1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
|
//===-- ConstantHandling.h - Stuff for manipulating constants ----*- C++ -*--=//
//
// This file contains the declarations of some cool operators that allow you
// to do natural things with constant pool values.
//
// Unfortunately we can't overload operators on pointer types (like this:)
//
// inline bool operator==(const Constant *V1, const Constant *V2)
//
// so we must make due with references, even though it leads to some butt ugly
// looking code downstream. *sigh* (ex: Constant *Result = *V1 + *v2; )
//
//===----------------------------------------------------------------------===//
//
// WARNING: These operators may return a null object if I don't know how to
// perform the specified operation on the specified constant types.
//
//===----------------------------------------------------------------------===//
//
// Implementation notes:
// This library is implemented this way for a reason: In most cases, we do
// not want to have to link the constant mucking code into an executable.
// We do, however want to tie some of this into the main type system, as an
// optional component. By using a mutable cache member in the Type class, we
// get exactly the kind of behavior we want.
//
// In the end, we get performance almost exactly the same as having a virtual
// function dispatch, but we don't have to put our virtual functions into the
// "Type" class, and we can implement functionality with templates. Good deal.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CONSTANTHANDLING_H
#define LLVM_CONSTANTHANDLING_H
#include "llvm/ConstantVals.h"
#include "llvm/Instruction.h"
#include "llvm/Type.h"
class PointerType;
//===----------------------------------------------------------------------===//
// Implement == and != directly...
//===----------------------------------------------------------------------===//
inline ConstantBool *operator==(const Constant &V1,
const Constant &V2) {
assert(V1.getType() == V2.getType() && "Constant types must be identical!");
return ConstantBool::get(&V1 == &V2);
}
inline ConstantBool *operator!=(const Constant &V1,
const Constant &V2) {
return ConstantBool::get(&V1 != &V2);
}
//===----------------------------------------------------------------------===//
// Implement all other operators indirectly through TypeRules system
//===----------------------------------------------------------------------===//
class ConstRules : public Annotation {
protected:
inline ConstRules() : Annotation(AID) {} // Can only be subclassed...
public:
static AnnotationID AID; // AnnotationID for this class
// Unary Operators...
virtual Constant *op_not(const Constant *V) const = 0;
// Binary Operators...
virtual Constant *add(const Constant *V1,
const Constant *V2) const = 0;
virtual Constant *sub(const Constant *V1,
const Constant *V2) const = 0;
virtual Constant *mul(const Constant *V1,
const Constant *V2) const = 0;
virtual Constant *div(const Constant *V1,
const Constant *V2) const = 0;
virtual ConstantBool *lessthan(const Constant *V1,
const Constant *V2) const = 0;
// Casting operators. ick
virtual ConstantBool *castToBool (const Constant *V) const = 0;
virtual ConstantSInt *castToSByte (const Constant *V) const = 0;
virtual ConstantUInt *castToUByte (const Constant *V) const = 0;
virtual ConstantSInt *castToShort (const Constant *V) const = 0;
virtual ConstantUInt *castToUShort(const Constant *V) const = 0;
virtual ConstantSInt *castToInt (const Constant *V) const = 0;
virtual ConstantUInt *castToUInt (const Constant *V) const = 0;
virtual ConstantSInt *castToLong (const Constant *V) const = 0;
virtual ConstantUInt *castToULong (const Constant *V) const = 0;
virtual ConstantFP *castToFloat (const Constant *V) const = 0;
virtual ConstantFP *castToDouble(const Constant *V) const = 0;
virtual ConstantPointer *castToPointer(const Constant *V,
const PointerType *Ty) const = 0;
inline Constant *castTo(const Constant *V, const Type *Ty) const {
switch (Ty->getPrimitiveID()) {
case Type::BoolTyID: return castToBool(V);
case Type::UByteTyID: return castToUByte(V);
case Type::SByteTyID: return castToSByte(V);
case Type::UShortTyID: return castToUShort(V);
case Type::ShortTyID: return castToShort(V);
case Type::UIntTyID: return castToUInt(V);
case Type::IntTyID: return castToInt(V);
case Type::ULongTyID: return castToULong(V);
case Type::LongTyID: return castToLong(V);
case Type::FloatTyID: return castToFloat(V);
case Type::DoubleTyID: return castToDouble(V);
case Type::PointerTyID:return castToPointer(V, (PointerType*)Ty);
default: return 0;
}
}
// ConstRules::get - A type will cache its own type rules if one is needed...
// we just want to make sure to hit the cache instead of doing it indirectly,
// if possible...
//
static inline ConstRules *get(const Constant &V) {
return (ConstRules*)V.getType()->getOrCreateAnnotation(AID);
}
private :
static Annotation *find(AnnotationID AID, const Annotable *Ty, void *);
ConstRules(const ConstRules &); // Do not implement
ConstRules &operator=(const ConstRules &); // Do not implement
};
inline Constant *operator!(const Constant &V) {
return ConstRules::get(V)->op_not(&V);
}
inline Constant *operator+(const Constant &V1, const Constant &V2) {
assert(V1.getType() == V2.getType() && "Constant types must be identical!");
return ConstRules::get(V1)->add(&V1, &V2);
}
inline Constant *operator-(const Constant &V1, const Constant &V2) {
assert(V1.getType() == V2.getType() && "Constant types must be identical!");
return ConstRules::get(V1)->sub(&V1, &V2);
}
inline Constant *operator*(const Constant &V1, const Constant &V2) {
assert(V1.getType() == V2.getType() && "Constant types must be identical!");
return ConstRules::get(V1)->mul(&V1, &V2);
}
inline Constant *operator/(const Constant &V1, const Constant &V2) {
assert(V1.getType() == V2.getType() && "Constant types must be identical!");
return ConstRules::get(V1)->div(&V1, &V2);
}
inline ConstantBool *operator<(const Constant &V1,
const Constant &V2) {
assert(V1.getType() == V2.getType() && "Constant types must be identical!");
return ConstRules::get(V1)->lessthan(&V1, &V2);
}
//===----------------------------------------------------------------------===//
// Implement 'derived' operators based on what we already have...
//===----------------------------------------------------------------------===//
inline ConstantBool *operator>(const Constant &V1,
const Constant &V2) {
return V2 < V1;
}
inline ConstantBool *operator>=(const Constant &V1,
const Constant &V2) {
return (V1 < V2)->inverted(); // !(V1 < V2)
}
inline ConstantBool *operator<=(const Constant &V1,
const Constant &V2) {
return (V1 > V2)->inverted(); // !(V1 > V2)
}
//===----------------------------------------------------------------------===//
// Implement higher level instruction folding type instructions
//===----------------------------------------------------------------------===//
inline Constant *ConstantFoldCastInstruction(const Constant *V,
const Type *DestTy) {
return ConstRules::get(*V)->castTo(V, DestTy);
}
inline Constant *ConstantFoldUnaryInstruction(unsigned Opcode,
const Constant *V) {
switch (Opcode) {
case Instruction::Not: return !*V;
// TODO: Handle get element ptr instruction here in the future? GEP null?
}
return 0;
}
inline Constant *ConstantFoldBinaryInstruction(unsigned Opcode,
const Constant *V1,
const Constant *V2) {
switch (Opcode) {
case Instruction::Add: return *V1 + *V2;
case Instruction::Sub: return *V1 - *V2;
case Instruction::Mul: return *V1 * *V2;
case Instruction::Div: return *V1 / *V2;
case Instruction::SetEQ: return *V1 == *V2;
case Instruction::SetNE: return *V1 != *V2;
case Instruction::SetLE: return *V1 <= *V2;
case Instruction::SetGE: return *V1 >= *V2;
case Instruction::SetLT: return *V1 < *V2;
case Instruction::SetGT: return *V1 > *V2;
}
return 0;
}
#endif
|