1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
|
//===- Dominators.cpp - Dominator Calculation -----------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements simple dominator construction algorithms for finding
// forward dominators. Postdominators are available in libanalysis, but are not
// included in libvmcore, because it's not needed. Forward dominators are
// needed to support the Verifier pass.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/Dominators.h"
#include "llvm/Support/CFG.h"
#include "llvm/Assembly/Writer.h"
#include "Support/DepthFirstIterator.h"
#include "Support/SetOperations.h"
namespace llvm {
//===----------------------------------------------------------------------===//
// DominatorSet Implementation
//===----------------------------------------------------------------------===//
static RegisterAnalysis<DominatorSet>
A("domset", "Dominator Set Construction", true);
// dominates - Return true if A dominates B. This performs the special checks
// necessary if A and B are in the same basic block.
//
bool DominatorSetBase::dominates(Instruction *A, Instruction *B) const {
BasicBlock *BBA = A->getParent(), *BBB = B->getParent();
if (BBA != BBB) return dominates(BBA, BBB);
// Loop through the basic block until we find A or B.
BasicBlock::iterator I = BBA->begin();
for (; &*I != A && &*I != B; ++I) /*empty*/;
// A dominates B if it is found first in the basic block...
return &*I == A;
}
void DominatorSet::calculateDominatorsFromBlock(BasicBlock *RootBB) {
bool Changed;
Doms[RootBB].insert(RootBB); // Root always dominates itself...
do {
Changed = false;
DomSetType WorkingSet;
df_iterator<BasicBlock*> It = df_begin(RootBB), End = df_end(RootBB);
for ( ; It != End; ++It) {
BasicBlock *BB = *It;
pred_iterator PI = pred_begin(BB), PEnd = pred_end(BB);
if (PI != PEnd) { // Is there SOME predecessor?
// Loop until we get to a predecessor that has had its dom set filled
// in at least once. We are guaranteed to have this because we are
// traversing the graph in DFO and have handled start nodes specially,
// except when there are unreachable blocks.
//
while (PI != PEnd && Doms[*PI].empty()) ++PI;
if (PI != PEnd) { // Not unreachable code case?
WorkingSet = Doms[*PI];
// Intersect all of the predecessor sets
for (++PI; PI != PEnd; ++PI) {
DomSetType &PredSet = Doms[*PI];
if (PredSet.size())
set_intersect(WorkingSet, PredSet);
}
}
} else {
assert(Roots.size() == 1 && BB == Roots[0] &&
"We got into unreachable code somehow!");
}
WorkingSet.insert(BB); // A block always dominates itself
DomSetType &BBSet = Doms[BB];
if (BBSet != WorkingSet) {
//assert(WorkingSet.size() > BBSet.size() && "Must only grow sets!");
BBSet.swap(WorkingSet); // Constant time operation!
Changed = true; // The sets changed.
}
WorkingSet.clear(); // Clear out the set for next iteration
}
} while (Changed);
}
// runOnFunction - This method calculates the forward dominator sets for the
// specified function.
//
bool DominatorSet::runOnFunction(Function &F) {
BasicBlock *Root = &F.getEntryBlock();
Roots.clear();
Roots.push_back(Root);
assert(pred_begin(Root) == pred_end(Root) &&
"Root node has predecessors in function!");
recalculate();
return false;
}
void DominatorSet::recalculate() {
assert(Roots.size() == 1 && "DominatorSet should have single root block!");
Doms.clear(); // Reset from the last time we were run...
// Calculate dominator sets for the reachable basic blocks...
calculateDominatorsFromBlock(Roots[0]);
// Loop through the function, ensuring that every basic block has at least an
// empty set of nodes. This is important for the case when there is
// unreachable blocks.
Function *F = Roots[0]->getParent();
for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) Doms[I];
}
static std::ostream &operator<<(std::ostream &o,
const std::set<BasicBlock*> &BBs) {
for (std::set<BasicBlock*>::const_iterator I = BBs.begin(), E = BBs.end();
I != E; ++I)
if (*I)
WriteAsOperand(o, *I, false);
else
o << " <<exit node>>";
return o;
}
void DominatorSetBase::print(std::ostream &o) const {
for (const_iterator I = begin(), E = end(); I != E; ++I) {
o << " DomSet For BB: ";
if (I->first)
WriteAsOperand(o, I->first, false);
else
o << " <<exit node>>";
o << " is:\t" << I->second << "\n";
}
}
//===----------------------------------------------------------------------===//
// ImmediateDominators Implementation
//===----------------------------------------------------------------------===//
static RegisterAnalysis<ImmediateDominators>
C("idom", "Immediate Dominators Construction", true);
// calcIDoms - Calculate the immediate dominator mapping, given a set of
// dominators for every basic block.
void ImmediateDominatorsBase::calcIDoms(const DominatorSetBase &DS) {
// Loop over all of the nodes that have dominators... figuring out the IDOM
// for each node...
//
for (DominatorSet::const_iterator DI = DS.begin(), DEnd = DS.end();
DI != DEnd; ++DI) {
BasicBlock *BB = DI->first;
const DominatorSet::DomSetType &Dominators = DI->second;
unsigned DomSetSize = Dominators.size();
if (DomSetSize == 1) continue; // Root node... IDom = null
// Loop over all dominators of this node. This corresponds to looping over
// nodes in the dominator chain, looking for a node whose dominator set is
// equal to the current nodes, except that the current node does not exist
// in it. This means that it is one level higher in the dom chain than the
// current node, and it is our idom!
//
DominatorSet::DomSetType::const_iterator I = Dominators.begin();
DominatorSet::DomSetType::const_iterator End = Dominators.end();
for (; I != End; ++I) { // Iterate over dominators...
// All of our dominators should form a chain, where the number of elements
// in the dominator set indicates what level the node is at in the chain.
// We want the node immediately above us, so it will have an identical
// dominator set, except that BB will not dominate it... therefore it's
// dominator set size will be one less than BB's...
//
if (DS.getDominators(*I).size() == DomSetSize - 1) {
IDoms[BB] = *I;
break;
}
}
}
}
void ImmediateDominatorsBase::print(std::ostream &o) const {
for (const_iterator I = begin(), E = end(); I != E; ++I) {
o << " Immediate Dominator For Basic Block:";
if (I->first)
WriteAsOperand(o, I->first, false);
else
o << " <<exit node>>";
o << " is:";
if (I->second)
WriteAsOperand(o, I->second, false);
else
o << " <<exit node>>";
o << "\n";
}
o << "\n";
}
//===----------------------------------------------------------------------===//
// DominatorTree Implementation
//===----------------------------------------------------------------------===//
static RegisterAnalysis<DominatorTree>
E("domtree", "Dominator Tree Construction", true);
// DominatorTreeBase::reset - Free all of the tree node memory.
//
void DominatorTreeBase::reset() {
for (NodeMapType::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I)
delete I->second;
Nodes.clear();
RootNode = 0;
}
void DominatorTreeBase::Node::setIDom(Node *NewIDom) {
assert(IDom && "No immediate dominator?");
if (IDom != NewIDom) {
std::vector<Node*>::iterator I =
std::find(IDom->Children.begin(), IDom->Children.end(), this);
assert(I != IDom->Children.end() &&
"Not in immediate dominator children set!");
// I am no longer your child...
IDom->Children.erase(I);
// Switch to new dominator
IDom = NewIDom;
IDom->Children.push_back(this);
}
}
void DominatorTree::calculate(const DominatorSet &DS) {
assert(Roots.size() == 1 && "DominatorTree should have 1 root block!");
BasicBlock *Root = Roots[0];
Nodes[Root] = RootNode = new Node(Root, 0); // Add a node for the root...
// Iterate over all nodes in depth first order...
for (df_iterator<BasicBlock*> I = df_begin(Root), E = df_end(Root);
I != E; ++I) {
BasicBlock *BB = *I;
const DominatorSet::DomSetType &Dominators = DS.getDominators(BB);
unsigned DomSetSize = Dominators.size();
if (DomSetSize == 1) continue; // Root node... IDom = null
// Loop over all dominators of this node. This corresponds to looping over
// nodes in the dominator chain, looking for a node whose dominator set is
// equal to the current nodes, except that the current node does not exist
// in it. This means that it is one level higher in the dom chain than the
// current node, and it is our idom! We know that we have already added
// a DominatorTree node for our idom, because the idom must be a
// predecessor in the depth first order that we are iterating through the
// function.
//
DominatorSet::DomSetType::const_iterator I = Dominators.begin();
DominatorSet::DomSetType::const_iterator End = Dominators.end();
for (; I != End; ++I) { // Iterate over dominators...
// All of our dominators should form a chain, where the number of
// elements in the dominator set indicates what level the node is at in
// the chain. We want the node immediately above us, so it will have
// an identical dominator set, except that BB will not dominate it...
// therefore it's dominator set size will be one less than BB's...
//
if (DS.getDominators(*I).size() == DomSetSize - 1) {
// We know that the immediate dominator should already have a node,
// because we are traversing the CFG in depth first order!
//
Node *IDomNode = Nodes[*I];
assert(IDomNode && "No node for IDOM?");
// Add a new tree node for this BasicBlock, and link it as a child of
// IDomNode
Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
break;
}
}
}
}
static std::ostream &operator<<(std::ostream &o,
const DominatorTreeBase::Node *Node) {
if (Node->getBlock())
WriteAsOperand(o, Node->getBlock(), false);
else
o << " <<exit node>>";
return o << "\n";
}
static void PrintDomTree(const DominatorTreeBase::Node *N, std::ostream &o,
unsigned Lev) {
o << std::string(2*Lev, ' ') << "[" << Lev << "] " << N;
for (DominatorTreeBase::Node::const_iterator I = N->begin(), E = N->end();
I != E; ++I)
PrintDomTree(*I, o, Lev+1);
}
void DominatorTreeBase::print(std::ostream &o) const {
o << "=============================--------------------------------\n"
<< "Inorder Dominator Tree:\n";
PrintDomTree(getRootNode(), o, 1);
}
//===----------------------------------------------------------------------===//
// DominanceFrontier Implementation
//===----------------------------------------------------------------------===//
static RegisterAnalysis<DominanceFrontier>
G("domfrontier", "Dominance Frontier Construction", true);
const DominanceFrontier::DomSetType &
DominanceFrontier::calculate(const DominatorTree &DT,
const DominatorTree::Node *Node) {
// Loop over CFG successors to calculate DFlocal[Node]
BasicBlock *BB = Node->getBlock();
DomSetType &S = Frontiers[BB]; // The new set to fill in...
for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
SI != SE; ++SI) {
// Does Node immediately dominate this successor?
if (DT[*SI]->getIDom() != Node)
S.insert(*SI);
}
// At this point, S is DFlocal. Now we union in DFup's of our children...
// Loop through and visit the nodes that Node immediately dominates (Node's
// children in the IDomTree)
//
for (DominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end();
NI != NE; ++NI) {
DominatorTree::Node *IDominee = *NI;
const DomSetType &ChildDF = calculate(DT, IDominee);
DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end();
for (; CDFI != CDFE; ++CDFI) {
if (!Node->dominates(DT[*CDFI]))
S.insert(*CDFI);
}
}
return S;
}
void DominanceFrontierBase::print(std::ostream &o) const {
for (const_iterator I = begin(), E = end(); I != E; ++I) {
o << " DomFrontier for BB";
if (I->first)
WriteAsOperand(o, I->first, false);
else
o << " <<exit node>>";
o << " is:\t" << I->second << "\n";
}
}
} // End llvm namespace
|