1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
|
//===- Dominators.cpp - Dominator Calculation -----------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements simple dominator construction algorithms for finding
// forward dominators. Postdominators are available in libanalysis, but are not
// included in libvmcore, because it's not needed. Forward dominators are
// needed to support the Verifier pass.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/Dominators.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Compiler.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/DominatorInternals.h"
#include "llvm/Instructions.h"
#include "llvm/Support/Streams.h"
#include <algorithm>
using namespace llvm;
namespace llvm {
static std::ostream &operator<<(std::ostream &o,
const std::set<BasicBlock*> &BBs) {
for (std::set<BasicBlock*>::const_iterator I = BBs.begin(), E = BBs.end();
I != E; ++I)
if (*I)
WriteAsOperand(o, *I, false);
else
o << " <<exit node>>";
return o;
}
}
//===----------------------------------------------------------------------===//
// DominatorTree Implementation
//===----------------------------------------------------------------------===//
//
// Provide public access to DominatorTree information. Implementation details
// can be found in DominatorCalculation.h.
//
//===----------------------------------------------------------------------===//
TEMPLATE_INSTANTIATION(class DomTreeNodeBase<BasicBlock>);
TEMPLATE_INSTANTIATION(class DominatorTreeBase<BasicBlock>);
char DominatorTree::ID = 0;
static RegisterPass<DominatorTree>
E("domtree", "Dominator Tree Construction", false, true);
bool DominatorTree::runOnFunction(Function &F) {
DT->recalculate(F);
return false;
}
//===----------------------------------------------------------------------===//
// DominanceFrontier Implementation
//===----------------------------------------------------------------------===//
char DominanceFrontier::ID = 0;
static RegisterPass<DominanceFrontier>
G("domfrontier", "Dominance Frontier Construction", false, true);
// NewBB is split and now it has one successor. Update dominace frontier to
// reflect this change.
void DominanceFrontier::splitBlock(BasicBlock *NewBB) {
assert(NewBB->getTerminator()->getNumSuccessors() == 1
&& "NewBB should have a single successor!");
BasicBlock *NewBBSucc = NewBB->getTerminator()->getSuccessor(0);
std::vector<BasicBlock*> PredBlocks;
for (pred_iterator PI = pred_begin(NewBB), PE = pred_end(NewBB);
PI != PE; ++PI)
PredBlocks.push_back(*PI);
if (PredBlocks.empty())
// If NewBB does not have any predecessors then it is a entry block.
// In this case, NewBB and its successor NewBBSucc dominates all
// other blocks.
return;
// NewBBSucc inherits original NewBB frontier.
DominanceFrontier::iterator NewBBI = find(NewBB);
if (NewBBI != end()) {
DominanceFrontier::DomSetType NewBBSet = NewBBI->second;
DominanceFrontier::DomSetType NewBBSuccSet;
NewBBSuccSet.insert(NewBBSet.begin(), NewBBSet.end());
addBasicBlock(NewBBSucc, NewBBSuccSet);
}
// If NewBB dominates NewBBSucc, then DF(NewBB) is now going to be the
// DF(PredBlocks[0]) without the stuff that the new block does not dominate
// a predecessor of.
DominatorTree &DT = getAnalysis<DominatorTree>();
if (DT.dominates(NewBB, NewBBSucc)) {
DominanceFrontier::iterator DFI = find(PredBlocks[0]);
if (DFI != end()) {
DominanceFrontier::DomSetType Set = DFI->second;
// Filter out stuff in Set that we do not dominate a predecessor of.
for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(),
E = Set.end(); SetI != E;) {
bool DominatesPred = false;
for (pred_iterator PI = pred_begin(*SetI), E = pred_end(*SetI);
PI != E; ++PI)
if (DT.dominates(NewBB, *PI))
DominatesPred = true;
if (!DominatesPred)
Set.erase(SetI++);
else
++SetI;
}
if (NewBBI != end()) {
for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(),
E = Set.end(); SetI != E; ++SetI) {
BasicBlock *SB = *SetI;
addToFrontier(NewBBI, SB);
}
} else
addBasicBlock(NewBB, Set);
}
} else {
// DF(NewBB) is {NewBBSucc} because NewBB does not strictly dominate
// NewBBSucc, but it does dominate itself (and there is an edge (NewBB ->
// NewBBSucc)). NewBBSucc is the single successor of NewBB.
DominanceFrontier::DomSetType NewDFSet;
NewDFSet.insert(NewBBSucc);
addBasicBlock(NewBB, NewDFSet);
}
// Now we must loop over all of the dominance frontiers in the function,
// replacing occurrences of NewBBSucc with NewBB in some cases. All
// blocks that dominate a block in PredBlocks and contained NewBBSucc in
// their dominance frontier must be updated to contain NewBB instead.
//
for (Function::iterator FI = NewBB->getParent()->begin(),
FE = NewBB->getParent()->end(); FI != FE; ++FI) {
DominanceFrontier::iterator DFI = find(FI);
if (DFI == end()) continue; // unreachable block.
// Only consider nodes that have NewBBSucc in their dominator frontier.
if (!DFI->second.count(NewBBSucc)) continue;
// Verify whether this block dominates a block in predblocks. If not, do
// not update it.
bool BlockDominatesAny = false;
for (std::vector<BasicBlock*>::const_iterator BI = PredBlocks.begin(),
BE = PredBlocks.end(); BI != BE; ++BI) {
if (DT.dominates(FI, *BI)) {
BlockDominatesAny = true;
break;
}
}
if (!BlockDominatesAny)
continue;
// If NewBBSucc should not stay in our dominator frontier, remove it.
// We remove it unless there is a predecessor of NewBBSucc that we
// dominate, but we don't strictly dominate NewBBSucc.
bool ShouldRemove = true;
if ((BasicBlock*)FI == NewBBSucc || !DT.dominates(FI, NewBBSucc)) {
// Okay, we know that PredDom does not strictly dominate NewBBSucc.
// Check to see if it dominates any predecessors of NewBBSucc.
for (pred_iterator PI = pred_begin(NewBBSucc),
E = pred_end(NewBBSucc); PI != E; ++PI)
if (DT.dominates(FI, *PI)) {
ShouldRemove = false;
break;
}
}
if (ShouldRemove)
removeFromFrontier(DFI, NewBBSucc);
addToFrontier(DFI, NewBB);
}
}
namespace {
class DFCalculateWorkObject {
public:
DFCalculateWorkObject(BasicBlock *B, BasicBlock *P,
const DomTreeNode *N,
const DomTreeNode *PN)
: currentBB(B), parentBB(P), Node(N), parentNode(PN) {}
BasicBlock *currentBB;
BasicBlock *parentBB;
const DomTreeNode *Node;
const DomTreeNode *parentNode;
};
}
const DominanceFrontier::DomSetType &
DominanceFrontier::calculate(const DominatorTree &DT,
const DomTreeNode *Node) {
BasicBlock *BB = Node->getBlock();
DomSetType *Result = NULL;
std::vector<DFCalculateWorkObject> workList;
SmallPtrSet<BasicBlock *, 32> visited;
workList.push_back(DFCalculateWorkObject(BB, NULL, Node, NULL));
do {
DFCalculateWorkObject *currentW = &workList.back();
assert (currentW && "Missing work object.");
BasicBlock *currentBB = currentW->currentBB;
BasicBlock *parentBB = currentW->parentBB;
const DomTreeNode *currentNode = currentW->Node;
const DomTreeNode *parentNode = currentW->parentNode;
assert (currentBB && "Invalid work object. Missing current Basic Block");
assert (currentNode && "Invalid work object. Missing current Node");
DomSetType &S = Frontiers[currentBB];
// Visit each block only once.
if (visited.count(currentBB) == 0) {
visited.insert(currentBB);
// Loop over CFG successors to calculate DFlocal[currentNode]
for (succ_iterator SI = succ_begin(currentBB), SE = succ_end(currentBB);
SI != SE; ++SI) {
// Does Node immediately dominate this successor?
if (DT[*SI]->getIDom() != currentNode)
S.insert(*SI);
}
}
// At this point, S is DFlocal. Now we union in DFup's of our children...
// Loop through and visit the nodes that Node immediately dominates (Node's
// children in the IDomTree)
bool visitChild = false;
for (DomTreeNode::const_iterator NI = currentNode->begin(),
NE = currentNode->end(); NI != NE; ++NI) {
DomTreeNode *IDominee = *NI;
BasicBlock *childBB = IDominee->getBlock();
if (visited.count(childBB) == 0) {
workList.push_back(DFCalculateWorkObject(childBB, currentBB,
IDominee, currentNode));
visitChild = true;
}
}
// If all children are visited or there is any child then pop this block
// from the workList.
if (!visitChild) {
if (!parentBB) {
Result = &S;
break;
}
DomSetType::const_iterator CDFI = S.begin(), CDFE = S.end();
DomSetType &parentSet = Frontiers[parentBB];
for (; CDFI != CDFE; ++CDFI) {
if (!DT.properlyDominates(parentNode, DT[*CDFI]))
parentSet.insert(*CDFI);
}
workList.pop_back();
}
} while (!workList.empty());
return *Result;
}
void DominanceFrontierBase::print(std::ostream &o, const Module* ) const {
for (const_iterator I = begin(), E = end(); I != E; ++I) {
o << " DomFrontier for BB";
if (I->first)
WriteAsOperand(o, I->first, false);
else
o << " <<exit node>>";
o << " is:\t" << I->second << "\n";
}
}
void DominanceFrontierBase::dump() {
print (llvm::cerr);
}
|