aboutsummaryrefslogtreecommitdiffstats
path: root/lib/VMCore/PassManagerT.h
blob: d5c483f7524d133f60bd9df39b6a3323c6f65a5e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
//===- llvm/PassManager.h - Container for Passes -----------------*- C++ -*--=//
//
// This file defines the PassManager class.  This class is used to hold,
// maintain, and optimize execution of Pass's.  The PassManager class ensures
// that analysis results are available before a pass runs, and that Pass's are
// destroyed when the PassManager is destroyed.
//
// The PassManagerT template is instantiated three times to do its job.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_PASSMANAGER_H
#define LLVM_PASSMANAGER_H

#include "llvm/Pass.h"
#include <string>

//===----------------------------------------------------------------------===//
// PMDebug class - a set of debugging functions that are enabled when compiling
// with -g on.  If compiling at -O, all functions are inlined noops.
//
struct PMDebug {
#ifdef NDEBUG
  inline static void PrintPassStructure(Pass *) {}
  inline static void PrintPassInformation(unsigned,const char*,Pass*,Value*) {}
  inline static void PrintAnalysisSetInfo(unsigned,const char*,Pass *P, 
                                          const Pass::AnalysisSet &) {}
#else
  // If compiled in debug mode, these functions can be enabled by setting
  // -debug-pass on the command line of the tool being used.
  //
  static void PrintPassStructure(Pass *P);
  static void PrintPassInformation(unsigned,const char*,Pass *, Value *);
  static void PrintAnalysisSetInfo(unsigned,const char*,Pass *P,
                                   const Pass::AnalysisSet&);
#endif
};



//===----------------------------------------------------------------------===//
// Declare the PassManagerTraits which will be specialized...
//
template<class UnitType> class PassManagerTraits;   // Do not define.


//===----------------------------------------------------------------------===//
// PassManagerT - Container object for passes.  The PassManagerT destructor
// deletes all passes contained inside of the PassManagerT, so you shouldn't 
// delete passes manually, and all passes should be dynamically allocated.
//
template<typename UnitType>
class PassManagerT : public PassManagerTraits<UnitType>,public AnalysisResolver{
  typedef typename PassManagerTraits<UnitType>::PassClass       PassClass;
  typedef typename PassManagerTraits<UnitType>::SubPassClass SubPassClass;
  typedef typename PassManagerTraits<UnitType>::BatcherClass BatcherClass;
  typedef typename PassManagerTraits<UnitType>::ParentClass   ParentClass;
  typedef          PassManagerTraits<UnitType>                     Traits;

  friend typename PassManagerTraits<UnitType>::PassClass;
  friend typename PassManagerTraits<UnitType>::SubPassClass;  
  friend class PassManagerTraits<UnitType>;

  std::vector<PassClass*> Passes;    // List of pass's to run

  // The parent of this pass manager...
  ParentClass * const Parent;

  // The current batcher if one is in use, or null
  BatcherClass *Batcher;

  // CurrentAnalyses - As the passes are being run, this map contains the
  // analyses that are available to the current pass for use.  This is accessed
  // through the getAnalysis() function in this class and in Pass.
  //
  std::map<AnalysisID, Pass*> CurrentAnalyses;

  // LastUseOf - This map keeps track of the last usage in our pipeline of a
  // particular pass.  When executing passes, the memory for .first is free'd
  // after .second is run.
  //
  std::map<Pass*, Pass*> LastUseOf;

public:
  PassManagerT(ParentClass *Par = 0) : Parent(Par), Batcher(0) {}
  ~PassManagerT() {
    // Delete all of the contained passes...
    for (std::vector<PassClass*>::iterator I = Passes.begin(), E = Passes.end();
         I != E; ++I)
      delete *I;
  }

  // run - Run all of the queued passes on the specified module in an optimal
  // way.
  virtual bool runOnUnit(UnitType *M) {
    bool MadeChanges = false;
    closeBatcher();
    CurrentAnalyses.clear();

    // LastUserOf - This contains the inverted LastUseOfMap...
    std::map<Pass *, std::vector<Pass*> > LastUserOf;
    for (std::map<Pass*, Pass*>::iterator I = LastUseOf.begin(),
                                          E = LastUseOf.end(); I != E; ++I)
      LastUserOf[I->second].push_back(I->first);


    // Output debug information...
    if (Parent == 0) PMDebug::PrintPassStructure(this);

    // Run all of the passes
    for (unsigned i = 0, e = Passes.size(); i < e; ++i) {
      PassClass *P = Passes[i];
      
      PMDebug::PrintPassInformation(getDepth(), "Executing Pass", P, (Value*)M);

      // Get information about what analyses the pass uses...
      std::vector<AnalysisID> Required, Destroyed, Provided;
      P->getAnalysisUsageInfo(Required, Destroyed, Provided);
      
      PMDebug::PrintAnalysisSetInfo(getDepth(), "Required", P, Required);

#ifndef NDEBUG
      // All Required analyses should be available to the pass as it runs!
      for (Pass::AnalysisSet::iterator I = Required.begin(), 
                                       E = Required.end(); I != E; ++I) {
        assert(getAnalysisOrNullUp(*I) && "Analysis used but not available!");
      }
#endif

      // Run the sub pass!
      bool Changed = Traits::runPass(P, M);
      MadeChanges |= Changed;

      if (Changed)
        PMDebug::PrintPassInformation(getDepth()+1, "Made Modification", P,
                                      (Value*)M);
      PMDebug::PrintAnalysisSetInfo(getDepth(), "Destroyed", P, Destroyed);
      PMDebug::PrintAnalysisSetInfo(getDepth(), "Provided", P, Provided);

      // Erase all analyses in the destroyed set...
      for (Pass::AnalysisSet::iterator I = Destroyed.begin(), 
             E = Destroyed.end(); I != E; ++I)
        CurrentAnalyses.erase(*I);
      
      // Add all analyses in the provided set...
      for (Pass::AnalysisSet::iterator I = Provided.begin(),
             E = Provided.end(); I != E; ++I)
        CurrentAnalyses[*I] = P;

      // Free memory for any passes that we are the last use of...
      std::vector<Pass*> &DeadPass = LastUserOf[P];
      for (std::vector<Pass*>::iterator I = DeadPass.begin(),E = DeadPass.end();
           I != E; ++I) {
        PMDebug::PrintPassInformation(getDepth()+1, "Freeing Pass", *I,
                                      (Value*)M);
        (*I)->releaseMemory();
      }
    }
    return MadeChanges;
  }

#ifndef NDEBUG
  // dumpPassStructure - Implement the -debug-passes=PassStructure option
  virtual void dumpPassStructure(unsigned Offset = 0) {
    std::cerr << std::string(Offset*2, ' ') << Traits::getPMName()
              << " Pass Manager\n";
    for (std::vector<PassClass*>::iterator I = Passes.begin(), E = Passes.end();
         I != E; ++I) {
      PassClass *P = *I;
      P->dumpPassStructure(Offset+1);

      // Loop through and see which classes are destroyed after this one...
      for (std::map<Pass*, Pass*>::iterator I = LastUseOf.begin(),
                                            E = LastUseOf.end(); I != E; ++I) {
        if (P == I->second) {
          std::cerr << "Fr" << std::string(Offset*2, ' ');
          I->first->dumpPassStructure(0);
        }
      }
    }
  }
#endif

  Pass *getAnalysisOrNullDown(AnalysisID ID) const {
    std::map<AnalysisID, Pass*>::const_iterator I = CurrentAnalyses.find(ID);
    if (I == CurrentAnalyses.end()) {
      if (Batcher)
        return ((AnalysisResolver*)Batcher)->getAnalysisOrNullDown(ID);
      return 0;
    }
    return I->second;
  }

  Pass *getAnalysisOrNullUp(AnalysisID ID) const {
    std::map<AnalysisID, Pass*>::const_iterator I = CurrentAnalyses.find(ID);
    if (I == CurrentAnalyses.end()) {
      if (Parent)
        return Parent->getAnalysisOrNullUp(ID);
      return 0;
    }
    return I->second;
  }

  // markPassUsed - Inform higher level pass managers (and ourselves)
  // that these analyses are being used by this pass.  This is used to
  // make sure that analyses are not free'd before we have to use
  // them...
  //
  void markPassUsed(AnalysisID P, Pass *User) {
    std::map<AnalysisID, Pass*>::iterator I = CurrentAnalyses.find(P);
    if (I != CurrentAnalyses.end()) {
      LastUseOf[I->second] = User;    // Local pass, extend the lifetime
    } else {
      // Pass not in current available set, must be a higher level pass
      // available to us, propogate to parent pass manager...  We tell the
      // parent that we (the passmanager) are using the analysis so that it
      // frees the analysis AFTER this pass manager runs.
      //
      assert(Parent != 0 && "Pass available but not found!");
      Parent->markPassUsed(P, this);
    }
  }

  // Return the number of parent PassManagers that exist
  virtual unsigned getDepth() const {
    if (Parent == 0) return 0;
    return 1 + Parent->getDepth();
  }

  // add - Add a pass to the queue of passes to run.  This passes ownership of
  // the Pass to the PassManager.  When the PassManager is destroyed, the pass
  // will be destroyed as well, so there is no need to delete the pass.  This
  // implies that all passes MUST be new'd.
  //
  void add(PassClass *P) {
    // Get information about what analyses the pass uses...
    std::vector<AnalysisID> Required, Destroyed, Provided;
    P->getAnalysisUsageInfo(Required, Destroyed, Provided);

    // Loop over all of the analyses used by this pass,
    for (std::vector<AnalysisID>::iterator I = Required.begin(),
                                           E = Required.end(); I != E; ++I) {
      if (getAnalysisOrNullDown(*I) == 0)
        add((PassClass*)I->createPass());
    }

    // Tell the pass to add itself to this PassManager... the way it does so
    // depends on the class of the pass, and is critical to laying out passes in
    // an optimal order..
    //
    P->addToPassManager(this, Required, Destroyed, Provided);
  }

private:

  // addPass - These functions are used to implement the subclass specific
  // behaviors present in PassManager.  Basically the add(Pass*) method ends up
  // reflecting its behavior into a Pass::addToPassManager call.  Subclasses of
  // Pass override it specifically so that they can reflect the type
  // information inherent in "this" back to the PassManager.
  //
  // For generic Pass subclasses (which are interprocedural passes), we simply
  // add the pass to the end of the pass list and terminate any accumulation of
  // MethodPasses that are present.
  //
  void addPass(PassClass *P, Pass::AnalysisSet &Required,
               Pass::AnalysisSet &Destroyed, Pass::AnalysisSet &Provided) {
    // Providers are analysis classes which are forbidden to modify the module
    // they are operating on, so they are allowed to be reordered to before the
    // batcher...
    //
    if (Batcher && Provided.empty())
      closeBatcher();                     // This pass cannot be batched!
    
    // Set the Resolver instance variable in the Pass so that it knows where to 
    // find this object...
    //
    setAnalysisResolver(P, this);
    Passes.push_back(P);

    // Inform higher level pass managers (and ourselves) that these analyses are
    // being used by this pass.  This is used to make sure that analyses are not
    // free'd before we have to use them...
    //
    for (std::vector<AnalysisID>::iterator I = Required.begin(), 
           E = Required.end(); I != E; ++I)
      markPassUsed(*I, P);     // Mark *I as used by P

    // Erase all analyses in the destroyed set...
    for (std::vector<AnalysisID>::iterator I = Destroyed.begin(), 
           E = Destroyed.end(); I != E; ++I)
      CurrentAnalyses.erase(*I);

    // Add all analyses in the provided set...
    for (std::vector<AnalysisID>::iterator I = Provided.begin(),
           E = Provided.end(); I != E; ++I)
      CurrentAnalyses[*I] = P;

    // For now assume that our results are never used...
    LastUseOf[P] = P;
  }
  
  // For MethodPass subclasses, we must be sure to batch the MethodPasses
  // together in a MethodPassBatcher object so that all of the analyses are run
  // together a method at a time.
  //
  void addPass(SubPassClass *MP, Pass::AnalysisSet &Required,
               Pass::AnalysisSet &Destroyed, Pass::AnalysisSet &Provided) {
    if (Batcher == 0) // If we don't have a batcher yet, make one now.
      Batcher = new BatcherClass(this);
    // The Batcher will queue them passes up
    MP->addToPassManager(Batcher, Required, Destroyed, Provided);
  }

  // closeBatcher - Terminate the batcher that is being worked on.
  void closeBatcher() {
    if (Batcher) {
      Passes.push_back(Batcher);
      Batcher = 0;
    }
  }
};



//===----------------------------------------------------------------------===//
// PassManagerTraits<BasicBlock> Specialization
//
// This pass manager is used to group together all of the BasicBlockPass's
// into a single unit.
//
template<> struct PassManagerTraits<BasicBlock> : public BasicBlockPass {
  // PassClass - The type of passes tracked by this PassManager
  typedef BasicBlockPass PassClass;

  // SubPassClass - The types of classes that should be collated together
  // This is impossible to match, so BasicBlock instantiations of PassManagerT
  // do not collate.
  //
  typedef PassManagerT<Module> SubPassClass;

  // BatcherClass - The type to use for collation of subtypes... This class is
  // never instantiated for the PassManager<BasicBlock>, but it must be an 
  // instance of PassClass to typecheck.
  //
  typedef PassClass BatcherClass;

  // ParentClass - The type of the parent PassManager...
  typedef PassManagerT<Method> ParentClass;

  // PMType - The type of the passmanager that subclasses this class
  typedef PassManagerT<BasicBlock> PMType;

  // runPass - Specify how the pass should be run on the UnitType
  static bool runPass(PassClass *P, BasicBlock *M) {
    // todo, init and finalize
    return P->runOnBasicBlock(M);
  }

  // getPMName() - Return the name of the unit the PassManager operates on for
  // debugging.
  const char *getPMName() const { return "BasicBlock"; }

  // Implement the BasicBlockPass interface...
  virtual bool doInitialization(Module *M);
  virtual bool runOnBasicBlock(BasicBlock *BB);
  virtual bool doFinalization(Module *M);
};



//===----------------------------------------------------------------------===//
// PassManagerTraits<Method> Specialization
//
// This pass manager is used to group together all of the MethodPass's
// into a single unit.
//
template<> struct PassManagerTraits<Method> : public MethodPass {
  // PassClass - The type of passes tracked by this PassManager
  typedef MethodPass PassClass;

  // SubPassClass - The types of classes that should be collated together
  typedef BasicBlockPass SubPassClass;

  // BatcherClass - The type to use for collation of subtypes...
  typedef PassManagerT<BasicBlock> BatcherClass;

  // ParentClass - The type of the parent PassManager...
  typedef PassManagerT<Module> ParentClass;

  // PMType - The type of the passmanager that subclasses this class
  typedef PassManagerT<Method> PMType;

  // runPass - Specify how the pass should be run on the UnitType
  static bool runPass(PassClass *P, Method *M) {
    return P->runOnMethod(M);
  }

  // getPMName() - Return the name of the unit the PassManager operates on for
  // debugging.
  const char *getPMName() const { return "Method"; }

  // Implement the MethodPass interface...
  virtual bool doInitialization(Module *M);
  virtual bool runOnMethod(Method *M);
  virtual bool doFinalization(Module *M);
};



//===----------------------------------------------------------------------===//
// PassManagerTraits<Module> Specialization
//
// This is the top level PassManager implementation that holds generic passes.
//
template<> struct PassManagerTraits<Module> : public Pass {
  // PassClass - The type of passes tracked by this PassManager
  typedef Pass PassClass;

  // SubPassClass - The types of classes that should be collated together
  typedef MethodPass SubPassClass;

  // BatcherClass - The type to use for collation of subtypes...
  typedef PassManagerT<Method> BatcherClass;

  // ParentClass - The type of the parent PassManager...
  typedef AnalysisResolver ParentClass;

  // runPass - Specify how the pass should be run on the UnitType
  static bool runPass(PassClass *P, Module *M) { return P->run(M); }

  // getPMName() - Return the name of the unit the PassManager operates on for
  // debugging.
  const char *getPMName() const { return "Module"; }

  // run - Implement the Pass interface...
  virtual bool run(Module *M) {
    return ((PassManagerT<Module>*)this)->runOnUnit(M);
  }
};



//===----------------------------------------------------------------------===//
// PassManagerTraits Method Implementations
//

// PassManagerTraits<BasicBlock> Implementations
//
inline bool PassManagerTraits<BasicBlock>::doInitialization(Module *M) {
  bool Changed = false;
  for (unsigned i = 0, e = ((PMType*)this)->Passes.size(); i != e; ++i)
    ((PMType*)this)->Passes[i]->doInitialization(M);
  return Changed;
}

inline bool PassManagerTraits<BasicBlock>::runOnBasicBlock(BasicBlock *BB) {
  return ((PMType*)this)->runOnUnit(BB);
}

inline bool PassManagerTraits<BasicBlock>::doFinalization(Module *M) {
  bool Changed = false;
  for (unsigned i = 0, e = ((PMType*)this)->Passes.size(); i != e; ++i)
    ((PMType*)this)->Passes[i]->doFinalization(M);
  return Changed;
}


// PassManagerTraits<Method> Implementations
//
inline bool PassManagerTraits<Method>::doInitialization(Module *M) {
  bool Changed = false;
  for (unsigned i = 0, e = ((PMType*)this)->Passes.size(); i != e; ++i)
    ((PMType*)this)->Passes[i]->doInitialization(M);
  return Changed;
}

inline bool PassManagerTraits<Method>::runOnMethod(Method *M) {
  return ((PMType*)this)->runOnUnit(M);
}

inline bool PassManagerTraits<Method>::doFinalization(Module *M) {
  bool Changed = false;
  for (unsigned i = 0, e = ((PMType*)this)->Passes.size(); i != e; ++i)
    ((PMType*)this)->Passes[i]->doFinalization(M);
  return Changed;
}

#endif