aboutsummaryrefslogtreecommitdiffstats
path: root/lib/VMCore/Instruction.cpp
blob: 5ddf28435406b563a55e6b4ff141d3d44eb40c08 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
//===-- Instruction.cpp - Implement the Instruction class -----------------===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This file implements the Instruction class for the VMCore library.
//
//===----------------------------------------------------------------------===//

#include "llvm/Function.h"
#include "llvm/SymbolTable.h"
#include "llvm/Type.h"
#include "Support/LeakDetector.h"
using namespace llvm;

void Instruction::init()
{
  // Make sure that we get added to a basicblock
  LeakDetector::addGarbageObject(this);
}

Instruction::Instruction(const Type *ty, unsigned it, const std::string &Name,
                         Instruction *InsertBefore)
  : User(ty, Value::InstructionVal, Name),
    Parent(0),
    iType(it) {
  init();

  // If requested, insert this instruction into a basic block...
  if (InsertBefore) {
    assert(InsertBefore->getParent() &&
           "Instruction to insert before is not in a basic block!");
    InsertBefore->getParent()->getInstList().insert(InsertBefore, this);
  }
}

Instruction::Instruction(const Type *ty, unsigned it, const std::string &Name,
                         BasicBlock *InsertAtEnd)
  : User(ty, Value::InstructionVal, Name),
    Parent(0),
    iType(it) {
  init();

  // append this instruction into the basic block
  assert(InsertAtEnd && "Basic block to append to may not be NULL!");
  InsertAtEnd->getInstList().push_back(this);
}

void Instruction::setParent(BasicBlock *P) {
  if (getParent()) {
    if (!P) LeakDetector::addGarbageObject(this);
  } else {
    if (P) LeakDetector::removeGarbageObject(this);
  }

  Parent = P;
}

// Specialize setName to take care of symbol table majik
void Instruction::setName(const std::string &name, SymbolTable *ST) {
  BasicBlock *P = 0; Function *PP = 0;
  assert((ST == 0 || !getParent() || !getParent()->getParent() || 
	  ST == &getParent()->getParent()->getSymbolTable()) &&
	 "Invalid symtab argument!");
  if ((P = getParent()) && (PP = P->getParent()) && hasName())
    PP->getSymbolTable().remove(this);
  Value::setName(name);
  if (PP && hasName()) PP->getSymbolTable().insert(this);
}


const char *Instruction::getOpcodeName(unsigned OpCode) {
  switch (OpCode) {
  // Terminators
  case Ret:    return "ret";
  case Br:     return "br";
  case Switch: return "switch";
  case Invoke: return "invoke";
  case Unwind: return "unwind";
    
  // Standard binary operators...
  case Add: return "add";
  case Sub: return "sub";
  case Mul: return "mul";
  case Div: return "div";
  case Rem: return "rem";

  // Logical operators...
  case And: return "and";
  case Or : return "or";
  case Xor: return "xor";

  // SetCC operators...
  case SetLE:  return "setle";
  case SetGE:  return "setge";
  case SetLT:  return "setlt";
  case SetGT:  return "setgt";
  case SetEQ:  return "seteq";
  case SetNE:  return "setne";
    
  // Memory instructions...
  case Malloc:        return "malloc";
  case Free:          return "free";
  case Alloca:        return "alloca";
  case Load:          return "load";
  case Store:         return "store";
  case GetElementPtr: return "getelementptr";
    
  // Other instructions...
  case PHI:     return "phi";
  case Cast:    return "cast";
  case Select:  return "select";
  case Call:    return "call";
  case Shl:     return "shl";
  case Shr:     return "shr";
  case VANext:  return "vanext";
  case VAArg:   return "vaarg";

  default: return "<Invalid operator> ";
  }
  
  return 0;
}


/// isAssociative - Return true if the instruction is associative:
///
///   Associative operators satisfy:  x op (y op z) === (x op y) op z)
///
/// In LLVM, the Add, Mul, And, Or, and Xor operators are associative, when not
/// applied to floating point types.
///
bool Instruction::isAssociative(unsigned Opcode, const Type *Ty) {
  if (Opcode == Add || Opcode == Mul ||
      Opcode == And || Opcode == Or || Opcode == Xor) {
    // Floating point operations do not associate!
    return !Ty->isFloatingPoint();
  }
  return 0;
}

/// isCommutative - Return true if the instruction is commutative:
///
///   Commutative operators satisfy: (x op y) === (y op x)
///
/// In LLVM, these are the associative operators, plus SetEQ and SetNE, when
/// applied to any type.
///
bool Instruction::isCommutative(unsigned op) {
  switch (op) {
  case Add:
  case Mul:
  case And: 
  case Or:
  case Xor:
  case SetEQ:
  case SetNE:
    return true;
  default:
    return false;
  }
}

/// isRelational - Return true if the instruction is a Set* instruction:
///
bool Instruction::isRelational(unsigned op) {
  switch (op) {
  case SetEQ:
  case SetNE:
  case SetLT:
  case SetGT:
  case SetLE:
  case SetGE:
    return true;
  }
  return false;
}



/// isTrappingInstruction - Return true if the instruction may trap.
///
bool Instruction::isTrapping(unsigned op) {
  switch(op) {
  case Div:
  case Rem:
  case Load:
  case Store:
  case Call:
  case Invoke:
    return true;
  default:
    return false;
  }
}