aboutsummaryrefslogtreecommitdiffstats
path: root/lib/VMCore/AsmWriter.cpp
blob: c218c0fcd00af945975651a93f5fe8c5c36b3327 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
//===-- Writer.cpp - Library for Printing VM assembly files ------*- C++ -*--=//
//
// This library implements the functionality defined in llvm/Assembly/Writer.h
//
// This library uses the Analysis library to figure out offsets for
// variables in the method tables...
//
// TODO: print out the type name instead of the full type if a particular type
//       is in the symbol table...
//
//===----------------------------------------------------------------------===//

#include "llvm/Assembly/CachedWriter.h"
#include "llvm/Analysis/SlotCalculator.h"
#include "llvm/Module.h"
#include "llvm/Method.h"
#include "llvm/GlobalVariable.h"
#include "llvm/BasicBlock.h"
#include "llvm/ConstantVals.h"
#include "llvm/iMemory.h"
#include "llvm/iTerminators.h"
#include "llvm/iPHINode.h"
#include "llvm/iOther.h"
#include "llvm/SymbolTable.h"
#include "Support/StringExtras.h"
#include "Support/STLExtras.h"
#include <algorithm>
#include <map>
using std::string;
using std::map;
using std::vector;
using std::ostream;

static const Module *getModuleFromVal(const Value *V) {
  if (const MethodArgument *MA =dyn_cast<const MethodArgument>(V))
    return MA->getParent() ? MA->getParent()->getParent() : 0;
  else if (const BasicBlock *BB = dyn_cast<const BasicBlock>(V))
    return BB->getParent() ? BB->getParent()->getParent() : 0;
  else if (const Instruction *I = dyn_cast<const Instruction>(V)) {
    const Method *M = I->getParent() ? I->getParent()->getParent() : 0;
    return M ? M->getParent() : 0;
  } else if (const GlobalValue *GV =dyn_cast<const GlobalValue>(V))
    return GV->getParent();
  else if (const Module *Mod  = dyn_cast<const Module>(V))
    return Mod;
  return 0;
}

static SlotCalculator *createSlotCalculator(const Value *V) {
  assert(!isa<Type>(V) && "Can't create an SC for a type!");
  if (const MethodArgument *MA =dyn_cast<const MethodArgument>(V)){
    return new SlotCalculator(MA->getParent(), true);
  } else if (const Instruction *I = dyn_cast<const Instruction>(V)) {
    return new SlotCalculator(I->getParent()->getParent(), true);
  } else if (const BasicBlock *BB = dyn_cast<const BasicBlock>(V)) {
    return new SlotCalculator(BB->getParent(), true);
  } else if (const GlobalVariable *GV =dyn_cast<const GlobalVariable>(V)){
    return new SlotCalculator(GV->getParent(), true);
  } else if (const Method *Meth = dyn_cast<const Method>(V)) {
    return new SlotCalculator(Meth, true);
  } else if (const Module *Mod  = dyn_cast<const Module>(V)) {
    return new SlotCalculator(Mod, true);
  }
  return 0;
}

// WriteAsOperand - Write the name of the specified value out to the specified
// ostream.  This can be useful when you just want to print int %reg126, not the
// whole instruction that generated it.
//
static void WriteAsOperandInternal(ostream &Out, const Value *V, bool PrintName,
                                   SlotCalculator *Table) {
  if (PrintName && V->hasName()) {
    Out << " %" << V->getName();
  } else {
    if (const Constant *CPV = dyn_cast<const Constant>(V)) {
      Out << " " << CPV->getStrValue();
    } else {
      int Slot;
      if (Table) {
	Slot = Table->getValSlot(V);
      } else {
        if (const Type *Ty = dyn_cast<const Type>(V)) {
          Out << " " << Ty->getDescription();
          return;
        }

        Table = createSlotCalculator(V);
        if (Table == 0) { Out << "BAD VALUE TYPE!"; return; }

	Slot = Table->getValSlot(V);
	delete Table;
      }
      if (Slot >= 0)  Out << " %" << Slot;
      else if (PrintName)
        Out << "<badref>";     // Not embeded into a location?
    }
  }
}


// If the module has a symbol table, take all global types and stuff their
// names into the TypeNames map.
//
static void fillTypeNameTable(const Module *M,
                              map<const Type *, string> &TypeNames) {
  if (M && M->hasSymbolTable()) {
    const SymbolTable *ST = M->getSymbolTable();
    SymbolTable::const_iterator PI = ST->find(Type::TypeTy);
    if (PI != ST->end()) {
      SymbolTable::type_const_iterator I = PI->second.begin();
      for (; I != PI->second.end(); ++I) {
        // As a heuristic, don't insert pointer to primitive types, because
        // they are used too often to have a single useful name.
        //
        const Type *Ty = cast<const Type>(I->second);
        if (!isa<PointerType>(Ty) ||
            !cast<PointerType>(Ty)->getElementType()->isPrimitiveType())
          TypeNames.insert(std::make_pair(Ty, "%"+I->first));
      }
    }
  }
}



static string calcTypeName(const Type *Ty, vector<const Type *> &TypeStack,
                           map<const Type *, string> &TypeNames) {
  if (Ty->isPrimitiveType()) return Ty->getDescription();  // Base case

  // Check to see if the type is named.
  map<const Type *, string>::iterator I = TypeNames.find(Ty);
  if (I != TypeNames.end()) return I->second;

  // Check to see if the Type is already on the stack...
  unsigned Slot = 0, CurSize = TypeStack.size();
  while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type

  // This is another base case for the recursion.  In this case, we know 
  // that we have looped back to a type that we have previously visited.
  // Generate the appropriate upreference to handle this.
  // 
  if (Slot < CurSize)
    return "\\" + utostr(CurSize-Slot);       // Here's the upreference

  TypeStack.push_back(Ty);    // Recursive case: Add us to the stack..
  
  string Result;
  switch (Ty->getPrimitiveID()) {
  case Type::MethodTyID: {
    const MethodType *MTy = cast<const MethodType>(Ty);
    Result = calcTypeName(MTy->getReturnType(), TypeStack, TypeNames) + " (";
    for (MethodType::ParamTypes::const_iterator
           I = MTy->getParamTypes().begin(),
           E = MTy->getParamTypes().end(); I != E; ++I) {
      if (I != MTy->getParamTypes().begin())
        Result += ", ";
      Result += calcTypeName(*I, TypeStack, TypeNames);
    }
    if (MTy->isVarArg()) {
      if (!MTy->getParamTypes().empty()) Result += ", ";
      Result += "...";
    }
    Result += ")";
    break;
  }
  case Type::StructTyID: {
    const StructType *STy = cast<const StructType>(Ty);
    Result = "{ ";
    for (StructType::ElementTypes::const_iterator
           I = STy->getElementTypes().begin(),
           E = STy->getElementTypes().end(); I != E; ++I) {
      if (I != STy->getElementTypes().begin())
        Result += ", ";
      Result += calcTypeName(*I, TypeStack, TypeNames);
    }
    Result += " }";
    break;
  }
  case Type::PointerTyID:
    Result = calcTypeName(cast<const PointerType>(Ty)->getElementType(), 
                          TypeStack, TypeNames) + " *";
    break;
  case Type::ArrayTyID: {
    const ArrayType *ATy = cast<const ArrayType>(Ty);
    int NumElements = ATy->getNumElements();
    Result = "[";
    if (NumElements != -1) Result += itostr(NumElements) + " x ";
    Result += calcTypeName(ATy->getElementType(), TypeStack, TypeNames) + "]";
    break;
  }
  default:
    assert(0 && "Unhandled case in getTypeProps!");
    Result = "<error>";
  }

  TypeStack.pop_back();       // Remove self from stack...
  return Result;
}


// printTypeInt - The internal guts of printing out a type that has a
// potentially named portion.
//
static ostream &printTypeInt(ostream &Out, const Type *Ty,
                             map<const Type *, string> &TypeNames) {
  // Primitive types always print out their description, regardless of whether
  // they have been named or not.
  //
  if (Ty->isPrimitiveType()) return Out << Ty->getDescription();

  // Check to see if the type is named.
  map<const Type *, string>::iterator I = TypeNames.find(Ty);
  if (I != TypeNames.end()) return Out << I->second;

  // Otherwise we have a type that has not been named but is a derived type.
  // Carefully recurse the type hierarchy to print out any contained symbolic
  // names.
  //
  vector<const Type *> TypeStack;
  string TypeName = calcTypeName(Ty, TypeStack, TypeNames);
  TypeNames.insert(std::make_pair(Ty, TypeName));//Cache type name for later use
  return Out << TypeName;
}


// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
// type, iff there is an entry in the modules symbol table for the specified
// type or one of it's component types.  This is slower than a simple x << Type;
//
ostream &WriteTypeSymbolic(ostream &Out, const Type *Ty, const Module *M) {
  Out << " "; 

  // If they want us to print out a type, attempt to make it symbolic if there
  // is a symbol table in the module...
  if (M && M->hasSymbolTable()) {
    map<const Type *, string> TypeNames;
    fillTypeNameTable(M, TypeNames);
    
    return printTypeInt(Out, Ty, TypeNames);
  } else {
    return Out << Ty->getDescription();
  }
}


// WriteAsOperand - Write the name of the specified value out to the specified
// ostream.  This can be useful when you just want to print int %reg126, not the
// whole instruction that generated it.
//
ostream &WriteAsOperand(ostream &Out, const Value *V, bool PrintType, 
			bool PrintName, SlotCalculator *Table) {
  if (PrintType)
    WriteTypeSymbolic(Out, V->getType(), getModuleFromVal(V));

  WriteAsOperandInternal(Out, V, PrintName, Table);
  return Out;
}



class AssemblyWriter {
  ostream &Out;
  SlotCalculator &Table;
  const Module *TheModule;
  map<const Type *, string> TypeNames;
public:
  inline AssemblyWriter(ostream &o, SlotCalculator &Tab, const Module *M)
    : Out(o), Table(Tab), TheModule(M) {

    // If the module has a symbol table, take all global types and stuff their
    // names into the TypeNames map.
    //
    fillTypeNameTable(M, TypeNames);
  }

  inline void write(const Module *M)         { printModule(M);      }
  inline void write(const GlobalVariable *G) { printGlobal(G);      }
  inline void write(const Method *M)         { printMethod(M);      }
  inline void write(const BasicBlock *BB)    { printBasicBlock(BB); }
  inline void write(const Instruction *I)    { printInstruction(I); }
  inline void write(const Constant *CPV)     { printConstant(CPV);  }
  inline void write(const Type *Ty)          { printType(Ty);       }

private :
  void printModule(const Module *M);
  void printSymbolTable(const SymbolTable &ST);
  void printConstant(const Constant *CPV);
  void printGlobal(const GlobalVariable *GV);
  void printMethod(const Method *M);
  void printMethodArgument(const MethodArgument *MA);
  void printBasicBlock(const BasicBlock *BB);
  void printInstruction(const Instruction *I);
  ostream &printType(const Type *Ty);

  void writeOperand(const Value *Op, bool PrintType, bool PrintName = true);

  // printInfoComment - Print a little comment after the instruction indicating
  // which slot it occupies.
  void printInfoComment(const Value *V);
};


void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType, 
				  bool PrintName) {
  if (PrintType) { Out << " "; printType(Operand->getType()); }
  WriteAsOperandInternal(Out, Operand, PrintName, &Table);
}


void AssemblyWriter::printModule(const Module *M) {
  // Loop over the symbol table, emitting all named constants...
  if (M->hasSymbolTable())
    printSymbolTable(*M->getSymbolTable());
  
  for_each(M->gbegin(), M->gend(), 
	   bind_obj(this, &AssemblyWriter::printGlobal));

  Out << "implementation\n";
  
  // Output all of the methods...
  for_each(M->begin(), M->end(), bind_obj(this,&AssemblyWriter::printMethod));
}

void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
  if (GV->hasName()) Out << "%" << GV->getName() << " = ";

  if (GV->hasInternalLinkage()) Out << "internal ";
  if (!GV->hasInitializer()) Out << "uninitialized ";

  Out << (GV->isConstant() ? "constant " : "global ");
  printType(GV->getType()->getElementType());

  if (GV->hasInitializer())
    writeOperand(GV->getInitializer(), false, false);

  printInfoComment(GV);
  Out << "\n";
}


// printSymbolTable - Run through symbol table looking for named constants
// if a named constant is found, emit it's declaration...
//
void AssemblyWriter::printSymbolTable(const SymbolTable &ST) {
  for (SymbolTable::const_iterator TI = ST.begin(); TI != ST.end(); ++TI) {
    SymbolTable::type_const_iterator I = ST.type_begin(TI->first);
    SymbolTable::type_const_iterator End = ST.type_end(TI->first);
    
    for (; I != End; ++I) {
      const Value *V = I->second;
      if (const Constant *CPV = dyn_cast<const Constant>(V)) {
	printConstant(CPV);
      } else if (const Type *Ty = dyn_cast<const Type>(V)) {
	Out << "\t%" << I->first << " = type " << Ty->getDescription() << "\n";
      }
    }
  }
}


// printConstant - Print out a constant pool entry...
//
void AssemblyWriter::printConstant(const Constant *CPV) {
  // Don't print out unnamed constants, they will be inlined
  if (!CPV->hasName()) return;

  // Print out name...
  Out << "\t%" << CPV->getName() << " = ";

  // Print out the constant type...
  printType(CPV->getType());

  // Write the value out now...
  writeOperand(CPV, false, false);

  if (!CPV->hasName() && CPV->getType() != Type::VoidTy) {
    int Slot = Table.getValSlot(CPV); // Print out the def slot taken...
    Out << "\t\t; <";
    printType(CPV->getType()) << ">:";
    if (Slot >= 0) Out << Slot;
    else Out << "<badref>";
  } 

  Out << "\n";
}

// printMethod - Print all aspects of a method.
//
void AssemblyWriter::printMethod(const Method *M) {
  // Print out the return type and name...
  Out << "\n" << (M->isExternal() ? "declare " : "")
      << (M->hasInternalLinkage() ? "internal " : "");
  printType(M->getReturnType()) << " \"" << M->getName() << "\"(";
  Table.incorporateMethod(M);

  // Loop over the arguments, printing them...
  const MethodType *MT = cast<const MethodType>(M->getMethodType());

  if (!M->isExternal()) {
    for_each(M->getArgumentList().begin(), M->getArgumentList().end(),
	     bind_obj(this, &AssemblyWriter::printMethodArgument));
  } else {
    // Loop over the arguments, printing them...
    const MethodType *MT = cast<const MethodType>(M->getMethodType());
    for (MethodType::ParamTypes::const_iterator I = MT->getParamTypes().begin(),
	   E = MT->getParamTypes().end(); I != E; ++I) {
      if (I != MT->getParamTypes().begin()) Out << ", ";
      printType(*I);
    }
  }

  // Finish printing arguments...
  if (MT->isVarArg()) {
    if (MT->getParamTypes().size()) Out << ", ";
    Out << "...";  // Output varargs portion of signature!
  }
  Out << ")\n";

  if (!M->isExternal()) {
    // Loop over the symbol table, emitting all named constants...
    if (M->hasSymbolTable())
      printSymbolTable(*M->getSymbolTable());

    Out << "begin";
  
    // Output all of its basic blocks... for the method
    for_each(M->begin(), M->end(),
	     bind_obj(this, &AssemblyWriter::printBasicBlock));

    Out << "end\n";
  }

  Table.purgeMethod();
}

// printMethodArgument - This member is called for every argument that 
// is passed into the method.  Simply print it out
//
void AssemblyWriter::printMethodArgument(const MethodArgument *Arg) {
  // Insert commas as we go... the first arg doesn't get a comma
  if (Arg != Arg->getParent()->getArgumentList().front()) Out << ", ";

  // Output type...
  printType(Arg->getType());
  
  // Output name, if available...
  if (Arg->hasName())
    Out << " %" << Arg->getName();
  else if (Table.getValSlot(Arg) < 0)
    Out << "<badref>";
}

// printBasicBlock - This member is called for each basic block in a methd.
//
void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
  if (BB->hasName()) {              // Print out the label if it exists...
    Out << "\n" << BB->getName() << ":";
  } else {
    int Slot = Table.getValSlot(BB);
    Out << "\n; <label>:";
    if (Slot >= 0) 
      Out << Slot;         // Extra newline seperates out label's
    else 
      Out << "<badref>"; 
  }
  Out << "\t\t\t\t\t;[#uses=" << BB->use_size() << "]\n";  // Output # uses

  // Output all of the instructions in the basic block...
  for_each(BB->begin(), BB->end(),
	   bind_obj(this, &AssemblyWriter::printInstruction));
}


// printInfoComment - Print a little comment after the instruction indicating
// which slot it occupies.
//
void AssemblyWriter::printInfoComment(const Value *V) {
  if (V->getType() != Type::VoidTy) {
    Out << "\t\t; <";
    printType(V->getType()) << ">";

    if (!V->hasName()) {
      int Slot = Table.getValSlot(V); // Print out the def slot taken...
      if (Slot >= 0) Out << ":" << Slot;
      else Out << ":<badref>";
    }
    Out << " [#uses=" << V->use_size() << "]";  // Output # uses
  }
}

// printInstruction - This member is called for each Instruction in a methd.
//
void AssemblyWriter::printInstruction(const Instruction *I) {
  Out << "\t";

  // Print out name if it exists...
  if (I && I->hasName())
    Out << "%" << I->getName() << " = ";

  // Print out the opcode...
  Out << I->getOpcodeName();

  // Print out the type of the operands...
  const Value *Operand = I->getNumOperands() ? I->getOperand(0) : 0;

  // Special case conditional branches to swizzle the condition out to the front
  if (I->getOpcode() == Instruction::Br && I->getNumOperands() > 1) {
    writeOperand(I->getOperand(2), true);
    Out << ",";
    writeOperand(Operand, true);
    Out << ",";
    writeOperand(I->getOperand(1), true);

  } else if (I->getOpcode() == Instruction::Switch) {
    // Special case switch statement to get formatting nice and correct...
    writeOperand(Operand         , true); Out << ",";
    writeOperand(I->getOperand(1), true); Out << " [";

    for (unsigned op = 2, Eop = I->getNumOperands(); op < Eop; op += 2) {
      Out << "\n\t\t";
      writeOperand(I->getOperand(op  ), true); Out << ",";
      writeOperand(I->getOperand(op+1), true);
    }
    Out << "\n\t]";
  } else if (isa<PHINode>(I)) {
    Out << " ";
    printType(I->getType());
    Out << " ";

    for (unsigned op = 0, Eop = I->getNumOperands(); op < Eop; op += 2) {
      if (op) Out << ", ";
      Out << "[";  
      writeOperand(I->getOperand(op  ), false); Out << ",";
      writeOperand(I->getOperand(op+1), false); Out << " ]";
    }
  } else if (isa<ReturnInst>(I) && !Operand) {
    Out << " void";
  } else if (isa<CallInst>(I)) {
    const PointerType *PTy = dyn_cast<PointerType>(Operand->getType());
    const MethodType  *MTy = PTy ?dyn_cast<MethodType>(PTy->getElementType()):0;
    const Type      *RetTy = MTy ? MTy->getReturnType() : 0;

    // If possible, print out the short form of the call instruction, but we can
    // only do this if the first argument is a pointer to a nonvararg method,
    // and if the value returned is not a pointer to a method.
    //
    if (RetTy && !MTy->isVarArg() &&
        (!isa<PointerType>(RetTy)||!isa<MethodType>(cast<PointerType>(RetTy)))){
      Out << " "; printType(RetTy);
      writeOperand(Operand, false);
    } else {
      writeOperand(Operand, true);
    }
    Out << "(";
    if (I->getNumOperands() > 1) writeOperand(I->getOperand(1), true);
    for (unsigned op = 2, Eop = I->getNumOperands(); op < Eop; ++op) {
      Out << ",";
      writeOperand(I->getOperand(op), true);
    }

    Out << " )";
  } else if (const InvokeInst *II = dyn_cast<InvokeInst>(I)) {
    // TODO: Should try to print out short form of the Invoke instruction
    writeOperand(Operand, true);
    Out << "(";
    if (I->getNumOperands() > 3) writeOperand(I->getOperand(3), true);
    for (unsigned op = 4, Eop = I->getNumOperands(); op < Eop; ++op) {
      Out << ",";
      writeOperand(I->getOperand(op), true);
    }

    Out << " )\n\t\t\tto";
    writeOperand(II->getNormalDest(), true);
    Out << " except";
    writeOperand(II->getExceptionalDest(), true);

  } else if (I->getOpcode() == Instruction::Malloc || 
	     I->getOpcode() == Instruction::Alloca) {
    Out << " ";
    printType(cast<const PointerType>(I->getType())->getElementType());
    if (I->getNumOperands()) {
      Out << ",";
      writeOperand(I->getOperand(0), true);
    }
  } else if (isa<CastInst>(I)) {
    writeOperand(Operand, true);
    Out << " to ";
    printType(I->getType());
  } else if (Operand) {   // Print the normal way...

    // PrintAllTypes - Instructions who have operands of all the same type 
    // omit the type from all but the first operand.  If the instruction has
    // different type operands (for example br), then they are all printed.
    bool PrintAllTypes = false;
    const Type *TheType = Operand->getType();

    for (unsigned i = 1, E = I->getNumOperands(); i != E; ++i) {
      Operand = I->getOperand(i);
      if (Operand->getType() != TheType) {
	PrintAllTypes = true;       // We have differing types!  Print them all!
	break;
      }
    }

    // Shift Left & Right print both types even for Ubyte LHS
    if (isa<ShiftInst>(I)) PrintAllTypes = true;

    if (!PrintAllTypes) {
      Out << " ";
      printType(I->getOperand(0)->getType());
    }

    for (unsigned i = 0, E = I->getNumOperands(); i != E; ++i) {
      if (i) Out << ",";
      writeOperand(I->getOperand(i), PrintAllTypes);
    }
  }

  printInfoComment(I);
  Out << "\n";
}


// printType - Go to extreme measures to attempt to print out a short, symbolic
// version of a type name.
//
ostream &AssemblyWriter::printType(const Type *Ty) {
  return printTypeInt(Out, Ty, TypeNames);
}


//===----------------------------------------------------------------------===//
//                       External Interface declarations
//===----------------------------------------------------------------------===//



void WriteToAssembly(const Module *M, ostream &o) {
  if (M == 0) { o << "<null> module\n"; return; }
  SlotCalculator SlotTable(M, true);
  AssemblyWriter W(o, SlotTable, M);

  W.write(M);
}

void WriteToAssembly(const GlobalVariable *G, ostream &o) {
  if (G == 0) { o << "<null> global variable\n"; return; }
  SlotCalculator SlotTable(G->getParent(), true);
  AssemblyWriter W(o, SlotTable, G->getParent());
  W.write(G);
}

void WriteToAssembly(const Method *M, ostream &o) {
  if (M == 0) { o << "<null> method\n"; return; }
  SlotCalculator SlotTable(M->getParent(), true);
  AssemblyWriter W(o, SlotTable, M->getParent());

  W.write(M);
}


void WriteToAssembly(const BasicBlock *BB, ostream &o) {
  if (BB == 0) { o << "<null> basic block\n"; return; }

  SlotCalculator SlotTable(BB->getParent(), true);
  AssemblyWriter W(o, SlotTable, 
                   BB->getParent() ? BB->getParent()->getParent() : 0);

  W.write(BB);
}

void WriteToAssembly(const Constant *CPV, ostream &o) {
  if (CPV == 0) { o << "<null> constant pool value\n"; return; }
  o << " " << CPV->getType()->getDescription() << " " << CPV->getStrValue();
}

void WriteToAssembly(const Instruction *I, ostream &o) {
  if (I == 0) { o << "<null> instruction\n"; return; }

  const Method *M = I->getParent() ? I->getParent()->getParent() : 0;
  SlotCalculator SlotTable(M, true);
  AssemblyWriter W(o, SlotTable, M ? M->getParent() : 0);

  W.write(I);
}

void CachedWriter::setModule(const Module *M) {
  delete SC; delete AW;
  if (M) {
    SC = new SlotCalculator(M, true);
    AW = new AssemblyWriter(Out, *SC, M);
  } else {
    SC = 0; AW = 0;
  }
}

CachedWriter::~CachedWriter() {
  delete AW;
  delete SC;
}

CachedWriter &CachedWriter::operator<<(const Value *V) {
  assert(AW && SC && "CachedWriter does not have a current module!");
  switch (V->getValueType()) {
  case Value::ConstantVal:
    Out << " "; AW->write(V->getType());
    Out << " " << cast<Constant>(V)->getStrValue(); break;
  case Value::MethodArgumentVal: 
    AW->write(V->getType()); Out << " " << V->getName(); break;
  case Value::TypeVal:           AW->write(cast<const Type>(V)); break;
  case Value::InstructionVal:    AW->write(cast<Instruction>(V)); break;
  case Value::BasicBlockVal:     AW->write(cast<BasicBlock>(V)); break;
  case Value::MethodVal:         AW->write(cast<Method>(V)); break;
  case Value::GlobalVariableVal: AW->write(cast<GlobalVariable>(V)); break;
  case Value::ModuleVal:         AW->write(cast<Module>(V)); break;
  default: Out << "<unknown value type: " << V->getValueType() << ">"; break;
  }
  return *this;
}