aboutsummaryrefslogtreecommitdiffstats
path: root/lib/VMCore/Linker.cpp
blob: b050493ec6f79d1dfc43f7389e76443759f59aa9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
//===- Linker.cpp - Module Linker Implementation --------------------------===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This file implements the LLVM module linker.
//
// Specifically, this:
//  * Merges global variables between the two modules
//    * Uninit + Uninit = Init, Init + Uninit = Init, Init + Init = Error if !=
//  * Merges functions between two modules
//
//===----------------------------------------------------------------------===//

#include "llvm/Support/Linker.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/SymbolTable.h"
#include "llvm/iOther.h"
#include "llvm/Assembly/Writer.h"
using namespace llvm;

// Error - Simple wrapper function to conditionally assign to E and return true.
// This just makes error return conditions a little bit simpler...
//
static inline bool Error(std::string *E, const std::string &Message) {
  if (E) *E = Message;
  return true;
}

//
// Function: ResolveTypes()
//
// Description:
//  Attempt to link the two specified types together.
//
// Inputs:
//  DestTy - The type to which we wish to resolve.
//  SrcTy  - The original type which we want to resolve.
//  Name   - The name of the type.
//
// Outputs:
//  DestST - The symbol table in which the new type should be placed.
//
// Return value:
//  true  - There is an error and the types cannot yet be linked.
//  false - No errors.
//
static bool ResolveTypes(const Type *DestTy, const Type *SrcTy,
                         SymbolTable *DestST, const std::string &Name) {
  if (DestTy == SrcTy) return false;       // If already equal, noop

  // Does the type already exist in the module?
  if (DestTy && !isa<OpaqueType>(DestTy)) {  // Yup, the type already exists...
    if (const OpaqueType *OT = dyn_cast<OpaqueType>(SrcTy)) {
      const_cast<OpaqueType*>(OT)->refineAbstractTypeTo(DestTy);
    } else {
      return true;  // Cannot link types... neither is opaque and not-equal
    }
  } else {                       // Type not in dest module.  Add it now.
    if (DestTy)                  // Type _is_ in module, just opaque...
      const_cast<OpaqueType*>(cast<OpaqueType>(DestTy))
                           ->refineAbstractTypeTo(SrcTy);
    else if (!Name.empty())
      DestST->insert(Name, const_cast<Type*>(SrcTy));
  }
  return false;
}

static const FunctionType *getFT(const PATypeHolder &TH) {
  return cast<FunctionType>(TH.get());
}
static const StructType *getST(const PATypeHolder &TH) {
  return cast<StructType>(TH.get());
}

// RecursiveResolveTypes - This is just like ResolveTypes, except that it
// recurses down into derived types, merging the used types if the parent types
// are compatible.
//
static bool RecursiveResolveTypesI(const PATypeHolder &DestTy,
                                   const PATypeHolder &SrcTy,
                                   SymbolTable *DestST, const std::string &Name,
                std::vector<std::pair<PATypeHolder, PATypeHolder> > &Pointers) {
  const Type *SrcTyT = SrcTy.get();
  const Type *DestTyT = DestTy.get();
  if (DestTyT == SrcTyT) return false;       // If already equal, noop
  
  // If we found our opaque type, resolve it now!
  if (isa<OpaqueType>(DestTyT) || isa<OpaqueType>(SrcTyT))
    return ResolveTypes(DestTyT, SrcTyT, DestST, Name);
  
  // Two types cannot be resolved together if they are of different primitive
  // type.  For example, we cannot resolve an int to a float.
  if (DestTyT->getTypeID() != SrcTyT->getTypeID()) return true;

  // Otherwise, resolve the used type used by this derived type...
  switch (DestTyT->getTypeID()) {
  case Type::FunctionTyID: {
    if (cast<FunctionType>(DestTyT)->isVarArg() !=
        cast<FunctionType>(SrcTyT)->isVarArg() ||
        cast<FunctionType>(DestTyT)->getNumContainedTypes() !=
        cast<FunctionType>(SrcTyT)->getNumContainedTypes())
      return true;
    for (unsigned i = 0, e = getFT(DestTy)->getNumContainedTypes(); i != e; ++i)
      if (RecursiveResolveTypesI(getFT(DestTy)->getContainedType(i),
                                 getFT(SrcTy)->getContainedType(i), DestST, "",
                                 Pointers))
        return true;
    return false;
  }
  case Type::StructTyID: {
    if (getST(DestTy)->getNumContainedTypes() != 
        getST(SrcTy)->getNumContainedTypes()) return 1;
    for (unsigned i = 0, e = getST(DestTy)->getNumContainedTypes(); i != e; ++i)
      if (RecursiveResolveTypesI(getST(DestTy)->getContainedType(i),
                                 getST(SrcTy)->getContainedType(i), DestST, "",
                                 Pointers))
        return true;
    return false;
  }
  case Type::ArrayTyID: {
    const ArrayType *DAT = cast<ArrayType>(DestTy.get());
    const ArrayType *SAT = cast<ArrayType>(SrcTy.get());
    if (DAT->getNumElements() != SAT->getNumElements()) return true;
    return RecursiveResolveTypesI(DAT->getElementType(), SAT->getElementType(),
                                  DestST, "", Pointers);
  }
  case Type::PointerTyID: {
    // If this is a pointer type, check to see if we have already seen it.  If
    // so, we are in a recursive branch.  Cut off the search now.  We cannot use
    // an associative container for this search, because the type pointers (keys
    // in the container) change whenever types get resolved...
    //
    for (unsigned i = 0, e = Pointers.size(); i != e; ++i)
      if (Pointers[i].first == DestTy)
        return Pointers[i].second != SrcTy;

    // Otherwise, add the current pointers to the vector to stop recursion on
    // this pair.
    Pointers.push_back(std::make_pair(DestTyT, SrcTyT));
    bool Result =
      RecursiveResolveTypesI(cast<PointerType>(DestTy.get())->getElementType(),
                             cast<PointerType>(SrcTy.get())->getElementType(),
                             DestST, "", Pointers);
    Pointers.pop_back();
    return Result;
  }
  default: assert(0 && "Unexpected type!"); return true;
  }  
}

static bool RecursiveResolveTypes(const PATypeHolder &DestTy,
                                  const PATypeHolder &SrcTy,
                                  SymbolTable *DestST, const std::string &Name){
  std::vector<std::pair<PATypeHolder, PATypeHolder> > PointerTypes;
  return RecursiveResolveTypesI(DestTy, SrcTy, DestST, Name, PointerTypes);
}


// LinkTypes - Go through the symbol table of the Src module and see if any
// types are named in the src module that are not named in the Dst module.
// Make sure there are no type name conflicts.
//
static bool LinkTypes(Module *Dest, const Module *Src, std::string *Err) {
  SymbolTable       *DestST = &Dest->getSymbolTable();
  const SymbolTable *SrcST  = &Src->getSymbolTable();

  // Look for a type plane for Type's...
  SymbolTable::type_const_iterator TI = SrcST->type_begin();
  SymbolTable::type_const_iterator TE = SrcST->type_end();
  if (TI == TE) return false;  // No named types, do nothing.

  // Some types cannot be resolved immediately because they depend on other
  // types being resolved to each other first.  This contains a list of types we
  // are waiting to recheck.
  std::vector<std::string> DelayedTypesToResolve;

  for ( ; TI != TE; ++TI ) {
    const std::string &Name = TI->first;
    Type *RHS = TI->second;

    // Check to see if this type name is already in the dest module...
    Type *Entry = DestST->lookupType(Name);

    if (ResolveTypes(Entry, RHS, DestST, Name)) {
      // They look different, save the types 'till later to resolve.
      DelayedTypesToResolve.push_back(Name);
    }
  }

  // Iteratively resolve types while we can...
  while (!DelayedTypesToResolve.empty()) {
    // Loop over all of the types, attempting to resolve them if possible...
    unsigned OldSize = DelayedTypesToResolve.size();

    // Try direct resolution by name...
    for (unsigned i = 0; i != DelayedTypesToResolve.size(); ++i) {
      const std::string &Name = DelayedTypesToResolve[i];
      Type *T1 = SrcST->lookupType(Name);
      Type *T2 = DestST->lookupType(Name);
      if (!ResolveTypes(T2, T1, DestST, Name)) {
        // We are making progress!
        DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
        --i;
      }
    }

    // Did we not eliminate any types?
    if (DelayedTypesToResolve.size() == OldSize) {
      // Attempt to resolve subelements of types.  This allows us to merge these
      // two types: { int* } and { opaque* }
      for (unsigned i = 0, e = DelayedTypesToResolve.size(); i != e; ++i) {
        const std::string &Name = DelayedTypesToResolve[i];
        PATypeHolder T1(SrcST->lookupType(Name));
        PATypeHolder T2(DestST->lookupType(Name));

        if (!RecursiveResolveTypes(T2, T1, DestST, Name)) {
          // We are making progress!
          DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
          
          // Go back to the main loop, perhaps we can resolve directly by name
          // now...
          break;
        }
      }

      // If we STILL cannot resolve the types, then there is something wrong.
      // Report the warning and delete one of the names.
      if (DelayedTypesToResolve.size() == OldSize) {
        const std::string &Name = DelayedTypesToResolve.back();
        
        const Type *T1 = SrcST->lookupType(Name);
        const Type *T2 = DestST->lookupType(Name);
        std::cerr << "WARNING: Type conflict between types named '" << Name
                  <<  "'.\n    Src='";
        WriteTypeSymbolic(std::cerr, T1, Src);
        std::cerr << "'.\n   Dest='";
        WriteTypeSymbolic(std::cerr, T2, Dest);
        std::cerr << "'\n";

        // Remove the symbol name from the destination.
        DelayedTypesToResolve.pop_back();
      }
    }
  }


  return false;
}

static void PrintMap(const std::map<const Value*, Value*> &M) {
  for (std::map<const Value*, Value*>::const_iterator I = M.begin(), E =M.end();
       I != E; ++I) {
    std::cerr << " Fr: " << (void*)I->first << " ";
    I->first->dump();
    std::cerr << " To: " << (void*)I->second << " ";
    I->second->dump();
    std::cerr << "\n";
  }
}


// RemapOperand - Use LocalMap and GlobalMap to convert references from one
// module to another.  This is somewhat sophisticated in that it can
// automatically handle constant references correctly as well...
//
static Value *RemapOperand(const Value *In,
                           std::map<const Value*, Value*> &LocalMap,
                           std::map<const Value*, Value*> *GlobalMap) {
  std::map<const Value*,Value*>::const_iterator I = LocalMap.find(In);
  if (I != LocalMap.end()) return I->second;

  if (GlobalMap) {
    I = GlobalMap->find(In);
    if (I != GlobalMap->end()) return I->second;
  }

  // Check to see if it's a constant that we are interesting in transforming...
  if (const Constant *CPV = dyn_cast<Constant>(In)) {
    if ((!isa<DerivedType>(CPV->getType()) && !isa<ConstantExpr>(CPV)) ||
        isa<ConstantAggregateZero>(CPV))
      return const_cast<Constant*>(CPV);   // Simple constants stay identical...

    Constant *Result = 0;

    if (const ConstantArray *CPA = dyn_cast<ConstantArray>(CPV)) {
      const std::vector<Use> &Ops = CPA->getValues();
      std::vector<Constant*> Operands(Ops.size());
      for (unsigned i = 0, e = Ops.size(); i != e; ++i)
        Operands[i] = 
          cast<Constant>(RemapOperand(Ops[i], LocalMap, GlobalMap));
      Result = ConstantArray::get(cast<ArrayType>(CPA->getType()), Operands);
    } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(CPV)) {
      const std::vector<Use> &Ops = CPS->getValues();
      std::vector<Constant*> Operands(Ops.size());
      for (unsigned i = 0; i < Ops.size(); ++i)
        Operands[i] = 
          cast<Constant>(RemapOperand(Ops[i], LocalMap, GlobalMap));
      Result = ConstantStruct::get(cast<StructType>(CPS->getType()), Operands);
    } else if (isa<ConstantPointerNull>(CPV)) {
      Result = const_cast<Constant*>(CPV);
    } else if (const ConstantPointerRef *CPR =
                      dyn_cast<ConstantPointerRef>(CPV)) {
      Value *V = RemapOperand(CPR->getValue(), LocalMap, GlobalMap);
      Result = ConstantPointerRef::get(cast<GlobalValue>(V));
    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
      if (CE->getOpcode() == Instruction::GetElementPtr) {
        Value *Ptr = RemapOperand(CE->getOperand(0), LocalMap, GlobalMap);
        std::vector<Constant*> Indices;
        Indices.reserve(CE->getNumOperands()-1);
        for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
          Indices.push_back(cast<Constant>(RemapOperand(CE->getOperand(i),
                                                        LocalMap, GlobalMap)));

        Result = ConstantExpr::getGetElementPtr(cast<Constant>(Ptr), Indices);
      } else if (CE->getNumOperands() == 1) {
        // Cast instruction
        assert(CE->getOpcode() == Instruction::Cast);
        Value *V = RemapOperand(CE->getOperand(0), LocalMap, GlobalMap);
        Result = ConstantExpr::getCast(cast<Constant>(V), CE->getType());
      } else if (CE->getNumOperands() == 3) {
        // Select instruction
        assert(CE->getOpcode() == Instruction::Select);
        Value *V1 = RemapOperand(CE->getOperand(0), LocalMap, GlobalMap);
        Value *V2 = RemapOperand(CE->getOperand(1), LocalMap, GlobalMap);
        Value *V3 = RemapOperand(CE->getOperand(2), LocalMap, GlobalMap);
        Result = ConstantExpr::getSelect(cast<Constant>(V1), cast<Constant>(V2),
                                         cast<Constant>(V3));
      } else if (CE->getNumOperands() == 2) {
        // Binary operator...
        Value *V1 = RemapOperand(CE->getOperand(0), LocalMap, GlobalMap);
        Value *V2 = RemapOperand(CE->getOperand(1), LocalMap, GlobalMap);

        Result = ConstantExpr::get(CE->getOpcode(), cast<Constant>(V1),
                                   cast<Constant>(V2));
      } else {
        assert(0 && "Unknown constant expr type!");
      }

    } else {
      assert(0 && "Unknown type of derived type constant value!");
    }

    // Cache the mapping in our local map structure...
    if (GlobalMap)
      GlobalMap->insert(std::make_pair(In, Result));
    else
      LocalMap.insert(std::make_pair(In, Result));
    return Result;
  }

  std::cerr << "XXX LocalMap: \n";
  PrintMap(LocalMap);

  if (GlobalMap) {
    std::cerr << "XXX GlobalMap: \n";
    PrintMap(*GlobalMap);
  }

  std::cerr << "Couldn't remap value: " << (void*)In << " " << *In << "\n";
  assert(0 && "Couldn't remap value!");
  return 0;
}

/// FindGlobalNamed - Look in the specified symbol table for a global with the
/// specified name and type.  If an exactly matching global does not exist, see
/// if there is a global which is "type compatible" with the specified
/// name/type.  This allows us to resolve things like '%x = global int*' with
/// '%x = global opaque*'.
///
static GlobalValue *FindGlobalNamed(const std::string &Name, const Type *Ty,
                                    SymbolTable *ST) {
  // See if an exact match exists in the symbol table...
  if (Value *V = ST->lookup(Ty, Name)) return cast<GlobalValue>(V);
  
  // It doesn't exist exactly, scan through all of the type planes in the symbol
  // table, checking each of them for a type-compatible version.
  //
  for (SymbolTable::plane_iterator PI = ST->plane_begin(), PE = ST->plane_end(); 
       PI != PE; ++PI) {
    SymbolTable::ValueMap &VM = PI->second;

    // Does this type plane contain an entry with the specified name?
    SymbolTable::value_iterator VI = VM.find(Name);
      if (VI != VM.end()) {
        //
        // Ensure that this type if placed correctly into the symbol table.
        //
        assert(VI->second->getType() == PI->first && "Type conflict!");

        //
        // Save a reference to the new type.  Resolving the type can modify the
        // symbol table, invalidating the TI variable.
        //
        Value *ValPtr = VI->second;

        //
        // Determine whether we can fold the two types together, resolving them.
        // If so, we can use this value.
        //
        if (!RecursiveResolveTypes(Ty, PI->first, ST, ""))
          return cast<GlobalValue>(ValPtr);
      }
    }
  return 0;  // Otherwise, nothing could be found.
}


// LinkGlobals - Loop through the global variables in the src module and merge
// them into the dest module.
//
static bool LinkGlobals(Module *Dest, const Module *Src,
                        std::map<const Value*, Value*> &ValueMap,
                    std::multimap<std::string, GlobalVariable *> &AppendingVars,
                        std::string *Err) {
  // We will need a module level symbol table if the src module has a module
  // level symbol table...
  SymbolTable *ST = (SymbolTable*)&Dest->getSymbolTable();
  
  // Loop over all of the globals in the src module, mapping them over as we go
  //
  for (Module::const_giterator I = Src->gbegin(), E = Src->gend(); I != E; ++I){
    const GlobalVariable *SGV = I;
    GlobalVariable *DGV = 0;
    if (SGV->hasName()) {
      // A same named thing is a global variable, because the only two things
      // that may be in a module level symbol table are Global Vars and
      // Functions, and they both have distinct, nonoverlapping, possible types.
      // 
      DGV = cast_or_null<GlobalVariable>(FindGlobalNamed(SGV->getName(), 
                                                         SGV->getType(), ST));
    }

    assert(SGV->hasInitializer() || SGV->hasExternalLinkage() &&
           "Global must either be external or have an initializer!");

    bool SGExtern = SGV->isExternal();
    bool DGExtern = DGV ? DGV->isExternal() : false;

    if (!DGV || DGV->hasInternalLinkage() || SGV->hasInternalLinkage()) {
      // No linking to be performed, simply create an identical version of the
      // symbol over in the dest module... the initializer will be filled in
      // later by LinkGlobalInits...
      //
      GlobalVariable *NewDGV =
        new GlobalVariable(SGV->getType()->getElementType(),
                           SGV->isConstant(), SGV->getLinkage(), /*init*/0,
                           SGV->getName(), Dest);

      // If the LLVM runtime renamed the global, but it is an externally visible
      // symbol, DGV must be an existing global with internal linkage.  Rename
      // it.
      if (NewDGV->getName() != SGV->getName() && !NewDGV->hasInternalLinkage()){
        assert(DGV && DGV->getName() == SGV->getName() &&
               DGV->hasInternalLinkage());
        DGV->setName("");
        NewDGV->setName(SGV->getName());  // Force the name back
        DGV->setName(SGV->getName());     // This will cause a renaming
        assert(NewDGV->getName() == SGV->getName() &&
               DGV->getName() != SGV->getName());
      }

      // Make sure to remember this mapping...
      ValueMap.insert(std::make_pair(SGV, NewDGV));
      if (SGV->hasAppendingLinkage())
        // Keep track that this is an appending variable...
        AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));

    } else if (SGV->isExternal()) {
      // If SGV is external or if both SGV & DGV are external..  Just link the
      // external globals, we aren't adding anything.
      ValueMap.insert(std::make_pair(SGV, DGV));

    } else if (DGV->isExternal()) {   // If DGV is external but SGV is not...
      ValueMap.insert(std::make_pair(SGV, DGV));
      DGV->setLinkage(SGV->getLinkage());    // Inherit linkage!
    } else if (SGV->hasWeakLinkage() || SGV->hasLinkOnceLinkage()) {
      // At this point we know that DGV has LinkOnce, Appending, Weak, or
      // External linkage.  If DGV is Appending, this is an error.
      if (DGV->hasAppendingLinkage())
        return Error(Err, "Linking globals named '" + SGV->getName() +
                     " ' with 'weak' and 'appending' linkage is not allowed!");

      if (SGV->isConstant() != DGV->isConstant())
        return Error(Err, "Global Variable Collision on '" + 
                     SGV->getType()->getDescription() + " %" + SGV->getName() +
                     "' - Global variables differ in const'ness");

      // Otherwise, just perform the link.
      ValueMap.insert(std::make_pair(SGV, DGV));

      // Linkonce+Weak = Weak
      if (DGV->hasLinkOnceLinkage() && SGV->hasWeakLinkage())
        DGV->setLinkage(SGV->getLinkage());

    } else if (DGV->hasWeakLinkage() || DGV->hasLinkOnceLinkage()) {
      // At this point we know that SGV has LinkOnce, Appending, or External
      // linkage.  If SGV is Appending, this is an error.
      if (SGV->hasAppendingLinkage())
        return Error(Err, "Linking globals named '" + SGV->getName() +
                     " ' with 'weak' and 'appending' linkage is not allowed!");

      if (SGV->isConstant() != DGV->isConstant())
        return Error(Err, "Global Variable Collision on '" + 
                     SGV->getType()->getDescription() + " %" + SGV->getName() +
                     "' - Global variables differ in const'ness");

      if (!SGV->hasLinkOnceLinkage())
        DGV->setLinkage(SGV->getLinkage());    // Inherit linkage!
      ValueMap.insert(std::make_pair(SGV, DGV));
  
    } else if (SGV->getLinkage() != DGV->getLinkage()) {
      return Error(Err, "Global variables named '" + SGV->getName() +
                   "' have different linkage specifiers!");
    } else if (SGV->hasExternalLinkage()) {
      // Allow linking two exactly identical external global variables...
      if (SGV->isConstant() != DGV->isConstant())
        return Error(Err, "Global Variable Collision on '" + 
                     SGV->getType()->getDescription() + " %" + SGV->getName() +
                     "' - Global variables differ in const'ness");

      if (SGV->getInitializer() != DGV->getInitializer())
        return Error(Err, "Global Variable Collision on '" + 
                     SGV->getType()->getDescription() + " %" + SGV->getName() +
                    "' - External linkage globals have different initializers");

      ValueMap.insert(std::make_pair(SGV, DGV));
    } else if (SGV->hasAppendingLinkage()) {
      // No linking is performed yet.  Just insert a new copy of the global, and
      // keep track of the fact that it is an appending variable in the
      // AppendingVars map.  The name is cleared out so that no linkage is
      // performed.
      GlobalVariable *NewDGV =
        new GlobalVariable(SGV->getType()->getElementType(),
                           SGV->isConstant(), SGV->getLinkage(), /*init*/0,
                           "", Dest);

      // Make sure to remember this mapping...
      ValueMap.insert(std::make_pair(SGV, NewDGV));

      // Keep track that this is an appending variable...
      AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
    } else {
      assert(0 && "Unknown linkage!");
    }
  }
  return false;
}


// LinkGlobalInits - Update the initializers in the Dest module now that all
// globals that may be referenced are in Dest.
//
static bool LinkGlobalInits(Module *Dest, const Module *Src,
                            std::map<const Value*, Value*> &ValueMap,
                            std::string *Err) {

  // Loop over all of the globals in the src module, mapping them over as we go
  //
  for (Module::const_giterator I = Src->gbegin(), E = Src->gend(); I != E; ++I){
    const GlobalVariable *SGV = I;

    if (SGV->hasInitializer()) {      // Only process initialized GV's
      // Figure out what the initializer looks like in the dest module...
      Constant *SInit =
        cast<Constant>(RemapOperand(SGV->getInitializer(), ValueMap, 0));

      GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[SGV]);    
      if (DGV->hasInitializer()) {
        if (SGV->hasExternalLinkage()) {
          if (DGV->getInitializer() != SInit)
            return Error(Err, "Global Variable Collision on '" + 
                         SGV->getType()->getDescription() +"':%"+SGV->getName()+
                         " - Global variables have different initializers");
        } else if (DGV->hasLinkOnceLinkage() || DGV->hasWeakLinkage()) {
          // Nothing is required, mapped values will take the new global
          // automatically.
        } else if (SGV->hasLinkOnceLinkage() || SGV->hasWeakLinkage()) {
          // Nothing is required, mapped values will take the new global
          // automatically.
        } else if (DGV->hasAppendingLinkage()) {
          assert(0 && "Appending linkage unimplemented!");
        } else {
          assert(0 && "Unknown linkage!");
        }
      } else {
        // Copy the initializer over now...
        DGV->setInitializer(SInit);
      }
    }
  }
  return false;
}

// LinkFunctionProtos - Link the functions together between the two modules,
// without doing function bodies... this just adds external function prototypes
// to the Dest function...
//
static bool LinkFunctionProtos(Module *Dest, const Module *Src,
                               std::map<const Value*, Value*> &ValueMap,
                               std::string *Err) {
  SymbolTable *ST = (SymbolTable*)&Dest->getSymbolTable();
  
  // Loop over all of the functions in the src module, mapping them over as we
  // go
  //
  for (Module::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) {
    const Function *SF = I;   // SrcFunction
    Function *DF = 0;
    if (SF->hasName())
      // The same named thing is a Function, because the only two things
      // that may be in a module level symbol table are Global Vars and
      // Functions, and they both have distinct, nonoverlapping, possible types.
      // 
      DF = cast_or_null<Function>(FindGlobalNamed(SF->getName(), SF->getType(),
                                                  ST));

    if (!DF || SF->hasInternalLinkage() || DF->hasInternalLinkage()) {
      // Function does not already exist, simply insert an function signature
      // identical to SF into the dest module...
      Function *NewDF = new Function(SF->getFunctionType(), SF->getLinkage(),
                                     SF->getName(), Dest);

      // If the LLVM runtime renamed the function, but it is an externally
      // visible symbol, DF must be an existing function with internal linkage.
      // Rename it.
      if (NewDF->getName() != SF->getName() && !NewDF->hasInternalLinkage()) {
        assert(DF && DF->getName() == SF->getName() &&DF->hasInternalLinkage());
        DF->setName("");
        NewDF->setName(SF->getName());  // Force the name back
        DF->setName(SF->getName());     // This will cause a renaming
        assert(NewDF->getName() == SF->getName() &&
               DF->getName() != SF->getName());
      }

      // ... and remember this mapping...
      ValueMap.insert(std::make_pair(SF, NewDF));
    } else if (SF->isExternal()) {
      // If SF is external or if both SF & DF are external..  Just link the
      // external functions, we aren't adding anything.
      ValueMap.insert(std::make_pair(SF, DF));
    } else if (DF->isExternal()) {   // If DF is external but SF is not...
      // Link the external functions, update linkage qualifiers
      ValueMap.insert(std::make_pair(SF, DF));
      DF->setLinkage(SF->getLinkage());

    } else if (SF->hasWeakLinkage() || SF->hasLinkOnceLinkage()) {
      // At this point we know that DF has LinkOnce, Weak, or External linkage.
      ValueMap.insert(std::make_pair(SF, DF));

      // Linkonce+Weak = Weak
      if (DF->hasLinkOnceLinkage() && SF->hasWeakLinkage())
        DF->setLinkage(SF->getLinkage());

    } else if (DF->hasWeakLinkage() || DF->hasLinkOnceLinkage()) {
      // At this point we know that SF has LinkOnce or External linkage.
      ValueMap.insert(std::make_pair(SF, DF));
      if (!SF->hasLinkOnceLinkage())   // Don't inherit linkonce linkage
        DF->setLinkage(SF->getLinkage());

    } else if (SF->getLinkage() != DF->getLinkage()) {
      return Error(Err, "Functions named '" + SF->getName() +
                   "' have different linkage specifiers!");
    } else if (SF->hasExternalLinkage()) {
      // The function is defined in both modules!!
      return Error(Err, "Function '" + 
                   SF->getFunctionType()->getDescription() + "':\"" + 
                   SF->getName() + "\" - Function is already defined!");
    } else {
      assert(0 && "Unknown linkage configuration found!");
    }
  }
  return false;
}

// LinkFunctionBody - Copy the source function over into the dest function and
// fix up references to values.  At this point we know that Dest is an external
// function, and that Src is not.
//
static bool LinkFunctionBody(Function *Dest, const Function *Src,
                             std::map<const Value*, Value*> &GlobalMap,
                             std::string *Err) {
  assert(Src && Dest && Dest->isExternal() && !Src->isExternal());
  std::map<const Value*, Value*> LocalMap;   // Map for function local values

  // Go through and convert function arguments over...
  Function::aiterator DI = Dest->abegin();
  for (Function::const_aiterator I = Src->abegin(), E = Src->aend();
       I != E; ++I, ++DI) {
    DI->setName(I->getName());  // Copy the name information over...

    // Add a mapping to our local map
    LocalMap.insert(std::make_pair(I, DI));
  }

  // Loop over all of the basic blocks, copying the instructions over...
  //
  for (Function::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) {
    // Create new basic block and add to mapping and the Dest function...
    BasicBlock *DBB = new BasicBlock(I->getName(), Dest);
    LocalMap.insert(std::make_pair(I, DBB));

    // Loop over all of the instructions in the src basic block, copying them
    // over.  Note that this is broken in a strict sense because the cloned
    // instructions will still be referencing values in the Src module, not
    // the remapped values.  In our case, however, we will not get caught and 
    // so we can delay patching the values up until later...
    //
    for (BasicBlock::const_iterator II = I->begin(), IE = I->end(); 
         II != IE; ++II) {
      Instruction *DI = II->clone();
      DI->setName(II->getName());
      DBB->getInstList().push_back(DI);
      LocalMap.insert(std::make_pair(II, DI));
    }
  }

  // At this point, all of the instructions and values of the function are now
  // copied over.  The only problem is that they are still referencing values in
  // the Source function as operands.  Loop through all of the operands of the
  // functions and patch them up to point to the local versions...
  //
  for (Function::iterator BB = Dest->begin(), BE = Dest->end(); BB != BE; ++BB)
    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
      for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
           OI != OE; ++OI)
        *OI = RemapOperand(*OI, LocalMap, &GlobalMap);

  return false;
}


// LinkFunctionBodies - Link in the function bodies that are defined in the
// source module into the DestModule.  This consists basically of copying the
// function over and fixing up references to values.
//
static bool LinkFunctionBodies(Module *Dest, const Module *Src,
                               std::map<const Value*, Value*> &ValueMap,
                               std::string *Err) {

  // Loop over all of the functions in the src module, mapping them over as we
  // go
  //
  for (Module::const_iterator SF = Src->begin(), E = Src->end(); SF != E; ++SF){
    if (!SF->isExternal()) {                  // No body if function is external
      Function *DF = cast<Function>(ValueMap[SF]); // Destination function

      // DF not external SF external?
      if (DF->isExternal()) {
        // Only provide the function body if there isn't one already.
        if (LinkFunctionBody(DF, SF, ValueMap, Err))
          return true;
      }
    }
  }
  return false;
}

// LinkAppendingVars - If there were any appending global variables, link them
// together now.  Return true on error.
//
static bool LinkAppendingVars(Module *M,
                  std::multimap<std::string, GlobalVariable *> &AppendingVars,
                              std::string *ErrorMsg) {
  if (AppendingVars.empty()) return false; // Nothing to do.
  
  // Loop over the multimap of appending vars, processing any variables with the
  // same name, forming a new appending global variable with both of the
  // initializers merged together, then rewrite references to the old variables
  // and delete them.
  //
  std::vector<Constant*> Inits;
  while (AppendingVars.size() > 1) {
    // Get the first two elements in the map...
    std::multimap<std::string,
      GlobalVariable*>::iterator Second = AppendingVars.begin(), First=Second++;

    // If the first two elements are for different names, there is no pair...
    // Otherwise there is a pair, so link them together...
    if (First->first == Second->first) {
      GlobalVariable *G1 = First->second, *G2 = Second->second;
      const ArrayType *T1 = cast<ArrayType>(G1->getType()->getElementType());
      const ArrayType *T2 = cast<ArrayType>(G2->getType()->getElementType());
      
      // Check to see that they two arrays agree on type...
      if (T1->getElementType() != T2->getElementType())
        return Error(ErrorMsg,
         "Appending variables with different element types need to be linked!");
      if (G1->isConstant() != G2->isConstant())
        return Error(ErrorMsg,
                     "Appending variables linked with different const'ness!");

      unsigned NewSize = T1->getNumElements() + T2->getNumElements();
      ArrayType *NewType = ArrayType::get(T1->getElementType(), NewSize);

      // Create the new global variable...
      GlobalVariable *NG =
        new GlobalVariable(NewType, G1->isConstant(), G1->getLinkage(),
                           /*init*/0, First->first, M);

      // Merge the initializer...
      Inits.reserve(NewSize);
      if (ConstantArray *I = dyn_cast<ConstantArray>(G1->getInitializer())) {
        for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
          Inits.push_back(cast<Constant>(I->getValues()[i]));
      } else {
        assert(isa<ConstantAggregateZero>(G1->getInitializer()));
        Constant *CV = Constant::getNullValue(T1->getElementType());
        for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
          Inits.push_back(CV);
      }
      if (ConstantArray *I = dyn_cast<ConstantArray>(G2->getInitializer())) {
        for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
          Inits.push_back(cast<Constant>(I->getValues()[i]));
      } else {
        assert(isa<ConstantAggregateZero>(G2->getInitializer()));
        Constant *CV = Constant::getNullValue(T2->getElementType());
        for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
          Inits.push_back(CV);
      }
      NG->setInitializer(ConstantArray::get(NewType, Inits));
      Inits.clear();

      // Replace any uses of the two global variables with uses of the new
      // global...

      // FIXME: This should rewrite simple/straight-forward uses such as
      // getelementptr instructions to not use the Cast!
      ConstantPointerRef *NGCP = ConstantPointerRef::get(NG);
      G1->replaceAllUsesWith(ConstantExpr::getCast(NGCP, G1->getType()));
      G2->replaceAllUsesWith(ConstantExpr::getCast(NGCP, G2->getType()));

      // Remove the two globals from the module now...
      M->getGlobalList().erase(G1);
      M->getGlobalList().erase(G2);

      // Put the new global into the AppendingVars map so that we can handle
      // linking of more than two vars...
      Second->second = NG;
    }
    AppendingVars.erase(First);
  }

  return false;
}


// LinkModules - This function links two modules together, with the resulting
// left module modified to be the composite of the two input modules.  If an
// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
// the problem.  Upon failure, the Dest module could be in a modified state, and
// shouldn't be relied on to be consistent.
//
bool llvm::LinkModules(Module *Dest, const Module *Src, std::string *ErrorMsg) {
  if (Dest->getEndianness() == Module::AnyEndianness)
    Dest->setEndianness(Src->getEndianness());
  if (Dest->getPointerSize() == Module::AnyPointerSize)
    Dest->setPointerSize(Src->getPointerSize());

  if (Src->getEndianness() != Module::AnyEndianness &&
      Dest->getEndianness() != Src->getEndianness())
    std::cerr << "WARNING: Linking two modules of different endianness!\n";
  if (Src->getPointerSize() != Module::AnyPointerSize &&
      Dest->getPointerSize() != Src->getPointerSize())
    std::cerr << "WARNING: Linking two modules of different pointer size!\n";

  // LinkTypes - Go through the symbol table of the Src module and see if any
  // types are named in the src module that are not named in the Dst module.
  // Make sure there are no type name conflicts.
  //
  if (LinkTypes(Dest, Src, ErrorMsg)) return true;

  // ValueMap - Mapping of values from what they used to be in Src, to what they
  // are now in Dest.
  //
  std::map<const Value*, Value*> ValueMap;

  // AppendingVars - Keep track of global variables in the destination module
  // with appending linkage.  After the module is linked together, they are
  // appended and the module is rewritten.
  //
  std::multimap<std::string, GlobalVariable *> AppendingVars;

  // Add all of the appending globals already in the Dest module to
  // AppendingVars.
  for (Module::giterator I = Dest->gbegin(), E = Dest->gend(); I != E; ++I)
    if (I->hasAppendingLinkage())
      AppendingVars.insert(std::make_pair(I->getName(), I));

  // Insert all of the globals in src into the Dest module... without linking
  // initializers (which could refer to functions not yet mapped over).
  //
  if (LinkGlobals(Dest, Src, ValueMap, AppendingVars, ErrorMsg)) return true;

  // Link the functions together between the two modules, without doing function
  // bodies... this just adds external function prototypes to the Dest
  // function...  We do this so that when we begin processing function bodies,
  // all of the global values that may be referenced are available in our
  // ValueMap.
  //
  if (LinkFunctionProtos(Dest, Src, ValueMap, ErrorMsg)) return true;

  // Update the initializers in the Dest module now that all globals that may
  // be referenced are in Dest.
  //
  if (LinkGlobalInits(Dest, Src, ValueMap, ErrorMsg)) return true;

  // Link in the function bodies that are defined in the source module into the
  // DestModule.  This consists basically of copying the function over and
  // fixing up references to values.
  //
  if (LinkFunctionBodies(Dest, Src, ValueMap, ErrorMsg)) return true;

  // If there were any appending global variables, link them together now.
  //
  if (LinkAppendingVars(Dest, AppendingVars, ErrorMsg)) return true;

  return false;
}

// vim: sw=2