aboutsummaryrefslogtreecommitdiffstats
path: root/lib/VMCore/Dominators.cpp
blob: e4eb2c1119e3b09437ff0beac0686daa3e5828f4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
//===- DominatorSet.cpp - Dominator Set Calculation --------------*- C++ -*--=//
//
// This file provides a simple class to calculate the dominator set of a
// function.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/Dominators.h"
#include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h"
#include "llvm/Support/CFG.h"
#include "Support/DepthFirstIterator.h"
#include "Support/STLExtras.h"
#include "Support/SetOperations.h"
#include <algorithm>
using std::set;

//===----------------------------------------------------------------------===//
//  DominatorSet Implementation
//===----------------------------------------------------------------------===//

AnalysisID DominatorSet::ID(AnalysisID::create<DominatorSet>(), true);
AnalysisID DominatorSet::PostDomID(AnalysisID::create<DominatorSet>(), true);

bool DominatorSet::runOnFunction(Function *F) {
  Doms.clear();   // Reset from the last time we were run...

  if (isPostDominator())
    calcPostDominatorSet(F);
  else
    calcForwardDominatorSet(F);
  return false;
}


// calcForwardDominatorSet - This method calculates the forward dominator sets
// for the specified function.
//
void DominatorSet::calcForwardDominatorSet(Function *M) {
  Root = M->getEntryNode();
  assert(pred_begin(Root) == pred_end(Root) &&
	 "Root node has predecessors in function!");

  bool Changed;
  do {
    Changed = false;

    DomSetType WorkingSet;
    df_iterator<Function*> It = df_begin(M), End = df_end(M);
    for ( ; It != End; ++It) {
      BasicBlock *BB = *It;
      pred_iterator PI = pred_begin(BB), PEnd = pred_end(BB);
      if (PI != PEnd) {                // Is there SOME predecessor?
	// Loop until we get to a predecessor that has had it's dom set filled
	// in at least once.  We are guaranteed to have this because we are
	// traversing the graph in DFO and have handled start nodes specially.
	//
	while (Doms[*PI].size() == 0) ++PI;
	WorkingSet = Doms[*PI];

	for (++PI; PI != PEnd; ++PI) { // Intersect all of the predecessor sets
	  DomSetType &PredSet = Doms[*PI];
	  if (PredSet.size())
	    set_intersect(WorkingSet, PredSet);
	}
      }
	
      WorkingSet.insert(BB);           // A block always dominates itself
      DomSetType &BBSet = Doms[BB];
      if (BBSet != WorkingSet) {
	BBSet.swap(WorkingSet);        // Constant time operation!
	Changed = true;                // The sets changed.
      }
      WorkingSet.clear();              // Clear out the set for next iteration
    }
  } while (Changed);
}

// Postdominator set constructor.  This ctor converts the specified function to
// only have a single exit node (return stmt), then calculates the post
// dominance sets for the function.
//
void DominatorSet::calcPostDominatorSet(Function *F) {
  // Since we require that the unify all exit nodes pass has been run, we know
  // that there can be at most one return instruction in the function left.
  // Get it.
  //
  Root = getAnalysis<UnifyFunctionExitNodes>().getExitNode();

  if (Root == 0) {  // No exit node for the function?  Postdomsets are all empty
    for (Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
      Doms[*FI] = DomSetType();
    return;
  }

  bool Changed;
  do {
    Changed = false;

    set<const BasicBlock*> Visited;
    DomSetType WorkingSet;
    idf_iterator<BasicBlock*> It = idf_begin(Root), End = idf_end(Root);
    for ( ; It != End; ++It) {
      BasicBlock *BB = *It;
      succ_iterator PI = succ_begin(BB), PEnd = succ_end(BB);
      if (PI != PEnd) {                // Is there SOME predecessor?
	// Loop until we get to a successor that has had it's dom set filled
	// in at least once.  We are guaranteed to have this because we are
	// traversing the graph in DFO and have handled start nodes specially.
	//
	while (Doms[*PI].size() == 0) ++PI;
	WorkingSet = Doms[*PI];

	for (++PI; PI != PEnd; ++PI) { // Intersect all of the successor sets
	  DomSetType &PredSet = Doms[*PI];
	  if (PredSet.size())
	    set_intersect(WorkingSet, PredSet);
	}
      }
	
      WorkingSet.insert(BB);           // A block always dominates itself
      DomSetType &BBSet = Doms[BB];
      if (BBSet != WorkingSet) {
	BBSet.swap(WorkingSet);        // Constant time operation!
	Changed = true;                // The sets changed.
      }
      WorkingSet.clear();              // Clear out the set for next iteration
    }
  } while (Changed);
}

// getAnalysisUsage - This obviously provides a dominator set, but it also
// uses the UnifyFunctionExitNodes pass if building post-dominators
//
void DominatorSet::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesAll();
  if (isPostDominator()) {
    AU.addProvided(PostDomID);
    AU.addRequired(UnifyFunctionExitNodes::ID);
  } else {
    AU.addProvided(ID);
  }
}


//===----------------------------------------------------------------------===//
//  ImmediateDominators Implementation
//===----------------------------------------------------------------------===//

AnalysisID ImmediateDominators::ID(AnalysisID::create<ImmediateDominators>(), true);
AnalysisID ImmediateDominators::PostDomID(AnalysisID::create<ImmediateDominators>(), true);

// calcIDoms - Calculate the immediate dominator mapping, given a set of
// dominators for every basic block.
void ImmediateDominators::calcIDoms(const DominatorSet &DS) {
  // Loop over all of the nodes that have dominators... figuring out the IDOM
  // for each node...
  //
  for (DominatorSet::const_iterator DI = DS.begin(), DEnd = DS.end(); 
       DI != DEnd; ++DI) {
    BasicBlock *BB = DI->first;
    const DominatorSet::DomSetType &Dominators = DI->second;
    unsigned DomSetSize = Dominators.size();
    if (DomSetSize == 1) continue;  // Root node... IDom = null

    // Loop over all dominators of this node.  This corresponds to looping over
    // nodes in the dominator chain, looking for a node whose dominator set is
    // equal to the current nodes, except that the current node does not exist
    // in it.  This means that it is one level higher in the dom chain than the
    // current node, and it is our idom!
    //
    DominatorSet::DomSetType::const_iterator I = Dominators.begin();
    DominatorSet::DomSetType::const_iterator End = Dominators.end();
    for (; I != End; ++I) {   // Iterate over dominators...
      // All of our dominators should form a chain, where the number of elements
      // in the dominator set indicates what level the node is at in the chain.
      // We want the node immediately above us, so it will have an identical 
      // dominator set, except that BB will not dominate it... therefore it's
      // dominator set size will be one less than BB's...
      //
      if (DS.getDominators(*I).size() == DomSetSize - 1) {
	IDoms[BB] = *I;
	break;
      }
    }
  }
}


//===----------------------------------------------------------------------===//
//  DominatorTree Implementation
//===----------------------------------------------------------------------===//

AnalysisID DominatorTree::ID(AnalysisID::create<DominatorTree>(), true);
AnalysisID DominatorTree::PostDomID(AnalysisID::create<DominatorTree>(), true);

// DominatorTree::reset - Free all of the tree node memory.
//
void DominatorTree::reset() { 
  for (NodeMapType::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I)
    delete I->second;
  Nodes.clear();
}


#if 0
// Given immediate dominators, we can also calculate the dominator tree
DominatorTree::DominatorTree(const ImmediateDominators &IDoms) 
  : DominatorBase(IDoms.getRoot()) {
  const Function *M = Root->getParent();

  Nodes[Root] = new Node(Root, 0);   // Add a node for the root...

  // Iterate over all nodes in depth first order...
  for (df_iterator<const Function*> I = df_begin(M), E = df_end(M); I!=E; ++I) {
    const BasicBlock *BB = *I, *IDom = IDoms[*I];

    if (IDom != 0) {   // Ignore the root node and other nasty nodes
      // We know that the immediate dominator should already have a node, 
      // because we are traversing the CFG in depth first order!
      //
      assert(Nodes[IDom] && "No node for IDOM?");
      Node *IDomNode = Nodes[IDom];

      // Add a new tree node for this BasicBlock, and link it as a child of
      // IDomNode
      Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
    }
  }
}
#endif

void DominatorTree::calculate(const DominatorSet &DS) {
  Nodes[Root] = new Node(Root, 0);   // Add a node for the root...

  if (!isPostDominator()) {
    // Iterate over all nodes in depth first order...
    for (df_iterator<BasicBlock*> I = df_begin(Root), E = df_end(Root);
         I != E; ++I) {
      BasicBlock *BB = *I;
      const DominatorSet::DomSetType &Dominators = DS.getDominators(BB);
      unsigned DomSetSize = Dominators.size();
      if (DomSetSize == 1) continue;  // Root node... IDom = null
      
      // Loop over all dominators of this node. This corresponds to looping over
      // nodes in the dominator chain, looking for a node whose dominator set is
      // equal to the current nodes, except that the current node does not exist
      // in it. This means that it is one level higher in the dom chain than the
      // current node, and it is our idom!  We know that we have already added
      // a DominatorTree node for our idom, because the idom must be a
      // predecessor in the depth first order that we are iterating through the
      // function.
      //
      DominatorSet::DomSetType::const_iterator I = Dominators.begin();
      DominatorSet::DomSetType::const_iterator End = Dominators.end();
      for (; I != End; ++I) {   // Iterate over dominators...
	// All of our dominators should form a chain, where the number of
	// elements in the dominator set indicates what level the node is at in
	// the chain.  We want the node immediately above us, so it will have
	// an identical dominator set, except that BB will not dominate it...
	// therefore it's dominator set size will be one less than BB's...
	//
	if (DS.getDominators(*I).size() == DomSetSize - 1) {
	  // We know that the immediate dominator should already have a node, 
	  // because we are traversing the CFG in depth first order!
	  //
	  Node *IDomNode = Nodes[*I];
	  assert(IDomNode && "No node for IDOM?");
	  
	  // Add a new tree node for this BasicBlock, and link it as a child of
	  // IDomNode
	  Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
	  break;
	}
      }
    }
  } else if (Root) {
    // Iterate over all nodes in depth first order...
    for (idf_iterator<BasicBlock*> I = idf_begin(Root), E = idf_end(Root);
         I != E; ++I) {
      BasicBlock *BB = *I;
      const DominatorSet::DomSetType &Dominators = DS.getDominators(BB);
      unsigned DomSetSize = Dominators.size();
      if (DomSetSize == 1) continue;  // Root node... IDom = null
      
      // Loop over all dominators of this node.  This corresponds to looping
      // over nodes in the dominator chain, looking for a node whose dominator
      // set is equal to the current nodes, except that the current node does
      // not exist in it.  This means that it is one level higher in the dom
      // chain than the current node, and it is our idom!  We know that we have
      // already added a DominatorTree node for our idom, because the idom must
      // be a predecessor in the depth first order that we are iterating through
      // the function.
      //
      DominatorSet::DomSetType::const_iterator I = Dominators.begin();
      DominatorSet::DomSetType::const_iterator End = Dominators.end();
      for (; I != End; ++I) {   // Iterate over dominators...
	// All of our dominators should form a chain, where the number
	// of elements in the dominator set indicates what level the
	// node is at in the chain.  We want the node immediately
	// above us, so it will have an identical dominator set,
	// except that BB will not dominate it... therefore it's
	// dominator set size will be one less than BB's...
	//
	if (DS.getDominators(*I).size() == DomSetSize - 1) {
	  // We know that the immediate dominator should already have a node, 
	  // because we are traversing the CFG in depth first order!
	  //
	  Node *IDomNode = Nodes[*I];
	  assert(IDomNode && "No node for IDOM?");
	  
	  // Add a new tree node for this BasicBlock, and link it as a child of
	  // IDomNode
	  Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
	  break;
	}
      }
    }
  }
}



//===----------------------------------------------------------------------===//
//  DominanceFrontier Implementation
//===----------------------------------------------------------------------===//

AnalysisID DominanceFrontier::ID(AnalysisID::create<DominanceFrontier>(), true);
AnalysisID DominanceFrontier::PostDomID(AnalysisID::create<DominanceFrontier>(), true);

const DominanceFrontier::DomSetType &
DominanceFrontier::calcDomFrontier(const DominatorTree &DT, 
                                   const DominatorTree::Node *Node) {
  // Loop over CFG successors to calculate DFlocal[Node]
  BasicBlock *BB = Node->getNode();
  DomSetType &S = Frontiers[BB];       // The new set to fill in...

  for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
       SI != SE; ++SI) {
    // Does Node immediately dominate this successor?
    if (DT[*SI]->getIDom() != Node)
      S.insert(*SI);
  }

  // At this point, S is DFlocal.  Now we union in DFup's of our children...
  // Loop through and visit the nodes that Node immediately dominates (Node's
  // children in the IDomTree)
  //
  for (DominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end();
       NI != NE; ++NI) {
    DominatorTree::Node *IDominee = *NI;
    const DomSetType &ChildDF = calcDomFrontier(DT, IDominee);

    DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end();
    for (; CDFI != CDFE; ++CDFI) {
      if (!Node->dominates(DT[*CDFI]))
	S.insert(*CDFI);
    }
  }

  return S;
}

const DominanceFrontier::DomSetType &
DominanceFrontier::calcPostDomFrontier(const DominatorTree &DT, 
                                       const DominatorTree::Node *Node) {
  // Loop over CFG successors to calculate DFlocal[Node]
  BasicBlock *BB = Node->getNode();
  DomSetType &S = Frontiers[BB];       // The new set to fill in...
  if (!Root) return S;

  for (pred_iterator SI = pred_begin(BB), SE = pred_end(BB);
       SI != SE; ++SI) {
    // Does Node immediately dominate this predeccessor?
    if (DT[*SI]->getIDom() != Node)
      S.insert(*SI);
  }

  // At this point, S is DFlocal.  Now we union in DFup's of our children...
  // Loop through and visit the nodes that Node immediately dominates (Node's
  // children in the IDomTree)
  //
  for (DominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end();
       NI != NE; ++NI) {
    DominatorTree::Node *IDominee = *NI;
    const DomSetType &ChildDF = calcPostDomFrontier(DT, IDominee);

    DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end();
    for (; CDFI != CDFE; ++CDFI) {
      if (!Node->dominates(DT[*CDFI]))
	S.insert(*CDFI);
    }
  }

  return S;
}