aboutsummaryrefslogtreecommitdiffstats
path: root/lib/VMCore/Dominators.cpp
blob: 7d0fbaa29aa5e656f6bca56981c68930c2ed573f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
//===- Dominators.cpp - Dominator Calculation -----------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements simple dominator construction algorithms for finding
// forward dominators.  Postdominators are available in libanalysis, but are not
// included in libvmcore, because it's not needed.  Forward dominators are
// needed to support the Verifier pass.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/Dominators.h"
#include "llvm/Support/CFG.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Instructions.h"
#include "llvm/Support/Streams.h"
#include <algorithm>
using namespace llvm;

namespace llvm {
static std::ostream &operator<<(std::ostream &o,
                                const std::set<BasicBlock*> &BBs) {
  for (std::set<BasicBlock*>::const_iterator I = BBs.begin(), E = BBs.end();
       I != E; ++I)
    if (*I)
      WriteAsOperand(o, *I, false);
    else
      o << " <<exit node>>";
  return o;
}
}

//===----------------------------------------------------------------------===//
//  DominatorTree Implementation
//===----------------------------------------------------------------------===//
//
// DominatorTree construction - This pass constructs immediate dominator
// information for a flow-graph based on the algorithm described in this
// document:
//
//   A Fast Algorithm for Finding Dominators in a Flowgraph
//   T. Lengauer & R. Tarjan, ACM TOPLAS July 1979, pgs 121-141.
//
// This implements both the O(n*ack(n)) and the O(n*log(n)) versions of EVAL and
// LINK, but it turns out that the theoretically slower O(n*log(n))
// implementation is actually faster than the "efficient" algorithm (even for
// large CFGs) because the constant overheads are substantially smaller.  The
// lower-complexity version can be enabled with the following #define:
//
#define BALANCE_IDOM_TREE 0
//
//===----------------------------------------------------------------------===//

char DominatorTree::ID = 0;
static RegisterPass<DominatorTree>
E("domtree", "Dominator Tree Construction", true);

// NewBB is split and now it has one successor. Update dominator tree to
// reflect this change.
void DominatorTree::splitBlock(BasicBlock *NewBB) {

  assert(NewBB->getTerminator()->getNumSuccessors() == 1
         && "NewBB should have a single successor!");
  BasicBlock *NewBBSucc = NewBB->getTerminator()->getSuccessor(0);

  std::vector<BasicBlock*> PredBlocks;
  for (pred_iterator PI = pred_begin(NewBB), PE = pred_end(NewBB);
       PI != PE; ++PI)
      PredBlocks.push_back(*PI);  

  assert(!PredBlocks.empty() && "No predblocks??");

  // The newly inserted basic block will dominate existing basic blocks iff the
  // PredBlocks dominate all of the non-pred blocks.  If all predblocks dominate
  // the non-pred blocks, then they all must be the same block!
  //
  bool NewBBDominatesNewBBSucc = true;
  {
    BasicBlock *OnePred = PredBlocks[0];
    unsigned i = 1, e = PredBlocks.size();
    for (i = 1; !isReachableFromEntry(OnePred); ++i) {
      assert(i != e && "Didn't find reachable pred?");
      OnePred = PredBlocks[i];
    }
    
    for (; i != e; ++i)
      if (PredBlocks[i] != OnePred && isReachableFromEntry(OnePred)){
        NewBBDominatesNewBBSucc = false;
        break;
      }

    if (NewBBDominatesNewBBSucc)
      for (pred_iterator PI = pred_begin(NewBBSucc), E = pred_end(NewBBSucc);
           PI != E; ++PI)
        if (*PI != NewBB && !dominates(NewBBSucc, *PI)) {
          NewBBDominatesNewBBSucc = false;
          break;
        }
  }

  // The other scenario where the new block can dominate its successors are when
  // all predecessors of NewBBSucc that are not NewBB are dominated by NewBBSucc
  // already.
  if (!NewBBDominatesNewBBSucc) {
    NewBBDominatesNewBBSucc = true;
    for (pred_iterator PI = pred_begin(NewBBSucc), E = pred_end(NewBBSucc);
         PI != E; ++PI)
      if (*PI != NewBB && !dominates(NewBBSucc, *PI)) {
        NewBBDominatesNewBBSucc = false;
        break;
      }
  }


  // Find NewBB's immediate dominator and create new dominator tree node for NewBB.
  BasicBlock *NewBBIDom = 0;
  unsigned i = 0;
  for (i = 0; i < PredBlocks.size(); ++i)
    if (isReachableFromEntry(PredBlocks[i])) {
      NewBBIDom = PredBlocks[i];
      break;
    }
  assert(i != PredBlocks.size() && "No reachable preds?");
  for (i = i + 1; i < PredBlocks.size(); ++i) {
    if (isReachableFromEntry(PredBlocks[i]))
      NewBBIDom = findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
  }
  assert(NewBBIDom && "No immediate dominator found??");
  
  // Create the new dominator tree node... and set the idom of NewBB.
  DomTreeNode *NewBBNode = addNewBlock(NewBB, NewBBIDom);
  
  // If NewBB strictly dominates other blocks, then it is now the immediate
  // dominator of NewBBSucc.  Update the dominator tree as appropriate.
  if (NewBBDominatesNewBBSucc) {
    DomTreeNode *NewBBSuccNode = getNode(NewBBSucc);
    changeImmediateDominator(NewBBSuccNode, NewBBNode);
  }
}

unsigned DominatorTree::DFSPass(BasicBlock *V, unsigned N) {
  // This is more understandable as a recursive algorithm, but we can't use the
  // recursive algorithm due to stack depth issues.  Keep it here for
  // documentation purposes.
#if 0
  InfoRec &VInfo = Info[Roots[i]];
  VInfo.Semi = ++N;
  VInfo.Label = V;

  Vertex.push_back(V);        // Vertex[n] = V;
  //Info[V].Ancestor = 0;     // Ancestor[n] = 0
  //Info[V].Child = 0;        // Child[v] = 0
  VInfo.Size = 1;             // Size[v] = 1

  for (succ_iterator SI = succ_begin(V), E = succ_end(V); SI != E; ++SI) {
    InfoRec &SuccVInfo = Info[*SI];
    if (SuccVInfo.Semi == 0) {
      SuccVInfo.Parent = V;
      N = DFSPass(*SI, N);
    }
  }
#else
  std::vector<std::pair<BasicBlock*, unsigned> > Worklist;
  Worklist.push_back(std::make_pair(V, 0U));
  while (!Worklist.empty()) {
    BasicBlock *BB = Worklist.back().first;
    unsigned NextSucc = Worklist.back().second;
    
    // First time we visited this BB?
    if (NextSucc == 0) {
      InfoRec &BBInfo = Info[BB];
      BBInfo.Semi = ++N;
      BBInfo.Label = BB;
      
      Vertex.push_back(BB);       // Vertex[n] = V;
      //BBInfo[V].Ancestor = 0;   // Ancestor[n] = 0
      //BBInfo[V].Child = 0;      // Child[v] = 0
      BBInfo.Size = 1;            // Size[v] = 1
    }
    
    // If we are done with this block, remove it from the worklist.
    if (NextSucc == BB->getTerminator()->getNumSuccessors()) {
      Worklist.pop_back();
      continue;
    }
    
    // Otherwise, increment the successor number for the next time we get to it.
    ++Worklist.back().second;
    
    // Visit the successor next, if it isn't already visited.
    BasicBlock *Succ = BB->getTerminator()->getSuccessor(NextSucc);
    
    InfoRec &SuccVInfo = Info[Succ];
    if (SuccVInfo.Semi == 0) {
      SuccVInfo.Parent = BB;
      Worklist.push_back(std::make_pair(Succ, 0U));
    }
  }
#endif
  return N;
}

void DominatorTree::Compress(BasicBlock *VIn) {

  std::vector<BasicBlock *> Work;
  SmallPtrSet<BasicBlock *, 32> Visited;
  BasicBlock *VInAncestor = Info[VIn].Ancestor;
  InfoRec &VInVAInfo = Info[VInAncestor];

  if (VInVAInfo.Ancestor != 0)
    Work.push_back(VIn);
  
  while (!Work.empty()) {
    BasicBlock *V = Work.back();
    InfoRec &VInfo = Info[V];
    BasicBlock *VAncestor = VInfo.Ancestor;
    InfoRec &VAInfo = Info[VAncestor];

    // Process Ancestor first
    if (Visited.insert(VAncestor) &&
        VAInfo.Ancestor != 0) {
      Work.push_back(VAncestor);
      continue;
    } 
    Work.pop_back(); 

    // Update VInfo based on Ancestor info
    if (VAInfo.Ancestor == 0)
      continue;
    BasicBlock *VAncestorLabel = VAInfo.Label;
    BasicBlock *VLabel = VInfo.Label;
    if (Info[VAncestorLabel].Semi < Info[VLabel].Semi)
      VInfo.Label = VAncestorLabel;
    VInfo.Ancestor = VAInfo.Ancestor;
  }
}

BasicBlock *DominatorTree::Eval(BasicBlock *V) {
  InfoRec &VInfo = Info[V];
#if !BALANCE_IDOM_TREE
  // Higher-complexity but faster implementation
  if (VInfo.Ancestor == 0)
    return V;
  Compress(V);
  return VInfo.Label;
#else
  // Lower-complexity but slower implementation
  if (VInfo.Ancestor == 0)
    return VInfo.Label;
  Compress(V);
  BasicBlock *VLabel = VInfo.Label;

  BasicBlock *VAncestorLabel = Info[VInfo.Ancestor].Label;
  if (Info[VAncestorLabel].Semi >= Info[VLabel].Semi)
    return VLabel;
  else
    return VAncestorLabel;
#endif
}

void DominatorTree::Link(BasicBlock *V, BasicBlock *W, InfoRec &WInfo){
#if !BALANCE_IDOM_TREE
  // Higher-complexity but faster implementation
  WInfo.Ancestor = V;
#else
  // Lower-complexity but slower implementation
  BasicBlock *WLabel = WInfo.Label;
  unsigned WLabelSemi = Info[WLabel].Semi;
  BasicBlock *S = W;
  InfoRec *SInfo = &Info[S];

  BasicBlock *SChild = SInfo->Child;
  InfoRec *SChildInfo = &Info[SChild];

  while (WLabelSemi < Info[SChildInfo->Label].Semi) {
    BasicBlock *SChildChild = SChildInfo->Child;
    if (SInfo->Size+Info[SChildChild].Size >= 2*SChildInfo->Size) {
      SChildInfo->Ancestor = S;
      SInfo->Child = SChild = SChildChild;
      SChildInfo = &Info[SChild];
    } else {
      SChildInfo->Size = SInfo->Size;
      S = SInfo->Ancestor = SChild;
      SInfo = SChildInfo;
      SChild = SChildChild;
      SChildInfo = &Info[SChild];
    }
  }

  InfoRec &VInfo = Info[V];
  SInfo->Label = WLabel;

  assert(V != W && "The optimization here will not work in this case!");
  unsigned WSize = WInfo.Size;
  unsigned VSize = (VInfo.Size += WSize);

  if (VSize < 2*WSize)
    std::swap(S, VInfo.Child);

  while (S) {
    SInfo = &Info[S];
    SInfo->Ancestor = V;
    S = SInfo->Child;
  }
#endif
}

void DominatorTree::calculate(Function &F) {
  BasicBlock* Root = Roots[0];

  // Add a node for the root...
  DomTreeNodes[Root] = RootNode = new DomTreeNode(Root, 0);

  Vertex.push_back(0);

  // Step #1: Number blocks in depth-first order and initialize variables used
  // in later stages of the algorithm.
  unsigned N = DFSPass(Root, 0);

  for (unsigned i = N; i >= 2; --i) {
    BasicBlock *W = Vertex[i];
    InfoRec &WInfo = Info[W];

    // Step #2: Calculate the semidominators of all vertices
    for (pred_iterator PI = pred_begin(W), E = pred_end(W); PI != E; ++PI)
      if (Info.count(*PI)) {  // Only if this predecessor is reachable!
        unsigned SemiU = Info[Eval(*PI)].Semi;
        if (SemiU < WInfo.Semi)
          WInfo.Semi = SemiU;
      }

    Info[Vertex[WInfo.Semi]].Bucket.push_back(W);

    BasicBlock *WParent = WInfo.Parent;
    Link(WParent, W, WInfo);

    // Step #3: Implicitly define the immediate dominator of vertices
    std::vector<BasicBlock*> &WParentBucket = Info[WParent].Bucket;
    while (!WParentBucket.empty()) {
      BasicBlock *V = WParentBucket.back();
      WParentBucket.pop_back();
      BasicBlock *U = Eval(V);
      IDoms[V] = Info[U].Semi < Info[V].Semi ? U : WParent;
    }
  }

  // Step #4: Explicitly define the immediate dominator of each vertex
  for (unsigned i = 2; i <= N; ++i) {
    BasicBlock *W = Vertex[i];
    BasicBlock *&WIDom = IDoms[W];
    if (WIDom != Vertex[Info[W].Semi])
      WIDom = IDoms[WIDom];
  }

  // Loop over all of the reachable blocks in the function...
  for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
    if (BasicBlock *ImmDom = getIDom(I)) {  // Reachable block.
      DomTreeNode *BBNode = DomTreeNodes[I];
      if (BBNode) continue;  // Haven't calculated this node yet?

      // Get or calculate the node for the immediate dominator
      DomTreeNode *IDomNode = getNodeForBlock(ImmDom);

      // Add a new tree node for this BasicBlock, and link it as a child of
      // IDomNode
      DomTreeNode *C = new DomTreeNode(I, IDomNode);
      DomTreeNodes[I] = IDomNode->addChild(C);
    }

  // Free temporary memory used to construct idom's
  Info.clear();
  IDoms.clear();
  std::vector<BasicBlock*>().swap(Vertex);

  updateDFSNumbers();
}

void DominatorTreeBase::updateDFSNumbers() {
  int dfsnum = 0;
  // Iterate over all nodes in depth first order.
  for (unsigned i = 0, e = Roots.size(); i != e; ++i)
    for (df_iterator<BasicBlock*> I = df_begin(Roots[i]),
           E = df_end(Roots[i]); I != E; ++I) {
      BasicBlock *BB = *I;
      DomTreeNode *BBNode = getNode(BB);
      if (BBNode) {
        if (!BBNode->getIDom())
          BBNode->assignDFSNumber(dfsnum);
      }
  }
  SlowQueries = 0;
  DFSInfoValid = true;
}

/// isReachableFromEntry - Return true if A is dominated by the entry
/// block of the function containing it.
const bool DominatorTreeBase::isReachableFromEntry(BasicBlock* A) {
  assert (!isPostDominator() 
          && "This is not implemented for post dominators");
  return dominates(&A->getParent()->getEntryBlock(), A);
}

// dominates - Return true if A dominates B. THis performs the
// special checks necessary if A and B are in the same basic block.
bool DominatorTreeBase::dominates(Instruction *A, Instruction *B) {
  BasicBlock *BBA = A->getParent(), *BBB = B->getParent();
  if (BBA != BBB) return dominates(BBA, BBB);
  
  // It is not possible to determine dominance between two PHI nodes 
  // based on their ordering.
  if (isa<PHINode>(A) && isa<PHINode>(B)) 
    return false;

  // Loop through the basic block until we find A or B.
  BasicBlock::iterator I = BBA->begin();
  for (; &*I != A && &*I != B; ++I) /*empty*/;
  
  if(!IsPostDominators) {
    // A dominates B if it is found first in the basic block.
    return &*I == A;
  } else {
    // A post-dominates B if B is found first in the basic block.
    return &*I == B;
  }
}

// DominatorTreeBase::reset - Free all of the tree node memory.
//
void DominatorTreeBase::reset() {
  for (DomTreeNodeMapType::iterator I = DomTreeNodes.begin(), 
         E = DomTreeNodes.end(); I != E; ++I)
    delete I->second;
  DomTreeNodes.clear();
  IDoms.clear();
  Roots.clear();
  Vertex.clear();
  RootNode = 0;
}

/// findNearestCommonDominator - Find nearest common dominator basic block
/// for basic block A and B. If there is no such block then return NULL.
BasicBlock *DominatorTreeBase::findNearestCommonDominator(BasicBlock *A, 
                                                          BasicBlock *B) {

  assert (!isPostDominator() 
          && "This is not implemented for post dominators");
  assert (A->getParent() == B->getParent() 
          && "Two blocks are not in same function");

  // If either A or B is a entry block then it is nearest common dominator.
  BasicBlock &Entry  = A->getParent()->getEntryBlock();
  if (A == &Entry || B == &Entry)
    return &Entry;

  // If B dominates A then B is nearest common dominator.
  if (dominates(B,A))
    return B;

  // If A dominates B then A is nearest common dominator.
  if (dominates(A,B))
    return A;

  DomTreeNode *NodeA = getNode(A);
  DomTreeNode *NodeB = getNode(B);

  // Collect NodeA dominators set.
  SmallPtrSet<DomTreeNode*, 16> NodeADoms;
  NodeADoms.insert(NodeA);
  DomTreeNode *IDomA = NodeA->getIDom();
  while(IDomA) {
    NodeADoms.insert(IDomA);
    IDomA = IDomA->getIDom();
  }

  // Walk NodeB immediate dominators chain and find common dominator node.
  DomTreeNode *IDomB = NodeB->getIDom();
  while(IDomB) {
    if (NodeADoms.count(IDomB) != 0)
      return IDomB->getBlock();

    IDomB = IDomB->getIDom();
  }

  return NULL;
}

/// assignDFSNumber - Assign In and Out numbers while walking dominator tree
/// in dfs order.
void DomTreeNode::assignDFSNumber(int num) {
  std::vector<DomTreeNode *>  workStack;
  SmallPtrSet<DomTreeNode *, 32> Visited;
  
  workStack.push_back(this);
  Visited.insert(this);
  this->DFSNumIn = num++;
  
  while (!workStack.empty()) {
    DomTreeNode  *Node = workStack.back();
    
    bool visitChild = false;
    for (std::vector<DomTreeNode*>::iterator DI = Node->begin(),
           E = Node->end(); DI != E && !visitChild; ++DI) {
      DomTreeNode *Child = *DI;
      if (!Visited.insert(Child))
        continue;
      
      visitChild = true;
      Child->DFSNumIn = num++;
      workStack.push_back(Child);
    }
    if (!visitChild) {
      // If we reach here means all children are visited
      Node->DFSNumOut = num++;
      workStack.pop_back();
    }
  }
}

void DomTreeNode::setIDom(DomTreeNode *NewIDom) {
  assert(IDom && "No immediate dominator?");
  if (IDom != NewIDom) {
    std::vector<DomTreeNode*>::iterator I =
      std::find(IDom->Children.begin(), IDom->Children.end(), this);
    assert(I != IDom->Children.end() &&
           "Not in immediate dominator children set!");
    // I am no longer your child...
    IDom->Children.erase(I);

    // Switch to new dominator
    IDom = NewIDom;
    IDom->Children.push_back(this);
  }
}

DomTreeNode *DominatorTree::getNodeForBlock(BasicBlock *BB) {
  DomTreeNode *&BBNode = DomTreeNodes[BB];
  if (BBNode) return BBNode;

  // Haven't calculated this node yet?  Get or calculate the node for the
  // immediate dominator.
  BasicBlock *IDom = getIDom(BB);
  DomTreeNode *IDomNode = getNodeForBlock(IDom);

  // Add a new tree node for this BasicBlock, and link it as a child of
  // IDomNode
  DomTreeNode *C = new DomTreeNode(BB, IDomNode);
  DomTreeNodes[BB] = C;
  return BBNode = IDomNode->addChild(C);
}

static std::ostream &operator<<(std::ostream &o,
                                const DomTreeNode *Node) {
  if (Node->getBlock())
    WriteAsOperand(o, Node->getBlock(), false);
  else
    o << " <<exit node>>";
  return o << "\n";
}

static void PrintDomTree(const DomTreeNode *N, std::ostream &o,
                         unsigned Lev) {
  o << std::string(2*Lev, ' ') << "[" << Lev << "] " << N;
  for (DomTreeNode::const_iterator I = N->begin(), E = N->end();
       I != E; ++I)
    PrintDomTree(*I, o, Lev+1);
}

void DominatorTreeBase::print(std::ostream &o, const Module* ) const {
  o << "=============================--------------------------------\n"
    << "Inorder Dominator Tree:\n";
  PrintDomTree(getRootNode(), o, 1);
}

void DominatorTreeBase::dump() {
  print (llvm::cerr);
}

bool DominatorTree::runOnFunction(Function &F) {
  reset();     // Reset from the last time we were run...
  Roots.push_back(&F.getEntryBlock());
  calculate(F);
  return false;
}

//===----------------------------------------------------------------------===//
//  DominanceFrontier Implementation
//===----------------------------------------------------------------------===//

char DominanceFrontier::ID = 0;
static RegisterPass<DominanceFrontier>
G("domfrontier", "Dominance Frontier Construction", true);

// NewBB is split and now it has one successor. Update dominace frontier to
// reflect this change.
void DominanceFrontier::splitBlock(BasicBlock *NewBB) {

  assert(NewBB->getTerminator()->getNumSuccessors() == 1
         && "NewBB should have a single successor!");
  BasicBlock *NewBBSucc = NewBB->getTerminator()->getSuccessor(0);

  std::vector<BasicBlock*> PredBlocks;
  for (pred_iterator PI = pred_begin(NewBB), PE = pred_end(NewBB);
       PI != PE; ++PI)
      PredBlocks.push_back(*PI);  

  if (PredBlocks.empty())
    // If NewBB does not have any predecessors then it is a entry block.
    // In this case, NewBB and its successor NewBBSucc dominates all
    // other blocks.
    return;

  DominatorTree &DT = getAnalysis<DominatorTree>();
  bool NewBBDominatesNewBBSucc = true;
  if (!DT.dominates(NewBB, NewBBSucc))
    NewBBDominatesNewBBSucc = false;

  // NewBBSucc inherites original NewBB frontier.
  DominanceFrontier::iterator NewBBI = find(NewBB);
  if (NewBBI != end()) {
    DominanceFrontier::DomSetType NewBBSet = NewBBI->second;
    DominanceFrontier::DomSetType NewBBSuccSet;
    NewBBSuccSet.insert(NewBBSet.begin(), NewBBSet.end());
    addBasicBlock(NewBBSucc, NewBBSuccSet);
  }

  // If NewBB dominates NewBBSucc, then DF(NewBB) is now going to be the
  // DF(PredBlocks[0]) without the stuff that the new block does not dominate
  // a predecessor of.
  if (NewBBDominatesNewBBSucc) {
    DominanceFrontier::iterator DFI = find(PredBlocks[0]);
    if (DFI != end()) {
      DominanceFrontier::DomSetType Set = DFI->second;
      // Filter out stuff in Set that we do not dominate a predecessor of.
      for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(),
             E = Set.end(); SetI != E;) {
        bool DominatesPred = false;
        for (pred_iterator PI = pred_begin(*SetI), E = pred_end(*SetI);
             PI != E; ++PI)
          if (DT.dominates(NewBB, *PI))
            DominatesPred = true;
        if (!DominatesPred)
          Set.erase(SetI++);
        else
          ++SetI;
      }

      if (NewBBI != end()) {
        DominanceFrontier::DomSetType NewBBSet = NewBBI->second;
        NewBBSet.insert(Set.begin(), Set.end());
      } else 
        addBasicBlock(NewBB, Set);
    }
    
  } else {
    // DF(NewBB) is {NewBBSucc} because NewBB does not strictly dominate
    // NewBBSucc, but it does dominate itself (and there is an edge (NewBB ->
    // NewBBSucc)).  NewBBSucc is the single successor of NewBB.
    DominanceFrontier::DomSetType NewDFSet;
    NewDFSet.insert(NewBBSucc);
    addBasicBlock(NewBB, NewDFSet);
  }
  
  // Now we must loop over all of the dominance frontiers in the function,
  // replacing occurrences of NewBBSucc with NewBB in some cases.  All
  // blocks that dominate a block in PredBlocks and contained NewBBSucc in
  // their dominance frontier must be updated to contain NewBB instead.
  //
  for (Function::iterator FI = NewBB->getParent()->begin(),
         FE = NewBB->getParent()->end(); FI != FE; ++FI) {
    DominanceFrontier::iterator DFI = find(FI);
    if (DFI == end()) continue;  // unreachable block.
    
    // Only consider dominators of NewBBSucc
    if (!DFI->second.count(NewBBSucc)) continue;

    bool BlockDominatesAny = false;
    for (std::vector<BasicBlock*>::const_iterator BI = PredBlocks.begin(), 
           BE = PredBlocks.end(); BI != BE; ++BI) {
      if (DT.dominates(FI, *BI)) {
        BlockDominatesAny = true;
        break;
      }
    }
    
    if (BlockDominatesAny) {
      // If NewBBSucc should not stay in our dominator frontier, remove it.
      // We remove it unless there is a predecessor of NewBBSucc that we
      // dominate, but we don't strictly dominate NewBBSucc.
      bool ShouldRemove = true;
      if ((BasicBlock*)FI == NewBBSucc
          || !DT.dominates(FI, NewBBSucc)) {
        // Okay, we know that PredDom does not strictly dominate NewBBSucc.
        // Check to see if it dominates any predecessors of NewBBSucc.
        for (pred_iterator PI = pred_begin(NewBBSucc),
               E = pred_end(NewBBSucc); PI != E; ++PI)
          if (DT.dominates(FI, *PI)) {
            ShouldRemove = false;
            break;
          }
        
        if (ShouldRemove)
          removeFromFrontier(DFI, NewBBSucc);
        addToFrontier(DFI, NewBB);
        
        break;
      }
    }
  }
}

namespace {
  class DFCalculateWorkObject {
  public:
    DFCalculateWorkObject(BasicBlock *B, BasicBlock *P, 
                          const DomTreeNode *N,
                          const DomTreeNode *PN)
    : currentBB(B), parentBB(P), Node(N), parentNode(PN) {}
    BasicBlock *currentBB;
    BasicBlock *parentBB;
    const DomTreeNode *Node;
    const DomTreeNode *parentNode;
  };
}

const DominanceFrontier::DomSetType &
DominanceFrontier::calculate(const DominatorTree &DT,
                             const DomTreeNode *Node) {
  BasicBlock *BB = Node->getBlock();
  DomSetType *Result = NULL;

  std::vector<DFCalculateWorkObject> workList;
  SmallPtrSet<BasicBlock *, 32> visited;

  workList.push_back(DFCalculateWorkObject(BB, NULL, Node, NULL));
  do {
    DFCalculateWorkObject *currentW = &workList.back();
    assert (currentW && "Missing work object.");

    BasicBlock *currentBB = currentW->currentBB;
    BasicBlock *parentBB = currentW->parentBB;
    const DomTreeNode *currentNode = currentW->Node;
    const DomTreeNode *parentNode = currentW->parentNode;
    assert (currentBB && "Invalid work object. Missing current Basic Block");
    assert (currentNode && "Invalid work object. Missing current Node");
    DomSetType &S = Frontiers[currentBB];

    // Visit each block only once.
    if (visited.count(currentBB) == 0) {
      visited.insert(currentBB);

      // Loop over CFG successors to calculate DFlocal[currentNode]
      for (succ_iterator SI = succ_begin(currentBB), SE = succ_end(currentBB);
           SI != SE; ++SI) {
        // Does Node immediately dominate this successor?
        if (DT[*SI]->getIDom() != currentNode)
          S.insert(*SI);
      }
    }

    // At this point, S is DFlocal.  Now we union in DFup's of our children...
    // Loop through and visit the nodes that Node immediately dominates (Node's
    // children in the IDomTree)
    bool visitChild = false;
    for (DomTreeNode::const_iterator NI = currentNode->begin(), 
           NE = currentNode->end(); NI != NE; ++NI) {
      DomTreeNode *IDominee = *NI;
      BasicBlock *childBB = IDominee->getBlock();
      if (visited.count(childBB) == 0) {
        workList.push_back(DFCalculateWorkObject(childBB, currentBB,
                                                 IDominee, currentNode));
        visitChild = true;
      }
    }

    // If all children are visited or there is any child then pop this block
    // from the workList.
    if (!visitChild) {

      if (!parentBB) {
        Result = &S;
        break;
      }

      DomSetType::const_iterator CDFI = S.begin(), CDFE = S.end();
      DomSetType &parentSet = Frontiers[parentBB];
      for (; CDFI != CDFE; ++CDFI) {
        if (!DT.properlyDominates(parentNode, DT[*CDFI]))
          parentSet.insert(*CDFI);
      }
      workList.pop_back();
    }

  } while (!workList.empty());

  return *Result;
}

void DominanceFrontierBase::print(std::ostream &o, const Module* ) const {
  for (const_iterator I = begin(), E = end(); I != E; ++I) {
    o << "  DomFrontier for BB";
    if (I->first)
      WriteAsOperand(o, I->first, false);
    else
      o << " <<exit node>>";
    o << " is:\t" << I->second << "\n";
  }
}

void DominanceFrontierBase::dump() {
  print (llvm::cerr);
}