aboutsummaryrefslogtreecommitdiffstats
path: root/lib/VMCore/ConstantFold.cpp
blob: 28d671b898c9715f7711fc7068478778da3caebe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
//===- ConstantFolding.cpp - LLVM constant folder -------------------------===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This file implements folding of constants for LLVM.  This implements the
// (internal) ConstantFolding.h interface, which is used by the
// ConstantExpr::get* methods to automatically fold constants when possible.
//
// The current constant folding implementation is implemented in two pieces: the
// template-based folder for simple primitive constants like ConstantInt, and
// the special case hackery that we use to symbolically evaluate expressions
// that use ConstantExprs.
//
//===----------------------------------------------------------------------===//

#include "ConstantFolding.h"
#include "llvm/Constants.h"
#include "llvm/iPHINode.h"
#include "llvm/iOperators.h"
#include "llvm/InstrTypes.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include <cmath>
using namespace llvm;

namespace {
  struct ConstRules {
    ConstRules() {}
    
    // Binary Operators...
    virtual Constant *add(const Constant *V1, const Constant *V2) const = 0;
    virtual Constant *sub(const Constant *V1, const Constant *V2) const = 0;
    virtual Constant *mul(const Constant *V1, const Constant *V2) const = 0;
    virtual Constant *div(const Constant *V1, const Constant *V2) const = 0;
    virtual Constant *rem(const Constant *V1, const Constant *V2) const = 0;
    virtual Constant *op_and(const Constant *V1, const Constant *V2) const = 0;
    virtual Constant *op_or (const Constant *V1, const Constant *V2) const = 0;
    virtual Constant *op_xor(const Constant *V1, const Constant *V2) const = 0;
    virtual Constant *shl(const Constant *V1, const Constant *V2) const = 0;
    virtual Constant *shr(const Constant *V1, const Constant *V2) const = 0;
    virtual Constant *lessthan(const Constant *V1, const Constant *V2) const =0;
    virtual Constant *equalto(const Constant *V1, const Constant *V2) const = 0;

    // Casting operators.
    virtual Constant *castToBool  (const Constant *V) const = 0;
    virtual Constant *castToSByte (const Constant *V) const = 0;
    virtual Constant *castToUByte (const Constant *V) const = 0;
    virtual Constant *castToShort (const Constant *V) const = 0;
    virtual Constant *castToUShort(const Constant *V) const = 0;
    virtual Constant *castToInt   (const Constant *V) const = 0;
    virtual Constant *castToUInt  (const Constant *V) const = 0;
    virtual Constant *castToLong  (const Constant *V) const = 0;
    virtual Constant *castToULong (const Constant *V) const = 0;
    virtual Constant *castToFloat (const Constant *V) const = 0;
    virtual Constant *castToDouble(const Constant *V) const = 0;
    virtual Constant *castToPointer(const Constant *V,
                                    const PointerType *Ty) const = 0;
    
    // ConstRules::get - Return an instance of ConstRules for the specified
    // constant operands.
    //
    static ConstRules &get(const Constant *V1, const Constant *V2);
  private:
    ConstRules(const ConstRules &);             // Do not implement
    ConstRules &operator=(const ConstRules &);  // Do not implement
  };
}


//===----------------------------------------------------------------------===//
//                             TemplateRules Class
//===----------------------------------------------------------------------===//
//
// TemplateRules - Implement a subclass of ConstRules that provides all 
// operations as noops.  All other rules classes inherit from this class so 
// that if functionality is needed in the future, it can simply be added here 
// and to ConstRules without changing anything else...
// 
// This class also provides subclasses with typesafe implementations of methods
// so that don't have to do type casting.
//
template<class ArgType, class SubClassName>
class TemplateRules : public ConstRules {

  //===--------------------------------------------------------------------===//
  // Redirecting functions that cast to the appropriate types
  //===--------------------------------------------------------------------===//

  virtual Constant *add(const Constant *V1, const Constant *V2) const { 
    return SubClassName::Add((const ArgType *)V1, (const ArgType *)V2);  
  }
  virtual Constant *sub(const Constant *V1, const Constant *V2) const { 
    return SubClassName::Sub((const ArgType *)V1, (const ArgType *)V2);  
  }
  virtual Constant *mul(const Constant *V1, const Constant *V2) const { 
    return SubClassName::Mul((const ArgType *)V1, (const ArgType *)V2);  
  }
  virtual Constant *div(const Constant *V1, const Constant *V2) const { 
    return SubClassName::Div((const ArgType *)V1, (const ArgType *)V2);  
  }
  virtual Constant *rem(const Constant *V1, const Constant *V2) const { 
    return SubClassName::Rem((const ArgType *)V1, (const ArgType *)V2);  
  }
  virtual Constant *op_and(const Constant *V1, const Constant *V2) const { 
    return SubClassName::And((const ArgType *)V1, (const ArgType *)V2);  
  }
  virtual Constant *op_or(const Constant *V1, const Constant *V2) const { 
    return SubClassName::Or((const ArgType *)V1, (const ArgType *)V2);  
  }
  virtual Constant *op_xor(const Constant *V1, const Constant *V2) const { 
    return SubClassName::Xor((const ArgType *)V1, (const ArgType *)V2);  
  }
  virtual Constant *shl(const Constant *V1, const Constant *V2) const { 
    return SubClassName::Shl((const ArgType *)V1, (const ArgType *)V2);  
  }
  virtual Constant *shr(const Constant *V1, const Constant *V2) const { 
    return SubClassName::Shr((const ArgType *)V1, (const ArgType *)V2);  
  }

  virtual Constant *lessthan(const Constant *V1, const Constant *V2) const { 
    return SubClassName::LessThan((const ArgType *)V1, (const ArgType *)V2);
  }
  virtual Constant *equalto(const Constant *V1, const Constant *V2) const { 
    return SubClassName::EqualTo((const ArgType *)V1, (const ArgType *)V2);
  }

  // Casting operators.  ick
  virtual Constant *castToBool(const Constant *V) const {
    return SubClassName::CastToBool((const ArgType*)V);
  }
  virtual Constant *castToSByte(const Constant *V) const {
    return SubClassName::CastToSByte((const ArgType*)V);
  }
  virtual Constant *castToUByte(const Constant *V) const {
    return SubClassName::CastToUByte((const ArgType*)V);
  }
  virtual Constant *castToShort(const Constant *V) const {
    return SubClassName::CastToShort((const ArgType*)V);
  }
  virtual Constant *castToUShort(const Constant *V) const {
    return SubClassName::CastToUShort((const ArgType*)V);
  }
  virtual Constant *castToInt(const Constant *V) const {
    return SubClassName::CastToInt((const ArgType*)V);
  }
  virtual Constant *castToUInt(const Constant *V) const {
    return SubClassName::CastToUInt((const ArgType*)V);
  }
  virtual Constant *castToLong(const Constant *V) const {
    return SubClassName::CastToLong((const ArgType*)V);
  }
  virtual Constant *castToULong(const Constant *V) const {
    return SubClassName::CastToULong((const ArgType*)V);
  }
  virtual Constant *castToFloat(const Constant *V) const {
    return SubClassName::CastToFloat((const ArgType*)V);
  }
  virtual Constant *castToDouble(const Constant *V) const {
    return SubClassName::CastToDouble((const ArgType*)V);
  }
  virtual Constant *castToPointer(const Constant *V, 
                                  const PointerType *Ty) const {
    return SubClassName::CastToPointer((const ArgType*)V, Ty);
  }

  //===--------------------------------------------------------------------===//
  // Default "noop" implementations
  //===--------------------------------------------------------------------===//

  static Constant *Add(const ArgType *V1, const ArgType *V2) { return 0; }
  static Constant *Sub(const ArgType *V1, const ArgType *V2) { return 0; }
  static Constant *Mul(const ArgType *V1, const ArgType *V2) { return 0; }
  static Constant *Div(const ArgType *V1, const ArgType *V2) { return 0; }
  static Constant *Rem(const ArgType *V1, const ArgType *V2) { return 0; }
  static Constant *And(const ArgType *V1, const ArgType *V2) { return 0; }
  static Constant *Or (const ArgType *V1, const ArgType *V2) { return 0; }
  static Constant *Xor(const ArgType *V1, const ArgType *V2) { return 0; }
  static Constant *Shl(const ArgType *V1, const ArgType *V2) { return 0; }
  static Constant *Shr(const ArgType *V1, const ArgType *V2) { return 0; }
  static Constant *LessThan(const ArgType *V1, const ArgType *V2) {
    return 0;
  }
  static Constant *EqualTo(const ArgType *V1, const ArgType *V2) {
    return 0;
  }

  // Casting operators.  ick
  static Constant *CastToBool  (const Constant *V) { return 0; }
  static Constant *CastToSByte (const Constant *V) { return 0; }
  static Constant *CastToUByte (const Constant *V) { return 0; }
  static Constant *CastToShort (const Constant *V) { return 0; }
  static Constant *CastToUShort(const Constant *V) { return 0; }
  static Constant *CastToInt   (const Constant *V) { return 0; }
  static Constant *CastToUInt  (const Constant *V) { return 0; }
  static Constant *CastToLong  (const Constant *V) { return 0; }
  static Constant *CastToULong (const Constant *V) { return 0; }
  static Constant *CastToFloat (const Constant *V) { return 0; }
  static Constant *CastToDouble(const Constant *V) { return 0; }
  static Constant *CastToPointer(const Constant *,
                                 const PointerType *) {return 0;}
};



//===----------------------------------------------------------------------===//
//                             EmptyRules Class
//===----------------------------------------------------------------------===//
//
// EmptyRules provides a concrete base class of ConstRules that does nothing
//
struct EmptyRules : public TemplateRules<Constant, EmptyRules> {
  static Constant *EqualTo(const Constant *V1, const Constant *V2) {
    if (V1 == V2) return ConstantBool::True;
    return 0;
  }
};



//===----------------------------------------------------------------------===//
//                              BoolRules Class
//===----------------------------------------------------------------------===//
//
// BoolRules provides a concrete base class of ConstRules for the 'bool' type.
//
struct BoolRules : public TemplateRules<ConstantBool, BoolRules> {

  static Constant *LessThan(const ConstantBool *V1, const ConstantBool *V2){
    return ConstantBool::get(V1->getValue() < V2->getValue());
  }

  static Constant *EqualTo(const Constant *V1, const Constant *V2) {
    return ConstantBool::get(V1 == V2);
  }

  static Constant *And(const ConstantBool *V1, const ConstantBool *V2) {
    return ConstantBool::get(V1->getValue() & V2->getValue());
  }

  static Constant *Or(const ConstantBool *V1, const ConstantBool *V2) {
    return ConstantBool::get(V1->getValue() | V2->getValue());
  }

  static Constant *Xor(const ConstantBool *V1, const ConstantBool *V2) {
    return ConstantBool::get(V1->getValue() ^ V2->getValue());
  }

  // Casting operators.  ick
#define DEF_CAST(TYPE, CLASS, CTYPE) \
  static Constant *CastTo##TYPE  (const ConstantBool *V) {    \
    return CLASS::get(Type::TYPE##Ty, (CTYPE)(bool)V->getValue()); \
  }

  DEF_CAST(Bool  , ConstantBool, bool)
  DEF_CAST(SByte , ConstantSInt, signed char)
  DEF_CAST(UByte , ConstantUInt, unsigned char)
  DEF_CAST(Short , ConstantSInt, signed short)
  DEF_CAST(UShort, ConstantUInt, unsigned short)
  DEF_CAST(Int   , ConstantSInt, signed int)
  DEF_CAST(UInt  , ConstantUInt, unsigned int)
  DEF_CAST(Long  , ConstantSInt, int64_t)
  DEF_CAST(ULong , ConstantUInt, uint64_t)
  DEF_CAST(Float , ConstantFP  , float)
  DEF_CAST(Double, ConstantFP  , double)
#undef DEF_CAST
};


//===----------------------------------------------------------------------===//
//                            NullPointerRules Class
//===----------------------------------------------------------------------===//
//
// NullPointerRules provides a concrete base class of ConstRules for null
// pointers.
//
struct NullPointerRules : public TemplateRules<ConstantPointerNull,
                                               NullPointerRules> {
  static Constant *EqualTo(const Constant *V1, const Constant *V2) {
    return ConstantBool::True;  // Null pointers are always equal
  }
  static Constant *CastToBool(const Constant *V) {
    return ConstantBool::False;
  }
  static Constant *CastToSByte (const Constant *V) {
    return ConstantSInt::get(Type::SByteTy, 0);
  }
  static Constant *CastToUByte (const Constant *V) {
    return ConstantUInt::get(Type::UByteTy, 0);
  }
  static Constant *CastToShort (const Constant *V) {
    return ConstantSInt::get(Type::ShortTy, 0);
  }
  static Constant *CastToUShort(const Constant *V) {
    return ConstantUInt::get(Type::UShortTy, 0);
  }
  static Constant *CastToInt   (const Constant *V) {
    return ConstantSInt::get(Type::IntTy, 0);
  }
  static Constant *CastToUInt  (const Constant *V) {
    return ConstantUInt::get(Type::UIntTy, 0);
  }
  static Constant *CastToLong  (const Constant *V) {
    return ConstantSInt::get(Type::LongTy, 0);
  }
  static Constant *CastToULong (const Constant *V) {
    return ConstantUInt::get(Type::ULongTy, 0);
  }
  static Constant *CastToFloat (const Constant *V) {
    return ConstantFP::get(Type::FloatTy, 0);
  }
  static Constant *CastToDouble(const Constant *V) {
    return ConstantFP::get(Type::DoubleTy, 0);
  }

  static Constant *CastToPointer(const ConstantPointerNull *V,
                                 const PointerType *PTy) {
    return ConstantPointerNull::get(PTy);
  }
};


//===----------------------------------------------------------------------===//
//                             DirectRules Class
//===----------------------------------------------------------------------===//
//
// DirectRules provides a concrete base classes of ConstRules for a variety of
// different types.  This allows the C++ compiler to automatically generate our
// constant handling operations in a typesafe and accurate manner.
//
template<class ConstantClass, class BuiltinType, Type **Ty, class SuperClass>
struct DirectRules : public TemplateRules<ConstantClass, SuperClass> {
  static Constant *Add(const ConstantClass *V1, const ConstantClass *V2) {
    BuiltinType R = (BuiltinType)V1->getValue() + (BuiltinType)V2->getValue();
    return ConstantClass::get(*Ty, R);
  }

  static Constant *Sub(const ConstantClass *V1, const ConstantClass *V2) {
    BuiltinType R = (BuiltinType)V1->getValue() - (BuiltinType)V2->getValue();
    return ConstantClass::get(*Ty, R);
  }

  static Constant *Mul(const ConstantClass *V1, const ConstantClass *V2) {
    BuiltinType R = (BuiltinType)V1->getValue() * (BuiltinType)V2->getValue();
    return ConstantClass::get(*Ty, R);
  }

  static Constant *Div(const ConstantClass *V1, const ConstantClass *V2) {
    if (V2->isNullValue()) return 0;
    BuiltinType R = (BuiltinType)V1->getValue() / (BuiltinType)V2->getValue();
    return ConstantClass::get(*Ty, R);
  }

  static Constant *LessThan(const ConstantClass *V1, const ConstantClass *V2) {
    bool R = (BuiltinType)V1->getValue() < (BuiltinType)V2->getValue();
    return ConstantBool::get(R);
  } 

  static Constant *EqualTo(const ConstantClass *V1, const ConstantClass *V2) {
    bool R = (BuiltinType)V1->getValue() == (BuiltinType)V2->getValue();
    return ConstantBool::get(R);
  }

  static Constant *CastToPointer(const ConstantClass *V,
                                 const PointerType *PTy) {
    if (V->isNullValue())    // Is it a FP or Integral null value?
      return ConstantPointerNull::get(PTy);
    return 0;  // Can't const prop other types of pointers
  }

  // Casting operators.  ick
#define DEF_CAST(TYPE, CLASS, CTYPE) \
  static Constant *CastTo##TYPE  (const ConstantClass *V) {    \
    return CLASS::get(Type::TYPE##Ty, (CTYPE)(BuiltinType)V->getValue()); \
  }

  DEF_CAST(Bool  , ConstantBool, bool)
  DEF_CAST(SByte , ConstantSInt, signed char)
  DEF_CAST(UByte , ConstantUInt, unsigned char)
  DEF_CAST(Short , ConstantSInt, signed short)
  DEF_CAST(UShort, ConstantUInt, unsigned short)
  DEF_CAST(Int   , ConstantSInt, signed int)
  DEF_CAST(UInt  , ConstantUInt, unsigned int)
  DEF_CAST(Long  , ConstantSInt, int64_t)
  DEF_CAST(ULong , ConstantUInt, uint64_t)
  DEF_CAST(Float , ConstantFP  , float)
  DEF_CAST(Double, ConstantFP  , double)
#undef DEF_CAST
};


//===----------------------------------------------------------------------===//
//                           DirectIntRules Class
//===----------------------------------------------------------------------===//
//
// DirectIntRules provides implementations of functions that are valid on
// integer types, but not all types in general.
//
template <class ConstantClass, class BuiltinType, Type **Ty>
struct DirectIntRules
  : public DirectRules<ConstantClass, BuiltinType, Ty,
                       DirectIntRules<ConstantClass, BuiltinType, Ty> > {

  static Constant *Div(const ConstantClass *V1, const ConstantClass *V2) {
    if (V2->isNullValue()) return 0;
    if (V2->isAllOnesValue() &&              // MIN_INT / -1
        (BuiltinType)V1->getValue() == -(BuiltinType)V1->getValue())
      return 0;
    BuiltinType R = (BuiltinType)V1->getValue() / (BuiltinType)V2->getValue();
    return ConstantClass::get(*Ty, R);
  }

  static Constant *Rem(const ConstantClass *V1,
                       const ConstantClass *V2) {
    if (V2->isNullValue()) return 0;         // X / 0
    if (V2->isAllOnesValue() &&              // MIN_INT / -1
        (BuiltinType)V1->getValue() == -(BuiltinType)V1->getValue())
      return 0;
    BuiltinType R = (BuiltinType)V1->getValue() % (BuiltinType)V2->getValue();
    return ConstantClass::get(*Ty, R);
  }

  static Constant *And(const ConstantClass *V1, const ConstantClass *V2) {
    BuiltinType R = (BuiltinType)V1->getValue() & (BuiltinType)V2->getValue();
    return ConstantClass::get(*Ty, R);
  }
  static Constant *Or(const ConstantClass *V1, const ConstantClass *V2) {
    BuiltinType R = (BuiltinType)V1->getValue() | (BuiltinType)V2->getValue();
    return ConstantClass::get(*Ty, R);
  }
  static Constant *Xor(const ConstantClass *V1, const ConstantClass *V2) {
    BuiltinType R = (BuiltinType)V1->getValue() ^ (BuiltinType)V2->getValue();
    return ConstantClass::get(*Ty, R);
  }

  static Constant *Shl(const ConstantClass *V1, const ConstantClass *V2) {
    BuiltinType R = (BuiltinType)V1->getValue() << (BuiltinType)V2->getValue();
    return ConstantClass::get(*Ty, R);
  }

  static Constant *Shr(const ConstantClass *V1, const ConstantClass *V2) {
    BuiltinType R = (BuiltinType)V1->getValue() >> (BuiltinType)V2->getValue();
    return ConstantClass::get(*Ty, R);
  }
};


//===----------------------------------------------------------------------===//
//                           DirectFPRules Class
//===----------------------------------------------------------------------===//
//
/// DirectFPRules provides implementations of functions that are valid on
/// floating point types, but not all types in general.
///
template <class ConstantClass, class BuiltinType, Type **Ty>
struct DirectFPRules
  : public DirectRules<ConstantClass, BuiltinType, Ty,
                       DirectFPRules<ConstantClass, BuiltinType, Ty> > {
  static Constant *Rem(const ConstantClass *V1, const ConstantClass *V2) {
    if (V2->isNullValue()) return 0;
    BuiltinType Result = std::fmod((BuiltinType)V1->getValue(),
                                   (BuiltinType)V2->getValue());
    return ConstantClass::get(*Ty, Result);
  }
};


/// ConstRules::get - This method returns the constant rules implementation that
/// implements the semantics of the two specified constants.
ConstRules &ConstRules::get(const Constant *V1, const Constant *V2) {
  static EmptyRules       EmptyR;
  static BoolRules        BoolR;
  static NullPointerRules NullPointerR;
  static DirectIntRules<ConstantSInt,   signed char , &Type::SByteTy>  SByteR;
  static DirectIntRules<ConstantUInt, unsigned char , &Type::UByteTy>  UByteR;
  static DirectIntRules<ConstantSInt,   signed short, &Type::ShortTy>  ShortR;
  static DirectIntRules<ConstantUInt, unsigned short, &Type::UShortTy> UShortR;
  static DirectIntRules<ConstantSInt,   signed int  , &Type::IntTy>    IntR;
  static DirectIntRules<ConstantUInt, unsigned int  , &Type::UIntTy>   UIntR;
  static DirectIntRules<ConstantSInt,  int64_t      , &Type::LongTy>   LongR;
  static DirectIntRules<ConstantUInt, uint64_t      , &Type::ULongTy>  ULongR;
  static DirectFPRules <ConstantFP  , float         , &Type::FloatTy>  FloatR;
  static DirectFPRules <ConstantFP  , double        , &Type::DoubleTy> DoubleR;

  if (isa<ConstantExpr>(V1) || isa<ConstantExpr>(V2) ||
      isa<ConstantPointerRef>(V1) || isa<ConstantPointerRef>(V2))
    return EmptyR;

  switch (V1->getType()->getPrimitiveID()) {
  default: assert(0 && "Unknown value type for constant folding!");
  case Type::BoolTyID:    return BoolR;
  case Type::PointerTyID: return NullPointerR;
  case Type::SByteTyID:   return SByteR;
  case Type::UByteTyID:   return UByteR;
  case Type::ShortTyID:   return ShortR;
  case Type::UShortTyID:  return UShortR;
  case Type::IntTyID:     return IntR;
  case Type::UIntTyID:    return UIntR;
  case Type::LongTyID:    return LongR;
  case Type::ULongTyID:   return ULongR;
  case Type::FloatTyID:   return FloatR;
  case Type::DoubleTyID:  return DoubleR;
  }
}


//===----------------------------------------------------------------------===//
//                ConstantFold*Instruction Implementations
//===----------------------------------------------------------------------===//
//
// These methods contain the special case hackery required to symbolically
// evaluate some constant expression cases, and use the ConstantRules class to
// evaluate normal constants.
//
static unsigned getSize(const Type *Ty) {
  unsigned S = Ty->getPrimitiveSize();
  return S ? S : 8;  // Treat pointers at 8 bytes
}

Constant *llvm::ConstantFoldCastInstruction(const Constant *V,
                                            const Type *DestTy) {
  if (V->getType() == DestTy) return (Constant*)V;

  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
    if (CE->getOpcode() == Instruction::Cast) {
      Constant *Op = const_cast<Constant*>(CE->getOperand(0));
      // Try to not produce a cast of a cast, which is almost always redundant.
      if (!Op->getType()->isFloatingPoint() &&
          !CE->getType()->isFloatingPoint() &&
          !DestTy->getType()->isFloatingPoint()) {
        unsigned S1 = getSize(Op->getType()), S2 = getSize(CE->getType());
        unsigned S3 = getSize(DestTy);
        if (Op->getType() == DestTy && S3 >= S2)
          return Op;
        if (S1 >= S2 && S2 >= S3)
          return ConstantExpr::getCast(Op, DestTy);
        if (S1 <= S2 && S2 >= S3 && S1 <= S3)
          return ConstantExpr::getCast(Op, DestTy);
      }
    } else if (CE->getOpcode() == Instruction::GetElementPtr) {
      // If all of the indexes in the GEP are null values, there is no pointer
      // adjustment going on.  We might as well cast the source pointer.
      bool isAllNull = true;
      for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
        if (!CE->getOperand(i)->isNullValue()) {
          isAllNull = false;
          break;
        }
      if (isAllNull)
        return ConstantExpr::getCast(CE->getOperand(0), DestTy);
    }

  ConstRules &Rules = ConstRules::get(V, V);

  switch (DestTy->getPrimitiveID()) {
  case Type::BoolTyID:    return Rules.castToBool(V);
  case Type::UByteTyID:   return Rules.castToUByte(V);
  case Type::SByteTyID:   return Rules.castToSByte(V);
  case Type::UShortTyID:  return Rules.castToUShort(V);
  case Type::ShortTyID:   return Rules.castToShort(V);
  case Type::UIntTyID:    return Rules.castToUInt(V);
  case Type::IntTyID:     return Rules.castToInt(V);
  case Type::ULongTyID:   return Rules.castToULong(V);
  case Type::LongTyID:    return Rules.castToLong(V);
  case Type::FloatTyID:   return Rules.castToFloat(V);
  case Type::DoubleTyID:  return Rules.castToDouble(V);
  case Type::PointerTyID:
    return Rules.castToPointer(V, cast<PointerType>(DestTy));
  default: return 0;
  }
}

/// IdxCompare - Compare the two constants as though they were getelementptr
/// indices.  This allows coersion of the types to be the same thing.
///
/// If the two constants are the "same" (after coersion), return 0.  If the
/// first is less than the second, return -1, if the second is less than the
/// first, return 1.  If the constants are not integral, return -2.
///
static int IdxCompare(Constant *C1, Constant *C2) {
  if (C1 == C2) return 0;

  // Ok, we found a different index.  Are either of the operands
  // ConstantExprs?  If so, we can't do anything with them.
  if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
    return -2; // don't know!
  
  // Ok, we have two differing integer indices.  Convert them to
  // be the same type.  Long is always big enough, so we use it.
  C1 = ConstantExpr::getCast(C1, Type::LongTy);
  C2 = ConstantExpr::getCast(C2, Type::LongTy);
  if (C1 == C2) return 0;  // Are they just differing types?

  // If they are really different, now that they are the same type, then we
  // found a difference!
  if (cast<ConstantSInt>(C1)->getValue() < cast<ConstantSInt>(C2)->getValue())
    return -1;
  else
    return 1;
}

/// evaluateRelation - This function determines if there is anything we can
/// decide about the two constants provided.  This doesn't need to handle simple
/// things like integer comparisons, but should instead handle ConstantExpr's
/// and ConstantPointerRef's.  If we can determine that the two constants have a
/// particular relation to each other, we should return the corresponding SetCC
/// code, otherwise return Instruction::BinaryOpsEnd.
///
/// To simplify this code we canonicalize the relation so that the first
/// operand is always the most "complex" of the two.  We consider simple
/// constants (like ConstantInt) to be the simplest, followed by
/// ConstantPointerRef's, followed by ConstantExpr's (the most complex).
///
static Instruction::BinaryOps evaluateRelation(const Constant *V1,
                                               const Constant *V2) {
  assert(V1->getType() == V2->getType() &&
         "Cannot compare different types of values!");
  if (V1 == V2) return Instruction::SetEQ;

  if (!isa<ConstantExpr>(V1) && !isa<ConstantPointerRef>(V1)) {
    // If the first operand is simple, swap operands.
    assert((isa<ConstantPointerRef>(V2) || isa<ConstantExpr>(V2)) &&
           "Simple cases should have been handled by caller!");
    Instruction::BinaryOps SwappedRelation = evaluateRelation(V2, V1);
    if (SwappedRelation != Instruction::BinaryOpsEnd)
      return SetCondInst::getSwappedCondition(SwappedRelation);

  } else if (const ConstantPointerRef *CPR1 = dyn_cast<ConstantPointerRef>(V1)){
    if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
    Instruction::BinaryOps SwappedRelation = evaluateRelation(V2, V1);
    if (SwappedRelation != Instruction::BinaryOpsEnd)
      return SetCondInst::getSwappedCondition(SwappedRelation);
    else
      return Instruction::BinaryOpsEnd;
    }

    // Now we know that the RHS is a ConstantPointerRef or simple constant,
    // which (since the types must match) means that it's a ConstantPointerNull.
    if (const ConstantPointerRef *CPR2 = dyn_cast<ConstantPointerRef>(V2)) {
      assert(CPR1->getValue() != CPR2->getValue() &&
             "CPRs for the same value exist at different addresses??");
      // FIXME: If both globals are external weak, they might both be null!
      return Instruction::SetNE;
    } else {
      assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
      // Global can never be null.  FIXME: if we implement external weak
      // linkage, this is not necessarily true!
      return Instruction::SetNE;
    }

  } else {
    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
    // constantexpr, a CPR, or a simple constant.
    const ConstantExpr *CE1 = cast<ConstantExpr>(V1);
    Constant *CE1Op0 = CE1->getOperand(0);

    switch (CE1->getOpcode()) {
    case Instruction::Cast:
      // If the cast is not actually changing bits, and the second operand is a
      // null pointer, do the comparison with the pre-casted value.
      if (V2->isNullValue() &&
          CE1->getType()->isLosslesslyConvertibleTo(CE1Op0->getType()))
        return evaluateRelation(CE1Op0,
                                Constant::getNullValue(CE1Op0->getType()));

    case Instruction::GetElementPtr:
      // Ok, since this is a getelementptr, we know that the constant has a
      // pointer type.  Check the various cases.
      if (isa<ConstantPointerNull>(V2)) {
        // If we are comparing a GEP to a null pointer, check to see if the base
        // of the GEP equals the null pointer.
        if (isa<ConstantPointerRef>(CE1Op0)) {
          // FIXME: this is not true when we have external weak references!
          // No offset can go from a global to a null pointer.
          return Instruction::SetGT;
        } else if (isa<ConstantPointerNull>(CE1Op0)) {
          // If we are indexing from a null pointer, check to see if we have any
          // non-zero indices.
          for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
            if (!CE1->getOperand(i)->isNullValue())
              // Offsetting from null, must not be equal.
              return Instruction::SetGT;
          // Only zero indexes from null, must still be zero.
          return Instruction::SetEQ;
        }
        // Otherwise, we can't really say if the first operand is null or not.
      } else if (const ConstantPointerRef *CPR2 =
                                             dyn_cast<ConstantPointerRef>(V2)) {
        if (isa<ConstantPointerNull>(CE1Op0)) {
          // FIXME: This is not true with external weak references.
          return Instruction::SetLT;
        } else if (const ConstantPointerRef *CPR1 =
                   dyn_cast<ConstantPointerRef>(CE1Op0)) {
          if (CPR1 == CPR2) {
            // If this is a getelementptr of the same global, then it must be
            // different.  Because the types must match, the getelementptr could
            // only have at most one index, and because we fold getelementptr's
            // with a single zero index, it must be nonzero.
            assert(CE1->getNumOperands() == 2 &&
                   !CE1->getOperand(1)->isNullValue() &&
                   "Suprising getelementptr!");
            return Instruction::SetGT;
          } else {
            // If they are different globals, we don't know what the value is,
            // but they can't be equal.
            return Instruction::SetNE;
          }
        }
      } else {
        const ConstantExpr *CE2 = cast<ConstantExpr>(V2);
        const Constant *CE2Op0 = CE2->getOperand(0);

        // There are MANY other foldings that we could perform here.  They will
        // probably be added on demand, as they seem needed.
        switch (CE2->getOpcode()) {
        default: break;
        case Instruction::GetElementPtr:
          // By far the most common case to handle is when the base pointers are
          // obviously to the same or different globals.
          if (isa<ConstantPointerRef>(CE1Op0) &&
              isa<ConstantPointerRef>(CE2Op0)) {
            if (CE1Op0 != CE2Op0) // Don't know relative ordering, but not equal
              return Instruction::SetNE;
            // Ok, we know that both getelementptr instructions are based on the
            // same global.  From this, we can precisely determine the relative
            // ordering of the resultant pointers.
            unsigned i = 1;
            
            // Compare all of the operands the GEP's have in common.
            for (;i != CE1->getNumOperands() && i != CE2->getNumOperands(); ++i)
              switch (IdxCompare(CE1->getOperand(i), CE2->getOperand(i))) {
              case -1: return Instruction::SetLT;
              case 1:  return Instruction::SetGT;
              case -2: return Instruction::BinaryOpsEnd;
              }

            // Ok, we ran out of things they have in common.  If any leftovers
            // are non-zero then we have a difference, otherwise we are equal.
            for (; i < CE1->getNumOperands(); ++i)
              if (!CE1->getOperand(i)->isNullValue())
                return Instruction::SetGT;
            for (; i < CE2->getNumOperands(); ++i)
              if (!CE2->getOperand(i)->isNullValue())
                return Instruction::SetLT;
            return Instruction::SetEQ;
          }
        }
      }
      
    default:
      break;
    }
  }

  return Instruction::BinaryOpsEnd;
}

Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
                                              const Constant *V1,
                                              const Constant *V2) {
  Constant *C = 0;
  switch (Opcode) {
  default:                   break;
  case Instruction::Add:     C = ConstRules::get(V1, V2).add(V1, V2); break;
  case Instruction::Sub:     C = ConstRules::get(V1, V2).sub(V1, V2); break;
  case Instruction::Mul:     C = ConstRules::get(V1, V2).mul(V1, V2); break;
  case Instruction::Div:     C = ConstRules::get(V1, V2).div(V1, V2); break;
  case Instruction::Rem:     C = ConstRules::get(V1, V2).rem(V1, V2); break;
  case Instruction::And:     C = ConstRules::get(V1, V2).op_and(V1, V2); break;
  case Instruction::Or:      C = ConstRules::get(V1, V2).op_or (V1, V2); break;
  case Instruction::Xor:     C = ConstRules::get(V1, V2).op_xor(V1, V2); break;
  case Instruction::Shl:     C = ConstRules::get(V1, V2).shl(V1, V2); break;
  case Instruction::Shr:     C = ConstRules::get(V1, V2).shr(V1, V2); break;
  case Instruction::SetEQ:   C = ConstRules::get(V1, V2).equalto(V1, V2); break;
  case Instruction::SetLT:   C = ConstRules::get(V1, V2).lessthan(V1, V2);break;
  case Instruction::SetGT:   C = ConstRules::get(V1, V2).lessthan(V2, V1);break;
  case Instruction::SetNE:   // V1 != V2  ===  !(V1 == V2)
    C = ConstRules::get(V1, V2).equalto(V1, V2);
    if (C) return ConstantExpr::get(Instruction::Xor, C, ConstantBool::True);
    break;
  case Instruction::SetLE:   // V1 <= V2  ===  !(V2 < V1)
    C = ConstRules::get(V1, V2).lessthan(V2, V1);
    if (C) return ConstantExpr::get(Instruction::Xor, C, ConstantBool::True);
    break;
  case Instruction::SetGE:   // V1 >= V2  ===  !(V1 < V2)
    C = ConstRules::get(V1, V2).lessthan(V1, V2);
    if (C) return ConstantExpr::get(Instruction::Xor, C, ConstantBool::True);
    break;
  }

  // If we successfully folded the expression, return it now.
  if (C) return C;

  if (SetCondInst::isRelational(Opcode))
    switch (evaluateRelation(V1, V2)) {
    default: assert(0 && "Unknown relational!");
    case Instruction::BinaryOpsEnd:
      break;  // Couldn't determine anything about these constants.
    case Instruction::SetEQ:   // We know the constants are equal!
      // If we know the constants are equal, we can decide the result of this
      // computation precisely.
      return ConstantBool::get(Opcode == Instruction::SetEQ ||
                               Opcode == Instruction::SetLE ||
                               Opcode == Instruction::SetGE);
    case Instruction::SetLT:
      // If we know that V1 < V2, we can decide the result of this computation
      // precisely.
      return ConstantBool::get(Opcode == Instruction::SetLT ||
                               Opcode == Instruction::SetNE ||
                               Opcode == Instruction::SetLE);
    case Instruction::SetGT:
      // If we know that V1 > V2, we can decide the result of this computation
      // precisely.
      return ConstantBool::get(Opcode == Instruction::SetGT ||
                               Opcode == Instruction::SetNE ||
                               Opcode == Instruction::SetGE);
    case Instruction::SetLE:
      // If we know that V1 <= V2, we can only partially decide this relation.
      if (Opcode == Instruction::SetGT) return ConstantBool::False;
      if (Opcode == Instruction::SetLT) return ConstantBool::True;
      break;

    case Instruction::SetGE:
      // If we know that V1 >= V2, we can only partially decide this relation.
      if (Opcode == Instruction::SetLT) return ConstantBool::False;
      if (Opcode == Instruction::SetGT) return ConstantBool::True;
      break;
      
    case Instruction::SetNE:
      // If we know that V1 != V2, we can only partially decide this relation.
      if (Opcode == Instruction::SetEQ) return ConstantBool::False;
      if (Opcode == Instruction::SetNE) return ConstantBool::True;
      break;
    }

  if (const ConstantExpr *CE1 = dyn_cast<ConstantExpr>(V1)) {
    if (const ConstantExpr *CE2 = dyn_cast<ConstantExpr>(V2)) {
      // There are many possible foldings we could do here.  We should probably
      // at least fold add of a pointer with an integer into the appropriate
      // getelementptr.  This will improve alias analysis a bit.




    } else {
      // Just implement a couple of simple identities.
      switch (Opcode) {
      case Instruction::Add:
        if (V2->isNullValue()) return const_cast<Constant*>(V1);  // X + 0 == X
        break;
      case Instruction::Sub:
        if (V2->isNullValue()) return const_cast<Constant*>(V1);  // X - 0 == X
        break;
      case Instruction::Mul:
        if (V2->isNullValue()) return const_cast<Constant*>(V2);  // X * 0 == 0
        if (const ConstantInt *CI = dyn_cast<ConstantInt>(V2))
          if (CI->getRawValue() == 1)
            return const_cast<Constant*>(V1);                     // X * 1 == X
        break;
      case Instruction::Div:
        if (const ConstantInt *CI = dyn_cast<ConstantInt>(V2))
          if (CI->getRawValue() == 1)
            return const_cast<Constant*>(V1);                     // X / 1 == X
        break;
      case Instruction::Rem:
        if (const ConstantInt *CI = dyn_cast<ConstantInt>(V2))
          if (CI->getRawValue() == 1)
            return Constant::getNullValue(CI->getType()); // X % 1 == 0
        break;
      case Instruction::And:
        if (cast<ConstantIntegral>(V2)->isAllOnesValue())
          return const_cast<Constant*>(V1);                       // X & -1 == X
        if (V2->isNullValue()) return const_cast<Constant*>(V2);  // X & 0 == 0
        break;
      case Instruction::Or:
        if (V2->isNullValue()) return const_cast<Constant*>(V1);  // X | 0 == X
        if (cast<ConstantIntegral>(V2)->isAllOnesValue())
          return const_cast<Constant*>(V2);  // X | -1 == -1
        break;
      case Instruction::Xor:
        if (V2->isNullValue()) return const_cast<Constant*>(V1);  // X ^ 0 == X
        break;
      }
    }

  } else if (const ConstantExpr *CE2 = dyn_cast<ConstantExpr>(V2)) {
    // If V2 is a constant expr and V1 isn't, flop them around and fold the
    // other way if possible.
    switch (Opcode) {
    case Instruction::Add:
    case Instruction::Mul:
    case Instruction::And:
    case Instruction::Or:
    case Instruction::Xor:
    case Instruction::SetEQ:
    case Instruction::SetNE:
      // No change of opcode required.
      return ConstantFoldBinaryInstruction(Opcode, V2, V1);

    case Instruction::SetLT:
    case Instruction::SetGT:
    case Instruction::SetLE:
    case Instruction::SetGE:
      // Change the opcode as necessary to swap the operands.
      Opcode = SetCondInst::getSwappedCondition((Instruction::BinaryOps)Opcode);
      return ConstantFoldBinaryInstruction(Opcode, V2, V1);

    case Instruction::Shl:
    case Instruction::Shr:
    case Instruction::Sub:
    case Instruction::Div:
    case Instruction::Rem:
    default:  // These instructions cannot be flopped around.
      break;
    }
  }
  return 0;
}

Constant *llvm::ConstantFoldGetElementPtr(const Constant *C,
                                        const std::vector<Constant*> &IdxList) {
  if (IdxList.size() == 0 ||
      (IdxList.size() == 1 && IdxList[0]->isNullValue()))
    return const_cast<Constant*>(C);

  // TODO If C is null and all idx's are null, return null of the right type.


  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(const_cast<Constant*>(C))) {
    // Combine Indices - If the source pointer to this getelementptr instruction
    // is a getelementptr instruction, combine the indices of the two
    // getelementptr instructions into a single instruction.
    //
    if (CE->getOpcode() == Instruction::GetElementPtr) {
      const Type *LastTy = 0;
      for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
           I != E; ++I)
        LastTy = *I;

      if ((LastTy && isa<ArrayType>(LastTy)) || IdxList[0]->isNullValue()) {
        std::vector<Constant*> NewIndices;
        NewIndices.reserve(IdxList.size() + CE->getNumOperands());
        for (unsigned i = 1, e = CE->getNumOperands()-1; i != e; ++i)
          NewIndices.push_back(cast<Constant>(CE->getOperand(i)));

        // Add the last index of the source with the first index of the new GEP.
        // Make sure to handle the case when they are actually different types.
        Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
        if (!IdxList[0]->isNullValue())   // Otherwise it must be an array
          Combined = 
            ConstantExpr::get(Instruction::Add,
                              ConstantExpr::getCast(IdxList[0], Type::LongTy),
                              ConstantExpr::getCast(Combined, Type::LongTy));
        
        NewIndices.push_back(Combined);
        NewIndices.insert(NewIndices.end(), IdxList.begin()+1, IdxList.end());
        return ConstantExpr::getGetElementPtr(CE->getOperand(0), NewIndices);
      }
    }

    // Implement folding of:
    //    int* getelementptr ([2 x int]* cast ([3 x int]* %X to [2 x int]*),
    //                        long 0, long 0)
    // To: int* getelementptr ([3 x int]* %X, long 0, long 0)
    //
    if (CE->getOpcode() == Instruction::Cast && IdxList.size() > 1 &&
        IdxList[0]->isNullValue())
      if (const PointerType *SPT = 
          dyn_cast<PointerType>(CE->getOperand(0)->getType()))
        if (const ArrayType *SAT = dyn_cast<ArrayType>(SPT->getElementType()))
          if (const ArrayType *CAT =
              dyn_cast<ArrayType>(cast<PointerType>(C->getType())->getElementType()))
            if (CAT->getElementType() == SAT->getElementType())
              return ConstantExpr::getGetElementPtr(
                      (Constant*)CE->getOperand(0), IdxList);
  }
  return 0;
}