inline void write(const Module *M)         { printModule(M);      }
  inline void write(const GlobalVariable *G) { printGlobal(G);      }
  inline void write(const Function *F)       { printFunction(F);    }
  inline void write(const BasicBlock *BB)    { printBasicBlock(BB); }
  inline void write(const Instruction *I)    { printInstruction(*I); }
  inline void write(const Constant *CPV)     { printConstant(CPV);  }
  inline void write(const Type *Ty)          { printType(Ty);       }

  void writeOperand(const Value *Op, bool PrintType, bool PrintName = true);

  const Module* getModule() { return TheModule; }

private :
  void printModule(const Module *M);
  void printSymbolTable(const SymbolTable &ST);
  void printConstant(const Constant *CPV);
  void printGlobal(const GlobalVariable *GV);
  void printFunction(const Function *F);
  void printArgument(const Argument *FA);
  void printBasicBlock(const BasicBlock *BB);
  void printInstruction(const Instruction &I);

  // printType - Go to extreme measures to attempt to print out a short,
  // symbolic version of a type name.
  //
  std::ostream &printType(const Type *Ty) {
    return printTypeInt(Out, Ty, TypeNames);
  }

  // printTypeAtLeastOneLevel - Print out one level of the possibly complex type
  // without considering any symbolic types that we may have equal to it.
  //
  std::ostream &printTypeAtLeastOneLevel(const Type *Ty);

  // printInfoComment - Print a little comment after the instruction indicating
  // which slot it occupies.
  void printInfoComment(const Value &V);
};
}  // end of llvm namespace

/// printTypeAtLeastOneLevel - Print out one level of the possibly complex type
/// without considering any symbolic types that we may have equal to it.
///
std::ostream &AssemblyWriter::printTypeAtLeastOneLevel(const Type *Ty) {
  if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty)) {
    printType(FTy->getReturnType()) << " (";
    for (FunctionType::param_iterator I = FTy->param_begin(),
           E = FTy->param_end(); I != E; ++I) {
      if (I != FTy->param_begin())
        Out << ", ";
      printType(*I);
    }
    if (FTy->isVarArg()) {
      if (FTy->getNumParams()) Out << ", ";
      Out << "...";
    }
    Out << ')';
  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
    Out << "{ ";
    for (StructType::element_iterator I = STy->element_begin(),
           E = STy->element_end(); I != E; ++I) {
      if (I != STy->element_begin())
        Out << ", ";
      printType(*I);
    }
    Out << " }";
  } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
    printType(PTy->getElementType()) << '*';
  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
    Out << '[' << ATy->getNumElements() << " x ";
    printType(ATy->getElementType()) << ']';
  } else if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
    Out << '<' << PTy->getNumElements() << " x ";
    printType(PTy->getElementType()) << '>';
  }
  else if (const OpaqueType *OTy = dyn_cast<OpaqueType>(Ty)) {
    Out << "opaque";
  } else {
    if (!Ty->isPrimitiveType())
      Out << "<unknown derived type>";
    printType(Ty);
  }
  return Out;
}


void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType, 
                                  bool PrintName) {
  assert(Operand != 0 && "Illegal Operand");
  if (PrintType) { Out << ' '; printType(Operand->getType()); }
  WriteAsOperandInternal(Out, Operand, PrintName, TypeNames, &Machine);
}


void AssemblyWriter::printModule(const Module *M) {
  switch (M->getEndianness()) {
  case Module::LittleEndian: Out << "target endian = little\n"; break;
  case Module::BigEndian:    Out << "target endian = big\n";    break;
  case Module::AnyEndianness: break;
  }
  switch (M->getPointerSize()) {
  case Module::Pointer32:    Out << "target pointersize = 32\n"; break;
  case Module::Pointer64:    Out << "target pointersize = 64\n"; break;
  case Module::AnyPointerSize: break;
  }
  if (!M->getTargetTriple().empty())
    Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
  
  // Loop over the dependent libraries and emit them
  Module::lib_iterator LI= M->lib_begin();
  Module::lib_iterator LE= M->lib_end();
  if (LI != LE) {
    Out << "deplibs = [\n";
    while ( LI != LE ) {
      Out << "\"" << *LI << "\"";
      ++LI;
      if ( LI != LE )
        Out << ",\n";
    }
    Out << " ]\n";
  }

  // Loop over the link time pass list and emit them
  Module::pass_iterator PI = M->pass_begin();
  Module::pass_iterator PE = M->pass_end();
  if (LI != LE) {
    Out << "passes = [\n";
    while (LI != LE) {
      Out << "\"" << *LI << "\"";
      ++LI;
      if (LI != LE)
        Out << ",\n";
    }
    Out << " ]\n";
  }
  
  // Loop over the symbol table, emitting all named constants...
  printSymbolTable(M->getSymbolTable());
  
  for (Module::const_giterator I = M->gbegin(), E = M->gend(); I != E; ++I)
    printGlobal(I);

  Out << "\nimplementation   ; Functions:\n";
  
  // Output all of the functions...
  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
    printFunction(I);
}

void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
  if (GV->hasName()) Out << getLLVMName(GV->getName()) << " = ";

  if (!GV->hasInitializer()) 
    Out << "external ";
  else
    switch (GV->getLinkage()) {
    case GlobalValue::InternalLinkage:  Out << "internal "; break;
    case GlobalValue::LinkOnceLinkage:  Out << "linkonce "; break;
    case GlobalValue::WeakLinkage:      Out << "weak "; break;
    case GlobalValue::AppendingLinkage: Out << "appending "; break;
    case GlobalValue::ExternalLinkage: break;
    }

  Out << (GV->isConstant() ? "constant " : "global ");
  printType(GV->getType()->getElementType());

  if (GV->hasInitializer()) {
    Constant* C = cast<Constant>(GV->getInitializer());
    assert(C &&  "GlobalVar initializer isn't constant?");
    writeOperand(GV->getInitializer(), false, isa<GlobalValue>(C));
  }

  printInfoComment(*GV);
  Out << "\n";
}


// printSymbolTable - Run through symbol table looking for constants
// and types. Emit their declarations.
void AssemblyWriter::printSymbolTable(const SymbolTable &ST) {

  // Print the types.
  for (SymbolTable::type_const_iterator TI = ST.type_begin();
       TI != ST.type_end(); ++TI ) {
    Out << "\t" << getLLVMName(TI->first) << " = type ";

    // Make sure we print out at least one level of the type structure, so
    // that we do not get %FILE = type %FILE
    //
    printTypeAtLeastOneLevel(TI->second) << "\n";
  }
    
  // Print the constants, in type plane order.
  for (SymbolTable::plane_const_iterator PI = ST.plane_begin();
       PI != ST.plane_end(); ++PI ) {
    SymbolTable::value_const_iterator VI = ST.value_begin(PI->first);
    SymbolTable::value_const_iterator VE = ST.value_end(PI->first);

    for (; VI != VE; ++VI) {
      const Value* V = VI->second;
      const Constant *CPV = dyn_cast<Constant>(V) ;
      if (CPV && !isa<GlobalValue>(V)) {
        printConstant(CPV);
      }
    }
  }
}


/// printConstant - Print out a constant pool entry...
///
void AssemblyWriter::printConstant(const Constant *CPV) {
  // Don't print out unnamed constants, they will be inlined
  if (!CPV->hasName()) return;

  // Print out name...
  Out << "\t" << getLLVMName(CPV->getName()) << " =";

  // Write the value out now...
  writeOperand(CPV, true, false);

  printInfoComment(*CPV);
  Out << "\n";
}

/// printFunction - Print all aspects of a function.
///
void AssemblyWriter::printFunction(const Function *F) {
  // Print out the return type and name...
  Out << "\n";

  if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);

  if (F->isExternal())
    Out << "declare ";
  else
    switch (F->getLinkage()) {
    case GlobalValue::InternalLinkage:  Out << "internal "; break;
    case GlobalValue::LinkOnceLinkage:  Out << "linkonce "; break;
    case GlobalValue::WeakLinkage:      Out << "weak "; break;
    case GlobalValue::AppendingLinkage: Out << "appending "; break;
    case GlobalValue::ExternalLinkage: break;
    }

  printType(F->getReturnType()) << ' ';
  if (!F->getName().empty())
    Out << getLLVMName(F->getName());
  else
    Out << "\"\"";
  Out << '(';
  Machine.incorporateFunction(F);

  // Loop over the arguments, printing them...
  const FunctionType *FT = F->getFunctionType();

  for(Function::const_aiterator I = F->abegin(), E = F->aend(); I != E; ++I)
    printArgument(I);

  // Finish printing arguments...
  if (FT->isVarArg()) {
    if (FT->getNumParams()) Out << ", ";
    Out << "...";  // Output varargs portion of signature!
  }
  Out << ')';

  if (F->isExternal()) {
    Out << "\n";
  } else {
    Out << " {";
  
    // Output all of its basic blocks... for the function
    for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
      printBasicBlock(I);

    Out << "}\n";
  }

  Machine.purgeFunction();
}

/// printArgument - This member is called for every argument that is passed into
/// the function.  Simply print it out
///
void AssemblyWriter::printArgument(const Argument *Arg) {
  // Insert commas as we go... the first arg doesn't get a comma
  if (Arg != &Arg->getParent()->afront()) Out << ", ";

  // Output type...
  printType(Arg->getType());
  
  // Output name, if available...
  if (Arg->hasName())
    Out << ' ' << getLLVMName(Arg->getName());
}

/// printBasicBlock - This member is called for each basic block in a method.
///
void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
  if (BB->hasName()) {              // Print out the label if it exists...
    Out << "\n" << BB->getName() << ':';
  } else if (!BB->use_empty()) {      // Don't print block # of no uses...
    Out << "\n; <label>:";
    int Slot = Machine.getSlot(BB);
    if (Slot != -1)
      Out << Slot;
    else
      Out << "<badref>";
  }

  if (BB->getParent() == 0)
    Out << "\t\t; Error: Block without parent!";
  else {
    if (BB != &BB->getParent()->front()) {  // Not the entry block?
      // Output predecessors for the block...
      Out << "\t\t;";
      pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB);
      
      if (PI == PE) {
        Out << " No predecessors!";
      } else {
        Out << " preds =";
        writeOperand(*PI, false, true);
        for (++PI; PI != PE; ++PI) {
          Out << ',';
          writeOperand(*PI, false, true);
        }
      }
    }
  }
  
  Out << "\n";

  if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);

  // Output all of the instructions in the basic block...
  for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
    printInstruction(*I);

  if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
}


/// printInfoComment - Print a little comment after the instruction indicating
/// which slot it occupies.
///
void AssemblyWriter::printInfoComment(const Value &V) {
  if (V.getType() != Type::VoidTy) {
    Out << "\t\t; <";
    printType(V.getType()) << '>';

    if (!V.hasName()) {
      int SlotNum = Machine.getSlot(&V);
      if (SlotNum == -1)
        Out << ":<badref>";
      else
        Out << ':' << SlotNum; // Print out the def slot taken.
    }
    Out << " [#uses=" << V.use_size() << ']';  // Output # uses
  }
}

/// printInstruction - This member is called for each Instruction in a function..
///
void AssemblyWriter::printInstruction(const Instruction &I) {
  if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);

  Out << "\t";

  // Print out name if it exists...
  if (I.hasName())
    Out << getLLVMName(I.getName()) << " = ";

  // If this is a volatile load or store, print out the volatile marker
  if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
      (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()))
      Out << "volatile ";

  // Print out the opcode...
  Out << I.getOpcodeName();

  // Print out the type of the operands...
  const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;

  // Special case conditional branches to swizzle the condition out to the front
  if (isa<BranchInst>(I) && I.getNumOperands() > 1) {
    writeOperand(I.getOperand(2), true);
    Out << ',';
    writeOperand(Operand, true);
    Out << ',';
    writeOperand(I.getOperand(1), true);

  } else if (isa<SwitchInst>(I)) {
    // Special case switch statement to get formatting nice and correct...
    writeOperand(Operand        , true); Out << ',';
    writeOperand(I.getOperand(1), true); Out << " [";

    for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
      Out << "\n\t\t";
      writeOperand(I.getOperand(op  ), true); Out << ',';
      writeOperand(I.getOperand(op+1), true);
    }
    Out << "\n\t]";
  } else if (isa<PHINode>(I)) {
    Out << ' ';
    printType(I.getType());
    Out << ' ';

    for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
      if (op) Out << ", ";
      Out << '[';  
      writeOperand(I.getOperand(op  ), false); Out << ',';
      writeOperand(I.getOperand(op+1), false); Out << " ]";
    }
  } else if (isa<ReturnInst>(I) && !Operand) {
    Out << " void";
  } else if (isa<CallInst>(I)) {
    const PointerType  *PTy = cast<PointerType>(Operand->getType());
    const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
    const Type       *RetTy = FTy->getReturnType();

    // If possible, print out the short form of the call instruction.  We can
    // only do this if the first argument is a pointer to a nonvararg function,
    // and if the return type is not a pointer to a function.
    //
    if (!FTy->isVarArg() &&
        (!isa<PointerType>(RetTy) || 
         !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
      Out << ' '; printType(RetTy);
      writeOperand(Operand, false);
    } else {
      writeOperand(Operand, true);
    }
    Out << '(';
    if (I.getNumOperands() > 1) writeOperand(I.getOperand(1), true);
    for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; ++op) {
      Out << ',';
      writeOperand(I.getOperand(op), true);
    }

    Out << " )";
  } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
    const PointerType  *PTy = cast<PointerType>(Operand->getType());
    const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
    const Type       *RetTy = FTy->getReturnType();

    // If possible, print out the short form of the invoke instruction. We can
    // only do this if the first argument is a pointer to a nonvararg function,
    // and if the return type is not a pointer to a function.
    //
    if (!FTy->isVarArg() &&
        (!isa<PointerType>(RetTy) || 
         !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
      Out << ' '; printType(RetTy);
      writeOperand(Operand, false);
    } else {
      writeOperand(Operand, true);
    }

    Out << '(';
    if (I.getNumOperands() > 3) writeOperand(I.getOperand(3), true);
    for (unsigned op = 4, Eop = I.getNumOperands(); op < Eop; ++op) {
      Out << ',';
      writeOperand(I.getOperand(op), true);
    }

    Out << " )\n\t\t\tto";
    writeOperand(II->getNormalDest(), true);
    Out << " unwind";
    writeOperand(II->getUnwindDest(), true);

  } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(&I)) {
    Out << ' ';
    printType(AI->getType()->getElementType());
    if (AI->isArrayAllocation()) {
      Out << ',';
      writeOperand(AI->getArraySize(), true);
    }
  } else if (isa<CastInst>(I)) {
    if (Operand) writeOperand(Operand, true);   // Work with broken code
    Out << " to ";
    printType(I.getType());
  } else if (isa<VAArgInst>(I)) {
    if (Operand) writeOperand(Operand, true);   // Work with broken code
    Out << ", ";
    printType(I.getType());
  } else if (const VANextInst *VAN = dyn_cast<VANextInst>(&I)) {
    if (Operand) writeOperand(Operand, true);   // Work with broken code
    Out << ", ";
    printType(VAN->getArgType());
  } else if (Operand) {   // Print the normal way...

    // PrintAllTypes - Instructions who have operands of all the same type 
    // omit the type from all but the first operand.  If the instruction has
    // different type operands (for example br), then they are all printed.
    bool PrintAllTypes = false;
    const Type *TheType = Operand->getType();

    // Shift Left & Right print both types even for Ubyte LHS, and select prints
    // types even if all operands are bools.
    if (isa<ShiftInst>(I) || isa<SelectInst>(I)) {
      PrintAllTypes = true;
    } else {
      for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
        Operand = I.getOperand(i);
        if (Operand->getType() != TheType) {
          PrintAllTypes = true;    // We have differing types!  Print them all!
          break;
        }
      }
    }
    
    if (!PrintAllTypes) {
      Out << ' ';
      printType(TheType);
    }

    for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
      if (i) Out << ',';
      writeOperand(I.getOperand(i), PrintAllTypes);
    }
  }

  printInfoComment(I);
  Out << "\n";
}


//===----------------------------------------------------------------------===//
//                       External Interface declarations
//===----------------------------------------------------------------------===//

void Module::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
  SlotMachine SlotTable(this);
  AssemblyWriter W(o, SlotTable, this, AAW);
  W.write(this);
}

void GlobalVariable::print(std::ostream &o) const {
  SlotMachine SlotTable(getParent());
  AssemblyWriter W(o, SlotTable, getParent(), 0);
  W.write(this);
}

void Function::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
  SlotMachine SlotTable(getParent());
  AssemblyWriter W(o, SlotTable, getParent(), AAW);

  W.write(this);
}

void BasicBlock::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
  SlotMachine SlotTable(getParent());
  AssemblyWriter W(o, SlotTable, 
                   getParent() ? getParent()->getParent() : 0, AAW);
  W.write(this);
}

void Instruction::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
  const Function *F = getParent() ? getParent()->getParent() : 0;
  SlotMachine SlotTable(F);
  AssemblyWriter W(o, SlotTable, F ? F->getParent() : 0, AAW);

  W.write(this);
}

void Constant::print(std::ostream &o) const {
  if (this == 0) { o << "<null> constant value\n"; return; }

  o << ' ' << getType()->getDescription() << ' ';

  std::map<const Type *, std::string> TypeTable;
  WriteConstantInt(o, this, false, TypeTable, 0);
}

void Type::print(std::ostream &o) const { 
  if (this == 0)
    o << "<null Type>";
  else
    o << getDescription();
}

void Argument::print(std::ostream &o) const {
  WriteAsOperand(o, this, true, true,
                 getParent() ? getParent()->getParent() : 0);
}

// Value::dump - allow easy printing of  Values from the debugger.
// Located here because so much of the needed functionality is here.
void Value::dump() const { print(std::cerr); }

// Type::dump - allow easy printing of  Values from the debugger.
// Located here because so much of the needed functionality is here.
void Type::dump() const { print(std::cerr); }

//===----------------------------------------------------------------------===//
//  CachedWriter Class Implementation
//===----------------------------------------------------------------------===//

void CachedWriter::setModule(const Module *M) {
  delete SC; delete AW;
  if (M) {
    SC = new SlotMachine(M );
    AW = new AssemblyWriter(Out, *SC, M, 0);
  } else {
    SC = 0; AW = 0;
  }
}

CachedWriter::~CachedWriter() {
  delete AW;
  delete SC;
}

CachedWriter &CachedWriter::operator<<(const Value &V) {
  assert(AW && SC && "CachedWriter does not have a current module!");
  if (const Instruction *I = dyn_cast<Instruction>(&V))
    AW->write(I);
  else if (const BasicBlock *BB = dyn_cast<BasicBlock>(&V))
    AW->write(BB);
  else if (const Function *F = dyn_cast<Function>(&V))
    AW->write(F);
  else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(&V))
    AW->write(GV);
  else 
    AW->writeOperand(&V, true, true);
  return *this;
}

CachedWriter& CachedWriter::operator<<(const Type &Ty) {
  if (SymbolicTypes) {
    const Module *M = AW->getModule();
    if (M) WriteTypeSymbolic(Out, &Ty, M);
  } else {
    AW->write(&Ty);
  }
  return *this;
}

//===----------------------------------------------------------------------===//
//===--                    SlotMachine Implementation
//===----------------------------------------------------------------------===//

#if 0
#define SC_DEBUG(X) std::cerr << X
#else
#define SC_DEBUG(X)
#endif

// Module level constructor. Causes the contents of the Module (sans functions)
// to be added to the slot table.
SlotMachine::SlotMachine(const Module *M) 
  : TheModule(M)    ///< Saved for lazy initialization.
  , TheFunction(0)
  , FunctionProcessed(false)
  , mMap()
  , mTypes()
  , fMap()
  , fTypes()
{
}

// Function level constructor. Causes the contents of the Module and the one
// function provided to be added to the slot table.
SlotMachine::SlotMachine(const Function *F ) 
  : TheModule( F ? F->getParent() : 0 ) ///< Saved for lazy initialization
  , TheFunction(F) ///< Saved for lazy initialization
  , FunctionProcessed(false)
  , mMap()
  , mTypes()
  , fMap()
  , fTypes()
{
}

inline void SlotMachine::initialize(void) {
  if ( TheModule) { 
    processModule(); 
    TheModule = 0; ///< Prevent re-processing next time we're called.
  }
  if ( TheFunction && ! FunctionProcessed) { 
    processFunction(); 
  }
}

// Iterate through all the global variables, functions, and global
// variable initializers and create slots for them. 
void SlotMachine::processModule() {
  SC_DEBUG("begin processModule!\n");

  // Add all of the global variables to the value table...
  for (Module::const_giterator I = TheModule->gbegin(), E = TheModule->gend();
       I != E; ++I)
    createSlot(I);

  // Add all the functions to the table
  for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
       I != E; ++I)
    createSlot(I);

  SC_DEBUG("end processModule!\n");
}


// Process the arguments, basic blocks, and instructions  of a function.
void SlotMachine::processFunction() {
  SC_DEBUG("begin processFunction!\n");

  // Add all the function arguments
  for(Function::const_aiterator AI = TheFunction->abegin(), 
      AE = TheFunction->aend(); AI != AE; ++AI)
    createSlot(AI);

  SC_DEBUG("Inserting Instructions:\n");

  // Add all of the basic blocks and instructions
  for (Function::const_iterator BB = TheFunction->begin(), 
       E = TheFunction->end(); BB != E; ++BB) {
    createSlot(BB);
    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) {
      createSlot(I);
    }
  }

  FunctionProcessed = true;

  SC_DEBUG("end processFunction!\n");
}

// Clean up after incorporating a function. This is the only way
// to get out of the function incorporation state that affects the
// getSlot/createSlot lock. Function incorporation state is indicated
// by TheFunction != 0.
void SlotMachine::purgeFunction() {
  SC_DEBUG("begin purgeFunction!\n");
  fMap.clear(); // Simply discard the function level map
  fTypes.clear();
  TheFunction = 0;
  FunctionProcessed = false;
  SC_DEBUG("end purgeFunction!\n");
}

/// Get the slot number for a value. This function will assert if you
/// ask for a Value that hasn't previously been inserted with createSlot.
/// Types are forbidden because Type does not inherit from Value (any more).
int SlotMachine::getSlot(const Value *V) {
  assert( V && "Can't get slot for null Value" );
  assert(!isa<Constant>(V) || isa<GlobalValue>(V) && 
    "Can't insert a non-GlobalValue Constant into SlotMachine"); 

  // Check for uninitialized state and do lazy initialization
  this->initialize();

  // Get the type of the value
  const Type* VTy = V->getType();

  // Find the type plane in the module map
  TypedPlanes::const_iterator MI = mMap.find(VTy);

  if ( TheFunction ) {
    // Lookup the type in the function map too
    TypedPlanes::const_iterator FI = fMap.find(VTy);
    // If there is a corresponding type plane in the function map
    if ( FI != fMap.end() ) {
      // Lookup the Value in the function map
      ValueMap::const_iterator FVI = FI->second.map.find(V);
      // If the value doesn't exist in the function map
      if ( FVI == FI->second.map.end() ) {
        // Look up the value in the module map.
        if (MI == mMap.end()) return -1;
        ValueMap::const_iterator MVI = MI->second.map.find(V);
        // If we didn't find it, it wasn't inserted
        if (MVI == MI->second.map.end()) return -1;
        assert( MVI != MI->second.map.end() && "Value not found");
        // We found it only at the module level
        return MVI->second; 

      // else the value exists in the function map
      } else {
        // Return the slot number as the module's contribution to
        // the type plane plus the index in the function's contribution
        // to the type plane.
        if (MI != mMap.end())
          return MI->second.next_slot + FVI->second;
        else
          return FVI->second;
      }
    }
  }

  // N.B. Can get here only if either !TheFunction or the function doesn't
  // have a corresponding type plane for the Value

  // Make sure the type plane exists
  if (MI == mMap.end()) return -1;
  // Lookup the value in the module's map
  ValueMap::const_iterator MVI = MI->second.map.find(V);
  // Make sure we found it.
  if (MVI == MI->second.map.end()) return -1;
  // Return it.
  return MVI->second;
}

/// Get the slot number for a value. This function will assert if you
/// ask for a Value that hasn't previously been inserted with createSlot.
/// Types are forbidden because Type does not inherit from Value (any more).
int SlotMachine::getSlot(const Type *Ty) {
  assert( Ty && "Can't get slot for null Type" );

  // Check for uninitialized state and do lazy initialization
  this->initialize();

  if ( TheFunction ) {
    // Lookup the Type in the function map
    TypeMap::const_iterator FTI = fTypes.map.find(Ty);
    // If the Type doesn't exist in the function map
    if ( FTI == fTypes.map.end() ) {
      TypeMap::const_iterator MTI = mTypes.map.find(Ty);
      // If we didn't find it, it wasn't inserted
      if (MTI == mTypes.map.end()) 
        return -1;
      // We found it only at the module level
      return MTI->second; 

    // else the value exists in the function map
    } else {
      // Return the slot number as the module's contribution to
      // the type plane plus the index in the function's contribution
      // to the type plane.
      return mTypes.next_slot + FTI->second;
    }
  }

  // N.B. Can get here only if either !TheFunction

  // Lookup the value in the module's map
  TypeMap::const_iterator MTI = mTypes.map.find(Ty);
  // Make sure we found it.
  if (MTI == mTypes.map.end()) return -1;
  // Return it.
  return MTI->second;
}

// Create a new slot, or return the existing slot if it is already
// inserted. Note that the logic here parallels getSlot but instead
// of asserting when the Value* isn't found, it inserts the value.
unsigned SlotMachine::createSlot(const Value *V) {
  assert( V && "Can't insert a null Value to SlotMachine");
  assert(!isa<Constant>(V) || isa<GlobalValue>(V) && 
    "Can't insert a non-GlobalValue Constant into SlotMachine"); 

  const Type* VTy = V->getType();

  // Just ignore void typed things
  if (VTy == Type::VoidTy) return 0; // FIXME: Wrong return value!

  // Look up the type plane for the Value's type from the module map
  TypedPlanes::const_iterator MI = mMap.find(VTy);

  if ( TheFunction ) {
    // Get the type plane for the Value's type from the function map
    TypedPlanes::const_iterator FI = fMap.find(VTy);
    // If there is a corresponding type plane in the function map
    if ( FI != fMap.end() ) {
      // Lookup the Value in the function map
      ValueMap::const_iterator FVI = FI->second.map.find(V);
      // If the value doesn't exist in the function map
      if ( FVI == FI->second.map.end() ) {
        // If there is no corresponding type plane in the module map
        if ( MI == mMap.end() )
          return insertValue(V);
        // Look up the value in the module map
        ValueMap::const_iterator MVI = MI->second.map.find(V);
        // If we didn't find it, it wasn't inserted
        if ( MVI == MI->second.map.end() )
          return insertValue(V);
        else
          // We found it only at the module level
          return MVI->second;

      // else the value exists in the function map
      } else {
        if ( MI == mMap.end() )
          return FVI->second;
        else
          // Return the slot number as the module's contribution to
          // the type plane plus the index in the function's contribution
          // to the type plane.
          return MI->second.next_slot + FVI->second;
      }

    // else there is not a corresponding type plane in the function map
    } else {
      // If the type plane doesn't exists at the module level
      if ( MI == mMap.end() ) {
        return insertValue(V);
      // else type plane exists at the module level, examine it
      } else {
        // Look up the value in the module's map
        ValueMap::const_iterator MVI = MI->second.map.find(V);
        // If we didn't find it there either
        if ( MVI == MI->second.map.end() )
          // Return the slot number as the module's contribution to
          // the type plane plus the index of the function map insertion.
          return MI->second.next_slot + insertValue(V);
        else
          return MVI->second;
      }
    }
  }

  // N.B. Can only get here if !TheFunction

  // If the module map's type plane is not for the Value's type
  if ( MI != mMap.end() ) {
    // Lookup the value in the module's map
    ValueMap::const_iterator MVI = MI->second.map.find(V);
    if ( MVI != MI->second.map.end() ) 
      return MVI->second;
  }

  return insertValue(V);
}

// Create a new slot, or return the existing slot if it is already
// inserted. Note that the logic here parallels getSlot but instead
// of asserting when the Value* isn't found, it inserts the value.
unsigned SlotMachine::createSlot(const Type *Ty) {
  assert( Ty && "Can't insert a null Type to SlotMachine");

  if ( TheFunction ) {
    // Lookup the Type in the function map
    TypeMap::const_iterator FTI = fTypes.map.find(Ty);
    // If the type doesn't exist in the function map
    if ( FTI == fTypes.map.end() ) {
      // Look up the type in the module map
      TypeMap::const_iterator MTI = mTypes.map.find(Ty);
      // If we didn't find it, it wasn't inserted
      if ( MTI == mTypes.map.end() )
        return insertValue(Ty);
      else
        // We found it only at the module level
        return MTI->second;

    // else the value exists in the function map
    } else {
      // Return the slot number as the module's contribution to
      // the type plane plus the index in the function's contribution
      // to the type plane.
      return mTypes.next_slot + FTI->second;
    }
  }

  // N.B. Can only get here if !TheFunction

  // Lookup the type in the module's map
  TypeMap::const_iterator MTI = mTypes.map.find(Ty);
  if ( MTI != mTypes.map.end() ) 
    return MTI->second;

  return insertValue(Ty);
}

// Low level insert function. Minimal checking is done. This
// function is just for the convenience of createSlot (above).
unsigned SlotMachine::insertValue(const Value *V ) {
  assert(V && "Can't insert a null Value into SlotMachine!");
  assert(!isa<Constant>(V) || isa<GlobalValue>(V) && 
    "Can't insert a non-GlobalValue Constant into SlotMachine"); 

  // If this value does not contribute to a plane (is void)
  // or if the value already has a name then ignore it. 
  if (V->getType() == Type::VoidTy || V->hasName() ) {
      SC_DEBUG("ignored value " << *V << "\n");
      return 0;   // FIXME: Wrong return value
  }

  const Type *VTy = V->getType();
  unsigned DestSlot = 0;

  if ( TheFunction ) {
    TypedPlanes::iterator I = fMap.find( VTy );
    if ( I == fMap.end() ) 
      I = fMap.insert(std::make_pair(VTy,ValuePlane())).first;
    DestSlot = I->second.map[V] = I->second.next_slot++;
  } else {
    TypedPlanes::iterator I = mMap.find( VTy );
    if ( I == mMap.end() )
      I = mMap.insert(std::make_pair(VTy,ValuePlane())).first;
    DestSlot = I->second.map[V] = I->second.next_slot++;
  }

  SC_DEBUG("  Inserting value [" << VTy << "] = " << V << " slot=" << 
           DestSlot << " [");
  // G = Global, C = Constant, T = Type, F = Function, o = other
  SC_DEBUG((isa<GlobalVariable>(V) ? 'G' : (isa<Function>(V) ? 'F' : 
           (isa<Constant>(V) ? 'C' : 'o'))));
  SC_DEBUG("]\n");
  return DestSlot;
}

// Low level insert function. Minimal checking is done. This
// function is just for the convenience of createSlot (above).
unsigned SlotMachine::insertValue(const Type *Ty ) {
  assert(Ty && "Can't insert a null Type into SlotMachine!");

  unsigned DestSlot = 0;

  if ( TheFunction ) {
    DestSlot = fTypes.map[Ty] = fTypes.next_slot++;
  } else {
    DestSlot = fTypes.map[Ty] = fTypes.next_slot++;
  }
  SC_DEBUG("  Inserting type [" << DestSlot << "] = " << Ty << "\n");
  return DestSlot;
}

// vim: sw=2