aboutsummaryrefslogtreecommitdiffstats
path: root/lib/VMCore/ConstantFold.cpp
blob: 73ca47a9aa56c565f3e69b5e19d2c698d15fcb10 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
//===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements folding of constants for LLVM.  This implements the
// (internal) ConstantFold.h interface, which is used by the
// ConstantExpr::get* methods to automatically fold constants when possible.
//
// The current constant folding implementation is implemented in two pieces: the
// template-based folder for simple primitive constants like ConstantInt, and
// the special case hackery that we use to symbolically evaluate expressions
// that use ConstantExprs.
//
//===----------------------------------------------------------------------===//

#include "ConstantFold.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/GlobalAlias.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MathExtras.h"
#include <limits>
using namespace llvm;

//===----------------------------------------------------------------------===//
//                ConstantFold*Instruction Implementations
//===----------------------------------------------------------------------===//

/// CastConstantVector - Convert the specified ConstantVector node to the
/// specified vector type.  At this point, we know that the elements of the
/// input vector constant are all simple integer or FP values.
static Constant *CastConstantVector(ConstantVector *CV,
                                    const VectorType *DstTy) {
  unsigned SrcNumElts = CV->getType()->getNumElements();
  unsigned DstNumElts = DstTy->getNumElements();
  const Type *SrcEltTy = CV->getType()->getElementType();
  const Type *DstEltTy = DstTy->getElementType();
  
  // If both vectors have the same number of elements (thus, the elements
  // are the same size), perform the conversion now.
  if (SrcNumElts == DstNumElts) {
    std::vector<Constant*> Result;
    
    // If the src and dest elements are both integers, or both floats, we can 
    // just BitCast each element because the elements are the same size.
    if ((SrcEltTy->isInteger() && DstEltTy->isInteger()) ||
        (SrcEltTy->isFloatingPoint() && DstEltTy->isFloatingPoint())) {
      for (unsigned i = 0; i != SrcNumElts; ++i)
        Result.push_back(
          ConstantExpr::getBitCast(CV->getOperand(i), DstEltTy));
      return ConstantVector::get(Result);
    }
    
    // If this is an int-to-fp cast ..
    if (SrcEltTy->isInteger()) {
      // Ensure that it is int-to-fp cast
      assert(DstEltTy->isFloatingPoint());
      if (DstEltTy->getTypeID() == Type::DoubleTyID) {
        for (unsigned i = 0; i != SrcNumElts; ++i) {
          ConstantInt *CI = cast<ConstantInt>(CV->getOperand(i));
          double V = CI->getValue().bitsToDouble();
          Result.push_back(ConstantFP::get(Type::DoubleTy, APFloat(V)));
        }
        return ConstantVector::get(Result);
      }
      assert(DstEltTy == Type::FloatTy && "Unknown fp type!");
      for (unsigned i = 0; i != SrcNumElts; ++i) {
        ConstantInt *CI = cast<ConstantInt>(CV->getOperand(i));
        float V = CI->getValue().bitsToFloat();
        Result.push_back(ConstantFP::get(Type::FloatTy, APFloat(V)));
      }
      return ConstantVector::get(Result);
    }
    
    // Otherwise, this is an fp-to-int cast.
    assert(SrcEltTy->isFloatingPoint() && DstEltTy->isInteger());
    
    if (SrcEltTy->getTypeID() == Type::DoubleTyID) {
      for (unsigned i = 0; i != SrcNumElts; ++i) {
        uint64_t V = cast<ConstantFP>(CV->getOperand(i))->
                       getValueAPF().convertToAPInt().getZExtValue();
        Constant *C = ConstantInt::get(Type::Int64Ty, V);
        Result.push_back(ConstantExpr::getBitCast(C, DstEltTy ));
      }
      return ConstantVector::get(Result);
    }

    assert(SrcEltTy->getTypeID() == Type::FloatTyID);
    for (unsigned i = 0; i != SrcNumElts; ++i) {
      uint32_t V = (uint32_t)cast<ConstantFP>(CV->getOperand(i))->
                               getValueAPF().convertToAPInt().getZExtValue();
      Constant *C = ConstantInt::get(Type::Int32Ty, V);
      Result.push_back(ConstantExpr::getBitCast(C, DstEltTy));
    }
    return ConstantVector::get(Result);
  }
  
  // Otherwise, this is a cast that changes element count and size.  Handle
  // casts which shrink the elements here.
  
  // FIXME: We need to know endianness to do this!
  
  return 0;
}

/// This function determines which opcode to use to fold two constant cast 
/// expressions together. It uses CastInst::isEliminableCastPair to determine
/// the opcode. Consequently its just a wrapper around that function.
/// @brief Determine if it is valid to fold a cast of a cast
static unsigned
foldConstantCastPair(
  unsigned opc,          ///< opcode of the second cast constant expression
  const ConstantExpr*Op, ///< the first cast constant expression
  const Type *DstTy      ///< desintation type of the first cast
) {
  assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
  assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
  assert(CastInst::isCast(opc) && "Invalid cast opcode");
  
  // The the types and opcodes for the two Cast constant expressions
  const Type *SrcTy = Op->getOperand(0)->getType();
  const Type *MidTy = Op->getType();
  Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
  Instruction::CastOps secondOp = Instruction::CastOps(opc);

  // Let CastInst::isEliminableCastPair do the heavy lifting.
  return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
                                        Type::Int64Ty);
}

Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
                                            const Type *DestTy) {
  const Type *SrcTy = V->getType();

  if (isa<UndefValue>(V)) {
    // zext(undef) = 0, because the top bits will be zero.
    // sext(undef) = 0, because the top bits will all be the same.
    if (opc == Instruction::ZExt || opc == Instruction::SExt)
      return Constant::getNullValue(DestTy);
    return UndefValue::get(DestTy);
  }

  // If the cast operand is a constant expression, there's a few things we can
  // do to try to simplify it.
  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
    if (CE->isCast()) {
      // Try hard to fold cast of cast because they are often eliminable.
      if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
        return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
    } else if (CE->getOpcode() == Instruction::GetElementPtr) {
      // If all of the indexes in the GEP are null values, there is no pointer
      // adjustment going on.  We might as well cast the source pointer.
      bool isAllNull = true;
      for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
        if (!CE->getOperand(i)->isNullValue()) {
          isAllNull = false;
          break;
        }
      if (isAllNull)
        // This is casting one pointer type to another, always BitCast
        return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
    }
  }

  // We actually have to do a cast now. Perform the cast according to the
  // opcode specified.
  switch (opc) {
  case Instruction::FPTrunc:
  case Instruction::FPExt:
    if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
      APFloat Val = FPC->getValueAPF();
      Val.convert(DestTy == Type::FloatTy ? APFloat::IEEEsingle :
                  DestTy == Type::DoubleTy ? APFloat::IEEEdouble :
                  DestTy == Type::X86_FP80Ty ? APFloat::x87DoubleExtended :
                  DestTy == Type::FP128Ty ? APFloat::IEEEquad :
                  APFloat::Bogus,
                  APFloat::rmNearestTiesToEven);
      return ConstantFP::get(DestTy, Val);
    }
    return 0; // Can't fold.
  case Instruction::FPToUI: 
  case Instruction::FPToSI:
    if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
      APFloat V = FPC->getValueAPF();
      uint64_t x[2]; 
      uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
      (void) V.convertToInteger(x, DestBitWidth, opc==Instruction::FPToSI,
                                APFloat::rmTowardZero);
      APInt Val(DestBitWidth, 2, x);
      return ConstantInt::get(Val);
    }
    return 0; // Can't fold.
  case Instruction::IntToPtr:   //always treated as unsigned
    if (V->isNullValue())       // Is it an integral null value?
      return ConstantPointerNull::get(cast<PointerType>(DestTy));
    return 0;                   // Other pointer types cannot be casted
  case Instruction::PtrToInt:   // always treated as unsigned
    if (V->isNullValue())       // is it a null pointer value?
      return ConstantInt::get(DestTy, 0);
    return 0;                   // Other pointer types cannot be casted
  case Instruction::UIToFP:
    if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
      double d = CI->getValue().roundToDouble();
      if (DestTy==Type::FloatTy) 
        return ConstantFP::get(DestTy, APFloat((float)d));
      else if (DestTy==Type::DoubleTy)
        return ConstantFP::get(DestTy, APFloat(d));
      else
        return 0;     // FIXME do this for long double
    }
    return 0;
  case Instruction::SIToFP:
    if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
      double d = CI->getValue().signedRoundToDouble();
      if (DestTy==Type::FloatTy)
        return ConstantFP::get(DestTy, APFloat((float)d));
      else if (DestTy==Type::DoubleTy)
        return ConstantFP::get(DestTy, APFloat(d));
      else
        return 0;     // FIXME do this for long double
    }
    return 0;
  case Instruction::ZExt:
    if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
      APInt Result(CI->getValue());
      Result.zext(BitWidth);
      return ConstantInt::get(Result);
    }
    return 0;
  case Instruction::SExt:
    if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
      APInt Result(CI->getValue());
      Result.sext(BitWidth);
      return ConstantInt::get(Result);
    }
    return 0;
  case Instruction::Trunc:
    if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
      APInt Result(CI->getValue());
      Result.trunc(BitWidth);
      return ConstantInt::get(Result);
    }
    return 0;
  case Instruction::BitCast:
    if (SrcTy == DestTy) 
      return (Constant*)V; // no-op cast
    
    // Check to see if we are casting a pointer to an aggregate to a pointer to
    // the first element.  If so, return the appropriate GEP instruction.
    if (const PointerType *PTy = dyn_cast<PointerType>(V->getType()))
      if (const PointerType *DPTy = dyn_cast<PointerType>(DestTy)) {
        SmallVector<Value*, 8> IdxList;
        IdxList.push_back(Constant::getNullValue(Type::Int32Ty));
        const Type *ElTy = PTy->getElementType();
        while (ElTy != DPTy->getElementType()) {
          if (const StructType *STy = dyn_cast<StructType>(ElTy)) {
            if (STy->getNumElements() == 0) break;
            ElTy = STy->getElementType(0);
            IdxList.push_back(Constant::getNullValue(Type::Int32Ty));
          } else if (const SequentialType *STy = 
                     dyn_cast<SequentialType>(ElTy)) {
            if (isa<PointerType>(ElTy)) break;  // Can't index into pointers!
            ElTy = STy->getElementType();
            IdxList.push_back(IdxList[0]);
          } else {
            break;
          }
        }

        if (ElTy == DPTy->getElementType())
          return ConstantExpr::getGetElementPtr(
              const_cast<Constant*>(V), &IdxList[0], IdxList.size());
      }
        
    // Handle casts from one vector constant to another.  We know that the src 
    // and dest type have the same size (otherwise its an illegal cast).
    if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
      if (const VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
        assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
               "Not cast between same sized vectors!");
        // First, check for null and undef
        if (isa<ConstantAggregateZero>(V))
          return Constant::getNullValue(DestTy);
        if (isa<UndefValue>(V))
          return UndefValue::get(DestTy);

        if (const ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
          // This is a cast from a ConstantVector of one type to a 
          // ConstantVector of another type.  Check to see if all elements of 
          // the input are simple.
          bool AllSimpleConstants = true;
          for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
            if (!isa<ConstantInt>(CV->getOperand(i)) &&
                !isa<ConstantFP>(CV->getOperand(i))) {
              AllSimpleConstants = false;
              break;
            }
          }
              
          // If all of the elements are simple constants, we can fold this.
          if (AllSimpleConstants)
            return CastConstantVector(const_cast<ConstantVector*>(CV), DestPTy);
        }
      }
    }

    // Finally, implement bitcast folding now.   The code below doesn't handle
    // bitcast right.
    if (isa<ConstantPointerNull>(V))  // ptr->ptr cast.
      return ConstantPointerNull::get(cast<PointerType>(DestTy));

    // Handle integral constant input.
    if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
      if (DestTy->isInteger())
        // Integral -> Integral. This is a no-op because the bit widths must
        // be the same. Consequently, we just fold to V.
        return const_cast<Constant*>(V);

      if (DestTy->isFloatingPoint()) {
        assert((DestTy == Type::DoubleTy || DestTy == Type::FloatTy) && 
               "Unknown FP type!");
        return ConstantFP::get(DestTy, APFloat(CI->getValue()));
      }
      // Otherwise, can't fold this (vector?)
      return 0;
    }
      
    // Handle ConstantFP input.
    if (const ConstantFP *FP = dyn_cast<ConstantFP>(V)) {
      // FP -> Integral.
      if (DestTy == Type::Int32Ty) {
        return ConstantInt::get(FP->getValueAPF().convertToAPInt());
      } else {
        assert(DestTy == Type::Int64Ty && "only support f32/f64 for now!");
        return ConstantInt::get(FP->getValueAPF().convertToAPInt());
      }
    }
    return 0;
  default:
    assert(!"Invalid CE CastInst opcode");
    break;
  }

  assert(0 && "Failed to cast constant expression");
  return 0;
}

Constant *llvm::ConstantFoldSelectInstruction(const Constant *Cond,
                                              const Constant *V1,
                                              const Constant *V2) {
  if (const ConstantInt *CB = dyn_cast<ConstantInt>(Cond))
    return const_cast<Constant*>(CB->getZExtValue() ? V1 : V2);

  if (isa<UndefValue>(V1)) return const_cast<Constant*>(V2);
  if (isa<UndefValue>(V2)) return const_cast<Constant*>(V1);
  if (isa<UndefValue>(Cond)) return const_cast<Constant*>(V1);
  if (V1 == V2) return const_cast<Constant*>(V1);
  return 0;
}

Constant *llvm::ConstantFoldExtractElementInstruction(const Constant *Val,
                                                      const Constant *Idx) {
  if (isa<UndefValue>(Val))  // ee(undef, x) -> undef
    return UndefValue::get(cast<VectorType>(Val->getType())->getElementType());
  if (Val->isNullValue())  // ee(zero, x) -> zero
    return Constant::getNullValue(
                          cast<VectorType>(Val->getType())->getElementType());
  
  if (const ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
    if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
      return const_cast<Constant*>(CVal->getOperand(CIdx->getZExtValue()));
    } else if (isa<UndefValue>(Idx)) {
      // ee({w,x,y,z}, undef) -> w (an arbitrary value).
      return const_cast<Constant*>(CVal->getOperand(0));
    }
  }
  return 0;
}

Constant *llvm::ConstantFoldInsertElementInstruction(const Constant *Val,
                                                     const Constant *Elt,
                                                     const Constant *Idx) {
  const ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
  if (!CIdx) return 0;
  APInt idxVal = CIdx->getValue();
  if (isa<UndefValue>(Val)) { 
    // Insertion of scalar constant into vector undef
    // Optimize away insertion of undef
    if (isa<UndefValue>(Elt))
      return const_cast<Constant*>(Val);
    // Otherwise break the aggregate undef into multiple undefs and do
    // the insertion
    unsigned numOps = 
      cast<VectorType>(Val->getType())->getNumElements();
    std::vector<Constant*> Ops; 
    Ops.reserve(numOps);
    for (unsigned i = 0; i < numOps; ++i) {
      const Constant *Op =
        (idxVal == i) ? Elt : UndefValue::get(Elt->getType());
      Ops.push_back(const_cast<Constant*>(Op));
    }
    return ConstantVector::get(Ops);
  }
  if (isa<ConstantAggregateZero>(Val)) {
    // Insertion of scalar constant into vector aggregate zero
    // Optimize away insertion of zero
    if (Elt->isNullValue())
      return const_cast<Constant*>(Val);
    // Otherwise break the aggregate zero into multiple zeros and do
    // the insertion
    unsigned numOps = 
      cast<VectorType>(Val->getType())->getNumElements();
    std::vector<Constant*> Ops; 
    Ops.reserve(numOps);
    for (unsigned i = 0; i < numOps; ++i) {
      const Constant *Op =
        (idxVal == i) ? Elt : Constant::getNullValue(Elt->getType());
      Ops.push_back(const_cast<Constant*>(Op));
    }
    return ConstantVector::get(Ops);
  }
  if (const ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
    // Insertion of scalar constant into vector constant
    std::vector<Constant*> Ops; 
    Ops.reserve(CVal->getNumOperands());
    for (unsigned i = 0; i < CVal->getNumOperands(); ++i) {
      const Constant *Op =
        (idxVal == i) ? Elt : cast<Constant>(CVal->getOperand(i));
      Ops.push_back(const_cast<Constant*>(Op));
    }
    return ConstantVector::get(Ops);
  }
  return 0;
}

Constant *llvm::ConstantFoldShuffleVectorInstruction(const Constant *V1,
                                                     const Constant *V2,
                                                     const Constant *Mask) {
  // TODO:
  return 0;
}

/// EvalVectorOp - Given two vector constants and a function pointer, apply the
/// function pointer to each element pair, producing a new ConstantVector
/// constant.
static Constant *EvalVectorOp(const ConstantVector *V1, 
                              const ConstantVector *V2,
                              Constant *(*FP)(Constant*, Constant*)) {
  std::vector<Constant*> Res;
  for (unsigned i = 0, e = V1->getNumOperands(); i != e; ++i)
    Res.push_back(FP(const_cast<Constant*>(V1->getOperand(i)),
                     const_cast<Constant*>(V2->getOperand(i))));
  return ConstantVector::get(Res);
}

Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
                                              const Constant *C1,
                                              const Constant *C2) {
  // Handle UndefValue up front
  if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
    switch (Opcode) {
    case Instruction::Add:
    case Instruction::Sub:
    case Instruction::Xor:
      return UndefValue::get(C1->getType());
    case Instruction::Mul:
    case Instruction::And:
      return Constant::getNullValue(C1->getType());
    case Instruction::UDiv:
    case Instruction::SDiv:
    case Instruction::FDiv:
    case Instruction::URem:
    case Instruction::SRem:
    case Instruction::FRem:
      if (!isa<UndefValue>(C2))                    // undef / X -> 0
        return Constant::getNullValue(C1->getType());
      return const_cast<Constant*>(C2);            // X / undef -> undef
    case Instruction::Or:                          // X | undef -> -1
      if (const VectorType *PTy = dyn_cast<VectorType>(C1->getType()))
        return ConstantVector::getAllOnesValue(PTy);
      return ConstantInt::getAllOnesValue(C1->getType());
    case Instruction::LShr:
      if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
        return const_cast<Constant*>(C1);           // undef lshr undef -> undef
      return Constant::getNullValue(C1->getType()); // X lshr undef -> 0
                                                    // undef lshr X -> 0
    case Instruction::AShr:
      if (!isa<UndefValue>(C2))
        return const_cast<Constant*>(C1);           // undef ashr X --> undef
      else if (isa<UndefValue>(C1)) 
        return const_cast<Constant*>(C1);           // undef ashr undef -> undef
      else
        return const_cast<Constant*>(C1);           // X ashr undef --> X
    case Instruction::Shl:
      // undef << X -> 0   or   X << undef -> 0
      return Constant::getNullValue(C1->getType());
    }
  }

  if (const ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
    if (isa<ConstantExpr>(C2)) {
      // There are many possible foldings we could do here.  We should probably
      // at least fold add of a pointer with an integer into the appropriate
      // getelementptr.  This will improve alias analysis a bit.
    } else {
      // Just implement a couple of simple identities.
      switch (Opcode) {
      case Instruction::Add:
        if (C2->isNullValue()) return const_cast<Constant*>(C1);  // X + 0 == X
        break;
      case Instruction::Sub:
        if (C2->isNullValue()) return const_cast<Constant*>(C1);  // X - 0 == X
        break;
      case Instruction::Mul:
        if (C2->isNullValue()) return const_cast<Constant*>(C2);  // X * 0 == 0
        if (const ConstantInt *CI = dyn_cast<ConstantInt>(C2))
          if (CI->equalsInt(1))
            return const_cast<Constant*>(C1);                     // X * 1 == X
        break;
      case Instruction::UDiv:
      case Instruction::SDiv:
        if (const ConstantInt *CI = dyn_cast<ConstantInt>(C2))
          if (CI->equalsInt(1))
            return const_cast<Constant*>(C1);                     // X / 1 == X
        break;
      case Instruction::URem:
      case Instruction::SRem:
        if (const ConstantInt *CI = dyn_cast<ConstantInt>(C2))
          if (CI->equalsInt(1))
            return Constant::getNullValue(CI->getType());         // X % 1 == 0
        break;
      case Instruction::And:
        if (const ConstantInt *CI = dyn_cast<ConstantInt>(C2)) {
          if (CI->isZero()) return const_cast<Constant*>(C2);     // X & 0 == 0
          if (CI->isAllOnesValue())
            return const_cast<Constant*>(C1);                     // X & -1 == X
          
          // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
          if (CE1->getOpcode() == Instruction::ZExt) {
            APInt PossiblySetBits
              = cast<IntegerType>(CE1->getOperand(0)->getType())->getMask();
            PossiblySetBits.zext(C1->getType()->getPrimitiveSizeInBits());
            if ((PossiblySetBits & CI->getValue()) == PossiblySetBits)
              return const_cast<Constant*>(C1);
          }
        }
        if (CE1->isCast() && isa<GlobalValue>(CE1->getOperand(0))) {
          GlobalValue *CPR = cast<GlobalValue>(CE1->getOperand(0));

          // Functions are at least 4-byte aligned.  If and'ing the address of a
          // function with a constant < 4, fold it to zero.
          if (const ConstantInt *CI = dyn_cast<ConstantInt>(C2))
            if (CI->getValue().ult(APInt(CI->getType()->getBitWidth(),4)) && 
                isa<Function>(CPR))
              return Constant::getNullValue(CI->getType());
        }
        break;
      case Instruction::Or:
        if (C2->isNullValue()) return const_cast<Constant*>(C1);  // X | 0 == X
        if (const ConstantInt *CI = dyn_cast<ConstantInt>(C2))
          if (CI->isAllOnesValue())
            return const_cast<Constant*>(C2);  // X | -1 == -1
        break;
      case Instruction::Xor:
        if (C2->isNullValue()) return const_cast<Constant*>(C1);  // X ^ 0 == X
        break;
      case Instruction::AShr:
        // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
        if (CE1->getOpcode() == Instruction::ZExt)  // Top bits known zero.
          return ConstantExpr::getLShr(const_cast<Constant*>(C1),
                                       const_cast<Constant*>(C2));
        break;
      }
    }
  } else if (isa<ConstantExpr>(C2)) {
    // If C2 is a constant expr and C1 isn't, flop them around and fold the
    // other way if possible.
    switch (Opcode) {
    case Instruction::Add:
    case Instruction::Mul:
    case Instruction::And:
    case Instruction::Or:
    case Instruction::Xor:
      // No change of opcode required.
      return ConstantFoldBinaryInstruction(Opcode, C2, C1);

    case Instruction::Shl:
    case Instruction::LShr:
    case Instruction::AShr:
    case Instruction::Sub:
    case Instruction::SDiv:
    case Instruction::UDiv:
    case Instruction::FDiv:
    case Instruction::URem:
    case Instruction::SRem:
    case Instruction::FRem:
    default:  // These instructions cannot be flopped around.
      return 0;
    }
  }

  // At this point we know neither constant is an UndefValue nor a ConstantExpr
  // so look at directly computing the value.
  if (const ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
    if (const ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
      using namespace APIntOps;
      APInt C1V = CI1->getValue();
      APInt C2V = CI2->getValue();
      switch (Opcode) {
      default:
        break;
      case Instruction::Add:     
        return ConstantInt::get(C1V + C2V);
      case Instruction::Sub:     
        return ConstantInt::get(C1V - C2V);
      case Instruction::Mul:     
        return ConstantInt::get(C1V * C2V);
      case Instruction::UDiv:
        if (CI2->isNullValue())                  
          return 0;        // X / 0 -> can't fold
        return ConstantInt::get(C1V.udiv(C2V));
      case Instruction::SDiv:
        if (CI2->isNullValue()) 
          return 0;        // X / 0 -> can't fold
        if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
          return 0;        // MIN_INT / -1 -> overflow
        return ConstantInt::get(C1V.sdiv(C2V));
      case Instruction::URem:
        if (C2->isNullValue()) 
          return 0;        // X / 0 -> can't fold
        return ConstantInt::get(C1V.urem(C2V));
      case Instruction::SRem:    
        if (CI2->isNullValue()) 
          return 0;        // X % 0 -> can't fold
        if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
          return 0;        // MIN_INT % -1 -> overflow
        return ConstantInt::get(C1V.srem(C2V));
      case Instruction::And:
        return ConstantInt::get(C1V & C2V);
      case Instruction::Or:
        return ConstantInt::get(C1V | C2V);
      case Instruction::Xor:
        return ConstantInt::get(C1V ^ C2V);
      case Instruction::Shl:
        if (uint32_t shiftAmt = C2V.getZExtValue())
          if (shiftAmt < C1V.getBitWidth())
            return ConstantInt::get(C1V.shl(shiftAmt));
          else
            return UndefValue::get(C1->getType()); // too big shift is undef
        return const_cast<ConstantInt*>(CI1); // Zero shift is identity
      case Instruction::LShr:
        if (uint32_t shiftAmt = C2V.getZExtValue())
          if (shiftAmt < C1V.getBitWidth())
            return ConstantInt::get(C1V.lshr(shiftAmt));
          else
            return UndefValue::get(C1->getType()); // too big shift is undef
        return const_cast<ConstantInt*>(CI1); // Zero shift is identity
      case Instruction::AShr:
        if (uint32_t shiftAmt = C2V.getZExtValue())
          if (shiftAmt < C1V.getBitWidth())
            return ConstantInt::get(C1V.ashr(shiftAmt));
          else
            return UndefValue::get(C1->getType()); // too big shift is undef
        return const_cast<ConstantInt*>(CI1); // Zero shift is identity
      }
    }
  } else if (const ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
    if (const ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
      APFloat C1V = CFP1->getValueAPF();
      APFloat C2V = CFP2->getValueAPF();
      APFloat C3V = C1V;  // copy for modification
      bool isDouble = CFP1->getType()==Type::DoubleTy;
      switch (Opcode) {
      default:                   
        break;
      case Instruction::Add:
        (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
        return ConstantFP::get(CFP1->getType(), C3V);
      case Instruction::Sub:     
        (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
        return ConstantFP::get(CFP1->getType(), C3V);
      case Instruction::Mul:
        (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
        return ConstantFP::get(CFP1->getType(), C3V);
      case Instruction::FDiv:
        (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
        return ConstantFP::get(CFP1->getType(), C3V);
      case Instruction::FRem:
        if (C2V.isZero())
          // IEEE 754, Section 7.1, #5
          return ConstantFP::get(CFP1->getType(), isDouble ?
                            APFloat(std::numeric_limits<double>::quiet_NaN()) :
                            APFloat(std::numeric_limits<float>::quiet_NaN()));
        (void)C3V.mod(C2V, APFloat::rmNearestTiesToEven);
        return ConstantFP::get(CFP1->getType(), C3V);
      }
    }
  } else if (const ConstantVector *CP1 = dyn_cast<ConstantVector>(C1)) {
    if (const ConstantVector *CP2 = dyn_cast<ConstantVector>(C2)) {
      switch (Opcode) {
        default:
          break;
        case Instruction::Add: 
          return EvalVectorOp(CP1, CP2, ConstantExpr::getAdd);
        case Instruction::Sub: 
          return EvalVectorOp(CP1, CP2, ConstantExpr::getSub);
        case Instruction::Mul: 
          return EvalVectorOp(CP1, CP2, ConstantExpr::getMul);
        case Instruction::UDiv:
          return EvalVectorOp(CP1, CP2, ConstantExpr::getUDiv);
        case Instruction::SDiv:
          return EvalVectorOp(CP1, CP2, ConstantExpr::getSDiv);
        case Instruction::FDiv:
          return EvalVectorOp(CP1, CP2, ConstantExpr::getFDiv);
        case Instruction::URem:
          return EvalVectorOp(CP1, CP2, ConstantExpr::getURem);
        case Instruction::SRem:
          return EvalVectorOp(CP1, CP2, ConstantExpr::getSRem);
        case Instruction::FRem:
          return EvalVectorOp(CP1, CP2, ConstantExpr::getFRem);
        case Instruction::And: 
          return EvalVectorOp(CP1, CP2, ConstantExpr::getAnd);
        case Instruction::Or:  
          return EvalVectorOp(CP1, CP2, ConstantExpr::getOr);
        case Instruction::Xor: 
          return EvalVectorOp(CP1, CP2, ConstantExpr::getXor);
      }
    }
  }

  // We don't know how to fold this
  return 0;
}

/// isZeroSizedType - This type is zero sized if its an array or structure of
/// zero sized types.  The only leaf zero sized type is an empty structure.
static bool isMaybeZeroSizedType(const Type *Ty) {
  if (isa<OpaqueType>(Ty)) return true;  // Can't say.
  if (const StructType *STy = dyn_cast<StructType>(Ty)) {

    // If all of elements have zero size, this does too.
    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
      if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
    return true;

  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
    return isMaybeZeroSizedType(ATy->getElementType());
  }
  return false;
}

/// IdxCompare - Compare the two constants as though they were getelementptr
/// indices.  This allows coersion of the types to be the same thing.
///
/// If the two constants are the "same" (after coersion), return 0.  If the
/// first is less than the second, return -1, if the second is less than the
/// first, return 1.  If the constants are not integral, return -2.
///
static int IdxCompare(Constant *C1, Constant *C2, const Type *ElTy) {
  if (C1 == C2) return 0;

  // Ok, we found a different index.  If they are not ConstantInt, we can't do
  // anything with them.
  if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
    return -2; // don't know!

  // Ok, we have two differing integer indices.  Sign extend them to be the same
  // type.  Long is always big enough, so we use it.
  if (C1->getType() != Type::Int64Ty)
    C1 = ConstantExpr::getSExt(C1, Type::Int64Ty);

  if (C2->getType() != Type::Int64Ty)
    C2 = ConstantExpr::getSExt(C2, Type::Int64Ty);

  if (C1 == C2) return 0;  // They are equal

  // If the type being indexed over is really just a zero sized type, there is
  // no pointer difference being made here.
  if (isMaybeZeroSizedType(ElTy))
    return -2; // dunno.

  // If they are really different, now that they are the same type, then we
  // found a difference!
  if (cast<ConstantInt>(C1)->getSExtValue() < 
      cast<ConstantInt>(C2)->getSExtValue())
    return -1;
  else
    return 1;
}

/// evaluateFCmpRelation - This function determines if there is anything we can
/// decide about the two constants provided.  This doesn't need to handle simple
/// things like ConstantFP comparisons, but should instead handle ConstantExprs.
/// If we can determine that the two constants have a particular relation to 
/// each other, we should return the corresponding FCmpInst predicate, 
/// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
/// ConstantFoldCompareInstruction.
///
/// To simplify this code we canonicalize the relation so that the first
/// operand is always the most "complex" of the two.  We consider ConstantFP
/// to be the simplest, and ConstantExprs to be the most complex.
static FCmpInst::Predicate evaluateFCmpRelation(const Constant *V1, 
                                                const Constant *V2) {
  assert(V1->getType() == V2->getType() &&
         "Cannot compare values of different types!");
  // Handle degenerate case quickly
  if (V1 == V2) return FCmpInst::FCMP_OEQ;

  if (!isa<ConstantExpr>(V1)) {
    if (!isa<ConstantExpr>(V2)) {
      // We distilled thisUse the standard constant folder for a few cases
      ConstantInt *R = 0;
      Constant *C1 = const_cast<Constant*>(V1);
      Constant *C2 = const_cast<Constant*>(V2);
      R = dyn_cast<ConstantInt>(
                             ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, C1, C2));
      if (R && !R->isZero()) 
        return FCmpInst::FCMP_OEQ;
      R = dyn_cast<ConstantInt>(
                             ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, C1, C2));
      if (R && !R->isZero()) 
        return FCmpInst::FCMP_OLT;
      R = dyn_cast<ConstantInt>(
                             ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, C1, C2));
      if (R && !R->isZero()) 
        return FCmpInst::FCMP_OGT;

      // Nothing more we can do
      return FCmpInst::BAD_FCMP_PREDICATE;
    }
    
    // If the first operand is simple and second is ConstantExpr, swap operands.
    FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
    if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
      return FCmpInst::getSwappedPredicate(SwappedRelation);
  } else {
    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
    // constantexpr or a simple constant.
    const ConstantExpr *CE1 = cast<ConstantExpr>(V1);
    switch (CE1->getOpcode()) {
    case Instruction::FPTrunc:
    case Instruction::FPExt:
    case Instruction::UIToFP:
    case Instruction::SIToFP:
      // We might be able to do something with these but we don't right now.
      break;
    default:
      break;
    }
  }
  // There are MANY other foldings that we could perform here.  They will
  // probably be added on demand, as they seem needed.
  return FCmpInst::BAD_FCMP_PREDICATE;
}

/// evaluateICmpRelation - This function determines if there is anything we can
/// decide about the two constants provided.  This doesn't need to handle simple
/// things like integer comparisons, but should instead handle ConstantExprs
/// and GlobalValues.  If we can determine that the two constants have a
/// particular relation to each other, we should return the corresponding ICmp
/// predicate, otherwise return ICmpInst::BAD_ICMP_PREDICATE.
///
/// To simplify this code we canonicalize the relation so that the first
/// operand is always the most "complex" of the two.  We consider simple
/// constants (like ConstantInt) to be the simplest, followed by
/// GlobalValues, followed by ConstantExpr's (the most complex).
///
static ICmpInst::Predicate evaluateICmpRelation(const Constant *V1, 
                                                const Constant *V2,
                                                bool isSigned) {
  assert(V1->getType() == V2->getType() &&
         "Cannot compare different types of values!");
  if (V1 == V2) return ICmpInst::ICMP_EQ;

  if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1)) {
    if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2)) {
      // We distilled this down to a simple case, use the standard constant
      // folder.
      ConstantInt *R = 0;
      Constant *C1 = const_cast<Constant*>(V1);
      Constant *C2 = const_cast<Constant*>(V2);
      ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
      if (R && !R->isZero()) 
        return pred;
      pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
      if (R && !R->isZero())
        return pred;
      pred = isSigned ?  ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
      if (R && !R->isZero())
        return pred;
      
      // If we couldn't figure it out, bail.
      return ICmpInst::BAD_ICMP_PREDICATE;
    }
    
    // If the first operand is simple, swap operands.
    ICmpInst::Predicate SwappedRelation = 
      evaluateICmpRelation(V2, V1, isSigned);
    if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
      return ICmpInst::getSwappedPredicate(SwappedRelation);

  } else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(V1)) {
    if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
      ICmpInst::Predicate SwappedRelation = 
        evaluateICmpRelation(V2, V1, isSigned);
      if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
        return ICmpInst::getSwappedPredicate(SwappedRelation);
      else
        return ICmpInst::BAD_ICMP_PREDICATE;
    }

    // Now we know that the RHS is a GlobalValue or simple constant,
    // which (since the types must match) means that it's a ConstantPointerNull.
    if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) {
      // Don't try to decide equality of aliases.
      if (!isa<GlobalAlias>(CPR1) && !isa<GlobalAlias>(CPR2))
        if (!CPR1->hasExternalWeakLinkage() || !CPR2->hasExternalWeakLinkage())
          return ICmpInst::ICMP_NE;
    } else {
      assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
      // GlobalVals can never be null.  Don't try to evaluate aliases.
      if (!CPR1->hasExternalWeakLinkage() && !isa<GlobalAlias>(CPR1))
        return ICmpInst::ICMP_NE;
    }
  } else {
    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
    // constantexpr, a CPR, or a simple constant.
    const ConstantExpr *CE1 = cast<ConstantExpr>(V1);
    const Constant *CE1Op0 = CE1->getOperand(0);

    switch (CE1->getOpcode()) {
    case Instruction::Trunc:
    case Instruction::FPTrunc:
    case Instruction::FPExt:
    case Instruction::FPToUI:
    case Instruction::FPToSI:
      break; // We can't evaluate floating point casts or truncations.

    case Instruction::UIToFP:
    case Instruction::SIToFP:
    case Instruction::IntToPtr:
    case Instruction::BitCast:
    case Instruction::ZExt:
    case Instruction::SExt:
    case Instruction::PtrToInt:
      // If the cast is not actually changing bits, and the second operand is a
      // null pointer, do the comparison with the pre-casted value.
      if (V2->isNullValue() &&
          (isa<PointerType>(CE1->getType()) || CE1->getType()->isInteger())) {
        bool sgnd = CE1->getOpcode() == Instruction::ZExt ? false :
          (CE1->getOpcode() == Instruction::SExt ? true :
           (CE1->getOpcode() == Instruction::PtrToInt ? false : isSigned));
        return evaluateICmpRelation(
            CE1Op0, Constant::getNullValue(CE1Op0->getType()), sgnd);
      }

      // If the dest type is a pointer type, and the RHS is a constantexpr cast
      // from the same type as the src of the LHS, evaluate the inputs.  This is
      // important for things like "icmp eq (cast 4 to int*), (cast 5 to int*)",
      // which happens a lot in compilers with tagged integers.
      if (const ConstantExpr *CE2 = dyn_cast<ConstantExpr>(V2))
        if (CE2->isCast() && isa<PointerType>(CE1->getType()) &&
            CE1->getOperand(0)->getType() == CE2->getOperand(0)->getType() &&
            CE1->getOperand(0)->getType()->isInteger()) {
          bool sgnd = CE1->getOpcode() == Instruction::ZExt ? false :
            (CE1->getOpcode() == Instruction::SExt ? true :
             (CE1->getOpcode() == Instruction::PtrToInt ? false : isSigned));
          return evaluateICmpRelation(CE1->getOperand(0), CE2->getOperand(0),
              sgnd);
        }
      break;

    case Instruction::GetElementPtr:
      // Ok, since this is a getelementptr, we know that the constant has a
      // pointer type.  Check the various cases.
      if (isa<ConstantPointerNull>(V2)) {
        // If we are comparing a GEP to a null pointer, check to see if the base
        // of the GEP equals the null pointer.
        if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
          if (GV->hasExternalWeakLinkage())
            // Weak linkage GVals could be zero or not. We're comparing that
            // to null pointer so its greater-or-equal
            return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
          else 
            // If its not weak linkage, the GVal must have a non-zero address
            // so the result is greater-than
            return isSigned ? ICmpInst::ICMP_SGT :  ICmpInst::ICMP_UGT;
        } else if (isa<ConstantPointerNull>(CE1Op0)) {
          // If we are indexing from a null pointer, check to see if we have any
          // non-zero indices.
          for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
            if (!CE1->getOperand(i)->isNullValue())
              // Offsetting from null, must not be equal.
              return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
          // Only zero indexes from null, must still be zero.
          return ICmpInst::ICMP_EQ;
        }
        // Otherwise, we can't really say if the first operand is null or not.
      } else if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) {
        if (isa<ConstantPointerNull>(CE1Op0)) {
          if (CPR2->hasExternalWeakLinkage())
            // Weak linkage GVals could be zero or not. We're comparing it to
            // a null pointer, so its less-or-equal
            return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
          else
            // If its not weak linkage, the GVal must have a non-zero address
            // so the result is less-than
            return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
        } else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(CE1Op0)) {
          if (CPR1 == CPR2) {
            // If this is a getelementptr of the same global, then it must be
            // different.  Because the types must match, the getelementptr could
            // only have at most one index, and because we fold getelementptr's
            // with a single zero index, it must be nonzero.
            assert(CE1->getNumOperands() == 2 &&
                   !CE1->getOperand(1)->isNullValue() &&
                   "Suprising getelementptr!");
            return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
          } else {
            // If they are different globals, we don't know what the value is,
            // but they can't be equal.
            return ICmpInst::ICMP_NE;
          }
        }
      } else {
        const ConstantExpr *CE2 = cast<ConstantExpr>(V2);
        const Constant *CE2Op0 = CE2->getOperand(0);

        // There are MANY other foldings that we could perform here.  They will
        // probably be added on demand, as they seem needed.
        switch (CE2->getOpcode()) {
        default: break;
        case Instruction::GetElementPtr:
          // By far the most common case to handle is when the base pointers are
          // obviously to the same or different globals.
          if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
            if (CE1Op0 != CE2Op0) // Don't know relative ordering, but not equal
              return ICmpInst::ICMP_NE;
            // Ok, we know that both getelementptr instructions are based on the
            // same global.  From this, we can precisely determine the relative
            // ordering of the resultant pointers.
            unsigned i = 1;

            // Compare all of the operands the GEP's have in common.
            gep_type_iterator GTI = gep_type_begin(CE1);
            for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
                 ++i, ++GTI)
              switch (IdxCompare(CE1->getOperand(i), CE2->getOperand(i),
                                 GTI.getIndexedType())) {
              case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
              case 1:  return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
              case -2: return ICmpInst::BAD_ICMP_PREDICATE;
              }

            // Ok, we ran out of things they have in common.  If any leftovers
            // are non-zero then we have a difference, otherwise we are equal.
            for (; i < CE1->getNumOperands(); ++i)
              if (!CE1->getOperand(i)->isNullValue())
                if (isa<ConstantInt>(CE1->getOperand(i)))
                  return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
                else
                  return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.

            for (; i < CE2->getNumOperands(); ++i)
              if (!CE2->getOperand(i)->isNullValue())
                if (isa<ConstantInt>(CE2->getOperand(i)))
                  return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
                else
                  return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
            return ICmpInst::ICMP_EQ;
          }
        }
      }
    default:
      break;
    }
  }

  return ICmpInst::BAD_ICMP_PREDICATE;
}

Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred, 
                                               const Constant *C1, 
                                               const Constant *C2) {

  // Handle some degenerate cases first
  if (isa<UndefValue>(C1) || isa<UndefValue>(C2))
    return UndefValue::get(Type::Int1Ty);

  // icmp eq/ne(null,GV) -> false/true
  if (C1->isNullValue()) {
    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
      // Don't try to evaluate aliases.  External weak GV can be null.
      if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage())
        if (pred == ICmpInst::ICMP_EQ)
          return ConstantInt::getFalse();
        else if (pred == ICmpInst::ICMP_NE)
          return ConstantInt::getTrue();
  // icmp eq/ne(GV,null) -> false/true
  } else if (C2->isNullValue()) {
    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1))
      // Don't try to evaluate aliases.  External weak GV can be null.
      if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage())
        if (pred == ICmpInst::ICMP_EQ)
          return ConstantInt::getFalse();
        else if (pred == ICmpInst::ICMP_NE)
          return ConstantInt::getTrue();
  }

  if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
    APInt V1 = cast<ConstantInt>(C1)->getValue();
    APInt V2 = cast<ConstantInt>(C2)->getValue();
    switch (pred) {
    default: assert(0 && "Invalid ICmp Predicate"); return 0;
    case ICmpInst::ICMP_EQ: return ConstantInt::get(Type::Int1Ty, V1 == V2);
    case ICmpInst::ICMP_NE: return ConstantInt::get(Type::Int1Ty, V1 != V2);
    case ICmpInst::ICMP_SLT:return ConstantInt::get(Type::Int1Ty, V1.slt(V2));
    case ICmpInst::ICMP_SGT:return ConstantInt::get(Type::Int1Ty, V1.sgt(V2));
    case ICmpInst::ICMP_SLE:return ConstantInt::get(Type::Int1Ty, V1.sle(V2));
    case ICmpInst::ICMP_SGE:return ConstantInt::get(Type::Int1Ty, V1.sge(V2));
    case ICmpInst::ICMP_ULT:return ConstantInt::get(Type::Int1Ty, V1.ult(V2));
    case ICmpInst::ICMP_UGT:return ConstantInt::get(Type::Int1Ty, V1.ugt(V2));
    case ICmpInst::ICMP_ULE:return ConstantInt::get(Type::Int1Ty, V1.ule(V2));
    case ICmpInst::ICMP_UGE:return ConstantInt::get(Type::Int1Ty, V1.uge(V2));
    }
  } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
    APFloat C1V = cast<ConstantFP>(C1)->getValueAPF();
    APFloat C2V = cast<ConstantFP>(C2)->getValueAPF();
    APFloat::cmpResult R = C1V.compare(C2V);
    switch (pred) {
    default: assert(0 && "Invalid FCmp Predicate"); return 0;
    case FCmpInst::FCMP_FALSE: return ConstantInt::getFalse();
    case FCmpInst::FCMP_TRUE:  return ConstantInt::getTrue();
    case FCmpInst::FCMP_UNO:
      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered);
    case FCmpInst::FCMP_ORD:
      return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpUnordered);
    case FCmpInst::FCMP_UEQ:
      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered ||
                                            R==APFloat::cmpEqual);
    case FCmpInst::FCMP_OEQ:   
      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpEqual);
    case FCmpInst::FCMP_UNE:
      return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpEqual);
    case FCmpInst::FCMP_ONE:   
      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan ||
                                            R==APFloat::cmpGreaterThan);
    case FCmpInst::FCMP_ULT: 
      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered ||
                                            R==APFloat::cmpLessThan);
    case FCmpInst::FCMP_OLT:   
      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan);
    case FCmpInst::FCMP_UGT:
      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered ||
                                            R==APFloat::cmpGreaterThan);
    case FCmpInst::FCMP_OGT:
      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpGreaterThan);
    case FCmpInst::FCMP_ULE:
      return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpGreaterThan);
    case FCmpInst::FCMP_OLE: 
      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan ||
                                            R==APFloat::cmpEqual);
    case FCmpInst::FCMP_UGE:
      return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpLessThan);
    case FCmpInst::FCMP_OGE: 
      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpGreaterThan ||
                                            R==APFloat::cmpEqual);
    }
  } else if (const ConstantVector *CP1 = dyn_cast<ConstantVector>(C1)) {
    if (const ConstantVector *CP2 = dyn_cast<ConstantVector>(C2)) {
      if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ) {
        for (unsigned i = 0, e = CP1->getNumOperands(); i != e; ++i) {
          Constant *C= ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ,
              const_cast<Constant*>(CP1->getOperand(i)),
              const_cast<Constant*>(CP2->getOperand(i)));
          if (ConstantInt *CB = dyn_cast<ConstantInt>(C))
            return CB;
        }
        // Otherwise, could not decide from any element pairs.
        return 0;
      } else if (pred == ICmpInst::ICMP_EQ) {
        for (unsigned i = 0, e = CP1->getNumOperands(); i != e; ++i) {
          Constant *C = ConstantExpr::getICmp(ICmpInst::ICMP_EQ,
              const_cast<Constant*>(CP1->getOperand(i)),
              const_cast<Constant*>(CP2->getOperand(i)));
          if (ConstantInt *CB = dyn_cast<ConstantInt>(C))
            return CB;
        }
        // Otherwise, could not decide from any element pairs.
        return 0;
      }
    }
  }

  if (C1->getType()->isFloatingPoint()) {
    switch (evaluateFCmpRelation(C1, C2)) {
    default: assert(0 && "Unknown relation!");
    case FCmpInst::FCMP_UNO:
    case FCmpInst::FCMP_ORD:
    case FCmpInst::FCMP_UEQ:
    case FCmpInst::FCMP_UNE:
    case FCmpInst::FCMP_ULT:
    case FCmpInst::FCMP_UGT:
    case FCmpInst::FCMP_ULE:
    case FCmpInst::FCMP_UGE:
    case FCmpInst::FCMP_TRUE:
    case FCmpInst::FCMP_FALSE:
    case FCmpInst::BAD_FCMP_PREDICATE:
      break; // Couldn't determine anything about these constants.
    case FCmpInst::FCMP_OEQ: // We know that C1 == C2
      return ConstantInt::get(Type::Int1Ty,
          pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
          pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
          pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
    case FCmpInst::FCMP_OLT: // We know that C1 < C2
      return ConstantInt::get(Type::Int1Ty,
          pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
          pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
          pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
    case FCmpInst::FCMP_OGT: // We know that C1 > C2
      return ConstantInt::get(Type::Int1Ty,
          pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
          pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
          pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
    case FCmpInst::FCMP_OLE: // We know that C1 <= C2
      // We can only partially decide this relation.
      if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT) 
        return ConstantInt::getFalse();
      if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT) 
        return ConstantInt::getTrue();
      break;
    case FCmpInst::FCMP_OGE: // We known that C1 >= C2
      // We can only partially decide this relation.
      if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT) 
        return ConstantInt::getFalse();
      if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT) 
        return ConstantInt::getTrue();
      break;
    case ICmpInst::ICMP_NE: // We know that C1 != C2
      // We can only partially decide this relation.
      if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ) 
        return ConstantInt::getFalse();
      if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE) 
        return ConstantInt::getTrue();
      break;
    }
  } else {
    // Evaluate the relation between the two constants, per the predicate.
    switch (evaluateICmpRelation(C1, C2, CmpInst::isSigned(pred))) {
    default: assert(0 && "Unknown relational!");
    case ICmpInst::BAD_ICMP_PREDICATE:
      break;  // Couldn't determine anything about these constants.
    case ICmpInst::ICMP_EQ:   // We know the constants are equal!
      // If we know the constants are equal, we can decide the result of this
      // computation precisely.
      return ConstantInt::get(Type::Int1Ty, 
                              pred == ICmpInst::ICMP_EQ  ||
                              pred == ICmpInst::ICMP_ULE ||
                              pred == ICmpInst::ICMP_SLE ||
                              pred == ICmpInst::ICMP_UGE ||
                              pred == ICmpInst::ICMP_SGE);
    case ICmpInst::ICMP_ULT:
      // If we know that C1 < C2, we can decide the result of this computation
      // precisely.
      return ConstantInt::get(Type::Int1Ty, 
                              pred == ICmpInst::ICMP_ULT ||
                              pred == ICmpInst::ICMP_NE  ||
                              pred == ICmpInst::ICMP_ULE);
    case ICmpInst::ICMP_SLT:
      // If we know that C1 < C2, we can decide the result of this computation
      // precisely.
      return ConstantInt::get(Type::Int1Ty,
                              pred == ICmpInst::ICMP_SLT ||
                              pred == ICmpInst::ICMP_NE  ||
                              pred == ICmpInst::ICMP_SLE);
    case ICmpInst::ICMP_UGT:
      // If we know that C1 > C2, we can decide the result of this computation
      // precisely.
      return ConstantInt::get(Type::Int1Ty, 
                              pred == ICmpInst::ICMP_UGT ||
                              pred == ICmpInst::ICMP_NE  ||
                              pred == ICmpInst::ICMP_UGE);
    case ICmpInst::ICMP_SGT:
      // If we know that C1 > C2, we can decide the result of this computation
      // precisely.
      return ConstantInt::get(Type::Int1Ty, 
                              pred == ICmpInst::ICMP_SGT ||
                              pred == ICmpInst::ICMP_NE  ||
                              pred == ICmpInst::ICMP_SGE);
    case ICmpInst::ICMP_ULE:
      // If we know that C1 <= C2, we can only partially decide this relation.
      if (pred == ICmpInst::ICMP_UGT) return ConstantInt::getFalse();
      if (pred == ICmpInst::ICMP_ULT) return ConstantInt::getTrue();
      break;
    case ICmpInst::ICMP_SLE:
      // If we know that C1 <= C2, we can only partially decide this relation.
      if (pred == ICmpInst::ICMP_SGT) return ConstantInt::getFalse();
      if (pred == ICmpInst::ICMP_SLT) return ConstantInt::getTrue();
      break;

    case ICmpInst::ICMP_UGE:
      // If we know that C1 >= C2, we can only partially decide this relation.
      if (pred == ICmpInst::ICMP_ULT) return ConstantInt::getFalse();
      if (pred == ICmpInst::ICMP_UGT) return ConstantInt::getTrue();
      break;
    case ICmpInst::ICMP_SGE:
      // If we know that C1 >= C2, we can only partially decide this relation.
      if (pred == ICmpInst::ICMP_SLT) return ConstantInt::getFalse();
      if (pred == ICmpInst::ICMP_SGT) return ConstantInt::getTrue();
      break;

    case ICmpInst::ICMP_NE:
      // If we know that C1 != C2, we can only partially decide this relation.
      if (pred == ICmpInst::ICMP_EQ) return ConstantInt::getFalse();
      if (pred == ICmpInst::ICMP_NE) return ConstantInt::getTrue();
      break;
    }

    if (!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) {
      // If C2 is a constant expr and C1 isn't, flop them around and fold the
      // other way if possible.
      switch (pred) {
      case ICmpInst::ICMP_EQ:
      case ICmpInst::ICMP_NE:
        // No change of predicate required.
        return ConstantFoldCompareInstruction(pred, C2, C1);

      case ICmpInst::ICMP_ULT:
      case ICmpInst::ICMP_SLT:
      case ICmpInst::ICMP_UGT:
      case ICmpInst::ICMP_SGT:
      case ICmpInst::ICMP_ULE:
      case ICmpInst::ICMP_SLE:
      case ICmpInst::ICMP_UGE:
      case ICmpInst::ICMP_SGE:
        // Change the predicate as necessary to swap the operands.
        pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred);
        return ConstantFoldCompareInstruction(pred, C2, C1);

      default:  // These predicates cannot be flopped around.
        break;
      }
    }
  }
  return 0;
}

Constant *llvm::ConstantFoldGetElementPtr(const Constant *C,
                                          Constant* const *Idxs,
                                          unsigned NumIdx) {
  if (NumIdx == 0 ||
      (NumIdx == 1 && Idxs[0]->isNullValue()))
    return const_cast<Constant*>(C);

  if (isa<UndefValue>(C)) {
    const Type *Ty = GetElementPtrInst::getIndexedType(C->getType(),
                                                       (Value **)Idxs,
                                                       (Value **)Idxs+NumIdx,
                                                       true);
    assert(Ty != 0 && "Invalid indices for GEP!");
    return UndefValue::get(PointerType::get(Ty));
  }

  Constant *Idx0 = Idxs[0];
  if (C->isNullValue()) {
    bool isNull = true;
    for (unsigned i = 0, e = NumIdx; i != e; ++i)
      if (!Idxs[i]->isNullValue()) {
        isNull = false;
        break;
      }
    if (isNull) {
      const Type *Ty = GetElementPtrInst::getIndexedType(C->getType(),
                                                         (Value**)Idxs,
                                                         (Value**)Idxs+NumIdx,
                                                         true);
      assert(Ty != 0 && "Invalid indices for GEP!");
      return ConstantPointerNull::get(PointerType::get(Ty));
    }
  }

  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(const_cast<Constant*>(C))) {
    // Combine Indices - If the source pointer to this getelementptr instruction
    // is a getelementptr instruction, combine the indices of the two
    // getelementptr instructions into a single instruction.
    //
    if (CE->getOpcode() == Instruction::GetElementPtr) {
      const Type *LastTy = 0;
      for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
           I != E; ++I)
        LastTy = *I;

      if ((LastTy && isa<ArrayType>(LastTy)) || Idx0->isNullValue()) {
        SmallVector<Value*, 16> NewIndices;
        NewIndices.reserve(NumIdx + CE->getNumOperands());
        for (unsigned i = 1, e = CE->getNumOperands()-1; i != e; ++i)
          NewIndices.push_back(CE->getOperand(i));

        // Add the last index of the source with the first index of the new GEP.
        // Make sure to handle the case when they are actually different types.
        Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
        // Otherwise it must be an array.
        if (!Idx0->isNullValue()) {
          const Type *IdxTy = Combined->getType();
          if (IdxTy != Idx0->getType()) {
            Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, Type::Int64Ty);
            Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined, 
                                                          Type::Int64Ty);
            Combined = ConstantExpr::get(Instruction::Add, C1, C2);
          } else {
            Combined =
              ConstantExpr::get(Instruction::Add, Idx0, Combined);
          }
        }

        NewIndices.push_back(Combined);
        NewIndices.insert(NewIndices.end(), Idxs+1, Idxs+NumIdx);
        return ConstantExpr::getGetElementPtr(CE->getOperand(0), &NewIndices[0],
                                              NewIndices.size());
      }
    }

    // Implement folding of:
    //    int* getelementptr ([2 x int]* cast ([3 x int]* %X to [2 x int]*),
    //                        long 0, long 0)
    // To: int* getelementptr ([3 x int]* %X, long 0, long 0)
    //
    if (CE->isCast() && NumIdx > 1 && Idx0->isNullValue()) {
      if (const PointerType *SPT =
          dyn_cast<PointerType>(CE->getOperand(0)->getType()))
        if (const ArrayType *SAT = dyn_cast<ArrayType>(SPT->getElementType()))
          if (const ArrayType *CAT =
        dyn_cast<ArrayType>(cast<PointerType>(C->getType())->getElementType()))
            if (CAT->getElementType() == SAT->getElementType())
              return ConstantExpr::getGetElementPtr(
                      (Constant*)CE->getOperand(0), Idxs, NumIdx);
    }
    
    // Fold: getelementptr (i8* inttoptr (i64 1 to i8*), i32 -1)
    // Into: inttoptr (i64 0 to i8*)
    // This happens with pointers to member functions in C++.
    if (CE->getOpcode() == Instruction::IntToPtr && NumIdx == 1 &&
        isa<ConstantInt>(CE->getOperand(0)) && isa<ConstantInt>(Idxs[0]) &&
        cast<PointerType>(CE->getType())->getElementType() == Type::Int8Ty) {
      Constant *Base = CE->getOperand(0);
      Constant *Offset = Idxs[0];
      
      // Convert the smaller integer to the larger type.
      if (Offset->getType()->getPrimitiveSizeInBits() < 
          Base->getType()->getPrimitiveSizeInBits())
        Offset = ConstantExpr::getSExt(Offset, Base->getType());
      else if (Base->getType()->getPrimitiveSizeInBits() <
               Offset->getType()->getPrimitiveSizeInBits())
        Base = ConstantExpr::getZExt(Base, Base->getType());
      
      Base = ConstantExpr::getAdd(Base, Offset);
      return ConstantExpr::getIntToPtr(Base, CE->getType());
    }
  }
  return 0;
}