aboutsummaryrefslogtreecommitdiffstats
path: root/lib/VMCore/Verifier.cpp
blob: 8b903c70fd7039beac3a87ddbb104abd5e449755 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
//===-- Verifier.cpp - Implement the Module Verifier -------------*- C++ -*-==//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This file defines the function verifier interface, that can be used for some
// sanity checking of input to the system.
//
// Note that this does not provide full `Java style' security and verifications,
// instead it just tries to ensure that code is well-formed.
//
//  * Both of a binary operator's parameters are of the same type
//  * Verify that the indices of mem access instructions match other operands
//  * Verify that arithmetic and other things are only performed on first-class
//    types.  Verify that shifts & logicals only happen on integrals f.e.
//  * All of the constants in a switch statement are of the correct type
//  * The code is in valid SSA form
//  * It should be illegal to put a label into any other type (like a structure)
//    or to return one. [except constant arrays!]
//  * Only phi nodes can be self referential: 'add int %0, %0 ; <int>:0' is bad
//  * PHI nodes must have an entry for each predecessor, with no extras.
//  * PHI nodes must be the first thing in a basic block, all grouped together
//  * PHI nodes must have at least one entry
//  * All basic blocks should only end with terminator insts, not contain them
//  * The entry node to a function must not have predecessors
//  * All Instructions must be embedded into a basic block
//  * Functions cannot take a void-typed parameter
//  * Verify that a function's argument list agrees with it's declared type.
//  * It is illegal to specify a name for a void value.
//  * It is illegal to have a internal global value with no initializer
//  * It is illegal to have a ret instruction that returns a value that does not
//    agree with the function return value type.
//  * Function call argument types match the function prototype
//  * All other things that are tested by asserts spread about the code...
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/Verifier.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Constants.h"
#include "llvm/Pass.h"
#include "llvm/Module.h"
#include "llvm/ModuleProvider.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instructions.h"
#include "llvm/Intrinsics.h"
#include "llvm/PassManager.h"
#include "llvm/SymbolTable.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/InstVisitor.h"
#include "Support/STLExtras.h"
#include <algorithm>
#include <iostream>
#include <sstream>
using namespace llvm;

namespace {  // Anonymous namespace for class

  struct Verifier : public FunctionPass, InstVisitor<Verifier> {
    bool Broken;          // Is this module found to be broken?
    bool RealPass;        // Are we not being run by a PassManager?
    VerifierFailureAction action;
                          // What to do if verification fails.
    Module *Mod;          // Module we are verifying right now
    DominatorSet *DS;     // Dominator set, caution can be null!
    std::stringstream msgs;  // A stringstream to collect messages

    Verifier() 
        : Broken(false), RealPass(true), action(AbortProcessAction),
          DS(0), msgs( std::ios_base::app | std::ios_base::out ) {}
    Verifier( VerifierFailureAction ctn )
        : Broken(false), RealPass(true), action(ctn), DS(0), 
          msgs( std::ios_base::app | std::ios_base::out ) {}
    Verifier(bool AB ) 
        : Broken(false), RealPass(true), 
          action( AB ? AbortProcessAction : PrintMessageAction), DS(0), 
          msgs( std::ios_base::app | std::ios_base::out ) {}
    Verifier(DominatorSet &ds) 
      : Broken(false), RealPass(false), action(PrintMessageAction),
        DS(&ds), msgs( std::ios_base::app | std::ios_base::out ) {}


    bool doInitialization(Module &M) {
      Mod = &M;
      verifySymbolTable(M.getSymbolTable());

      // If this is a real pass, in a pass manager, we must abort before
      // returning back to the pass manager, or else the pass manager may try to
      // run other passes on the broken module.
      if (RealPass)
        abortIfBroken();
      return false;
    }

    bool runOnFunction(Function &F) {
      // Get dominator information if we are being run by PassManager
      if (RealPass) DS = &getAnalysis<DominatorSet>();
      visit(F);

      // If this is a real pass, in a pass manager, we must abort before
      // returning back to the pass manager, or else the pass manager may try to
      // run other passes on the broken module.
      if (RealPass)
        abortIfBroken();

      return false;
    }

    bool doFinalization(Module &M) {
      // Scan through, checking all of the external function's linkage now...
      for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
        visitGlobalValue(*I);

        // Check to make sure function prototypes are okay.
        if (I->isExternal()) visitFunction(*I);
      }

      for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; ++I)
        visitGlobalValue(*I);

      // If the module is broken, abort at this time.
      abortIfBroken();
      return false;
    }

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.setPreservesAll();
      if (RealPass)
        AU.addRequired<DominatorSet>();
    }

    /// abortIfBroken - If the module is broken and we are supposed to abort on
    /// this condition, do so.
    ///
    void abortIfBroken() {
      if (Broken)
      {
        msgs << "Broken module found, ";
        switch (action)
        {
          case AbortProcessAction:
            msgs << "compilation aborted!\n";
            std::cerr << msgs.str();
            abort();
          case ThrowExceptionAction:
            msgs << "verification terminated.\n";
            throw msgs.str();
          case PrintMessageAction:
            msgs << "verification continues.\n";
            std::cerr << msgs.str();
            break;
          case ReturnStatusAction:
            break;
        }
      }
    }


    // Verification methods...
    void verifySymbolTable(SymbolTable &ST);
    void visitGlobalValue(GlobalValue &GV);
    void visitFunction(Function &F);
    void visitBasicBlock(BasicBlock &BB);
    void visitPHINode(PHINode &PN);
    void visitBinaryOperator(BinaryOperator &B);
    void visitShiftInst(ShiftInst &SI);
    void visitVANextInst(VANextInst &VAN) { visitInstruction(VAN); }
    void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
    void visitCallInst(CallInst &CI);
    void visitGetElementPtrInst(GetElementPtrInst &GEP);
    void visitLoadInst(LoadInst &LI);
    void visitStoreInst(StoreInst &SI);
    void visitInstruction(Instruction &I);
    void visitTerminatorInst(TerminatorInst &I);
    void visitReturnInst(ReturnInst &RI);
    void visitSwitchInst(SwitchInst &SI);
    void visitSelectInst(SelectInst &SI);
    void visitUserOp1(Instruction &I);
    void visitUserOp2(Instruction &I) { visitUserOp1(I); }
    void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);


    void WriteValue(const Value *V) {
      if (!V) return;
      if (isa<Instruction>(V)) {
        msgs << *V;
      } else {
        WriteAsOperand (msgs, V, true, true, Mod);
        msgs << "\n";
      }
    }

    void WriteType(const Type* T ) {
      if ( !T ) return;
      WriteTypeSymbolic(msgs, T, Mod );
    }


    // CheckFailed - A check failed, so print out the condition and the message
    // that failed.  This provides a nice place to put a breakpoint if you want
    // to see why something is not correct.
    void CheckFailed(const std::string &Message,
                     const Value *V1 = 0, const Value *V2 = 0,
                     const Value *V3 = 0, const Value *V4 = 0) {
      msgs << Message << "\n";
      WriteValue(V1);
      WriteValue(V2);
      WriteValue(V3);
      WriteValue(V4);
      Broken = true;
    }

    void CheckFailed( const std::string& Message, const Value* V1, 
                      const Type* T2, const Value* V3 = 0 ) {
      msgs << Message << "\n";
      WriteValue(V1);
      WriteType(T2);
      WriteValue(V3);
      Broken = true;
    }
  };

  RegisterOpt<Verifier> X("verify", "Module Verifier");
} // End anonymous namespace


// Assert - We know that cond should be true, if not print an error message.
#define Assert(C, M) \
  do { if (!(C)) { CheckFailed(M); return; } } while (0)
#define Assert1(C, M, V1) \
  do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
#define Assert2(C, M, V1, V2) \
  do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
#define Assert3(C, M, V1, V2, V3) \
  do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
#define Assert4(C, M, V1, V2, V3, V4) \
  do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)


void Verifier::visitGlobalValue(GlobalValue &GV) {
  Assert1(!GV.isExternal() || GV.hasExternalLinkage(),
          "Global is external, but doesn't have external linkage!", &GV);
  Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
          "Only global variables can have appending linkage!", &GV);

  if (GV.hasAppendingLinkage()) {
    GlobalVariable &GVar = cast<GlobalVariable>(GV);
    Assert1(isa<ArrayType>(GVar.getType()->getElementType()),
            "Only global arrays can have appending linkage!", &GV);
  }
}

// verifySymbolTable - Verify that a function or module symbol table is ok
//
void Verifier::verifySymbolTable(SymbolTable &ST) {

  // Loop over all of the values in all type planes in the symbol table.
  for (SymbolTable::plane_const_iterator PI = ST.plane_begin(), 
       PE = ST.plane_end(); PI != PE; ++PI)
    for (SymbolTable::value_const_iterator VI = PI->second.begin(),
         VE = PI->second.end(); VI != VE; ++VI) {
      Value *V = VI->second;
      // Check that there are no void typed values in the symbol table.  Values
      // with a void type cannot be put into symbol tables because they cannot
      // have names!
      Assert1(V->getType() != Type::VoidTy,
        "Values with void type are not allowed to have names!", V);
    }
}

// visitFunction - Verify that a function is ok.
//
void Verifier::visitFunction(Function &F) {
  // Check function arguments...
  const FunctionType *FT = F.getFunctionType();
  unsigned NumArgs = F.getArgumentList().size();

  Assert2(FT->getNumParams() == NumArgs,
          "# formal arguments must match # of arguments for function type!",
          &F, FT);
  Assert1(F.getReturnType()->isFirstClassType() ||
          F.getReturnType() == Type::VoidTy,
          "Functions cannot return aggregate values!", &F);

  // Check that the argument values match the function type for this function...
  unsigned i = 0;
  for (Function::aiterator I = F.abegin(), E = F.aend(); I != E; ++I, ++i) {
    Assert2(I->getType() == FT->getParamType(i),
            "Argument value does not match function argument type!",
            I, FT->getParamType(i));
    // Make sure no aggregates are passed by value.
    Assert1(I->getType()->isFirstClassType(), 
            "Functions cannot take aggregates as arguments by value!", I);
   }

  if (!F.isExternal()) {
    verifySymbolTable(F.getSymbolTable());

    // Check the entry node
    BasicBlock *Entry = &F.getEntryBlock();
    Assert1(pred_begin(Entry) == pred_end(Entry),
            "Entry block to function must not have predecessors!", Entry);
  }
}


// verifyBasicBlock - Verify that a basic block is well formed...
//
void Verifier::visitBasicBlock(BasicBlock &BB) {
  // Check constraints that this basic block imposes on all of the PHI nodes in
  // it.
  if (isa<PHINode>(BB.front())) {
    std::vector<BasicBlock*> Preds(pred_begin(&BB), pred_end(&BB));
    std::sort(Preds.begin(), Preds.end());
    PHINode *PN; 
    for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {

      // Ensure that PHI nodes have at least one entry!
      Assert1(PN->getNumIncomingValues() != 0,
              "PHI nodes must have at least one entry.  If the block is dead, "
              "the PHI should be removed!", PN);
      Assert1(PN->getNumIncomingValues() == Preds.size(),
              "PHINode should have one entry for each predecessor of its "
              "parent basic block!", PN);
      
      // Get and sort all incoming values in the PHI node...
      std::vector<std::pair<BasicBlock*, Value*> > Values;
      Values.reserve(PN->getNumIncomingValues());
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
        Values.push_back(std::make_pair(PN->getIncomingBlock(i),
                                        PN->getIncomingValue(i)));
      std::sort(Values.begin(), Values.end());
      
      for (unsigned i = 0, e = Values.size(); i != e; ++i) {
        // Check to make sure that if there is more than one entry for a
        // particular basic block in this PHI node, that the incoming values are
        // all identical.
        //
        Assert4(i == 0 || Values[i].first  != Values[i-1].first ||
                Values[i].second == Values[i-1].second,
                "PHI node has multiple entries for the same basic block with "
                "different incoming values!", PN, Values[i].first,
                Values[i].second, Values[i-1].second);
        
        // Check to make sure that the predecessors and PHI node entries are
        // matched up.
        Assert3(Values[i].first == Preds[i],
                "PHI node entries do not match predecessors!", PN,
                Values[i].first, Preds[i]);        
      }
    }
  }

  // Ensure that basic blocks have terminators!
  Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
}

void Verifier::visitTerminatorInst(TerminatorInst &I) {
  // Ensure that terminators only exist at the end of the basic block.
  Assert1(&I == I.getParent()->getTerminator(),
          "Terminator found in the middle of a basic block!", I.getParent());
  visitInstruction(I);
}

void Verifier::visitReturnInst(ReturnInst &RI) {
  Function *F = RI.getParent()->getParent();
  if (RI.getNumOperands() == 0)
    Assert1(F->getReturnType() == Type::VoidTy,
            "Function returns no value, but ret instruction found that does!",
            &RI);
  else
    Assert2(F->getReturnType() == RI.getOperand(0)->getType(),
            "Function return type does not match operand "
            "type of return inst!", &RI, F->getReturnType());

  // Check to make sure that the return value has necessary properties for
  // terminators...
  visitTerminatorInst(RI);
}

void Verifier::visitSwitchInst(SwitchInst &SI) {
  // Check to make sure that all of the constants in the switch instruction
  // have the same type as the switched-on value.
  const Type *SwitchTy = SI.getCondition()->getType();
  for (unsigned i = 1, e = SI.getNumCases(); i != e; ++i)
    Assert1(SI.getCaseValue(i)->getType() == SwitchTy,
            "Switch constants must all be same type as switch value!", &SI);

  visitTerminatorInst(SI);
}

void Verifier::visitSelectInst(SelectInst &SI) {
  Assert1(SI.getCondition()->getType() == Type::BoolTy,
          "Select condition type must be bool!", &SI);
  Assert1(SI.getTrueValue()->getType() == SI.getFalseValue()->getType(),
          "Select values must have identical types!", &SI);
  Assert1(SI.getTrueValue()->getType() == SI.getType(),
          "Select values must have same type as select instruction!", &SI);
}


/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
/// a pass, if any exist, it's an error.
///
void Verifier::visitUserOp1(Instruction &I) {
  Assert1(0, "User-defined operators should not live outside of a pass!",
          &I);
}

/// visitPHINode - Ensure that a PHI node is well formed.
///
void Verifier::visitPHINode(PHINode &PN) {
  // Ensure that the PHI nodes are all grouped together at the top of the block.
  // This can be tested by checking whether the instruction before this is
  // either nonexistent (because this is begin()) or is a PHI node.  If not,
  // then there is some other instruction before a PHI.
  Assert2(&PN.getParent()->front() == &PN || isa<PHINode>(PN.getPrev()),
          "PHI nodes not grouped at top of basic block!",
          &PN, PN.getParent());

  // Check that all of the operands of the PHI node have the same type as the
  // result.
  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
    Assert1(PN.getType() == PN.getIncomingValue(i)->getType(),
            "PHI node operands are not the same type as the result!", &PN);

  // All other PHI node constraints are checked in the visitBasicBlock method.

  visitInstruction(PN);
}

void Verifier::visitCallInst(CallInst &CI) {
  Assert1(isa<PointerType>(CI.getOperand(0)->getType()),
          "Called function must be a pointer!", &CI);
  const PointerType *FPTy = cast<PointerType>(CI.getOperand(0)->getType());
  Assert1(isa<FunctionType>(FPTy->getElementType()),
          "Called function is not pointer to function type!", &CI);

  const FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());

  // Verify that the correct number of arguments are being passed
  if (FTy->isVarArg())
    Assert1(CI.getNumOperands()-1 >= FTy->getNumParams(),
            "Called function requires more parameters than were provided!",&CI);
  else
    Assert1(CI.getNumOperands()-1 == FTy->getNumParams(),
            "Incorrect number of arguments passed to called function!", &CI);

  // Verify that all arguments to the call match the function type...
  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
    Assert3(CI.getOperand(i+1)->getType() == FTy->getParamType(i),
            "Call parameter type does not match function signature!",
            CI.getOperand(i+1), FTy->getParamType(i), &CI);

  if (Function *F = CI.getCalledFunction())
    if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
      visitIntrinsicFunctionCall(ID, CI);

  visitInstruction(CI);
}

/// visitBinaryOperator - Check that both arguments to the binary operator are
/// of the same type!
///
void Verifier::visitBinaryOperator(BinaryOperator &B) {
  Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
          "Both operands to a binary operator are not of the same type!", &B);

  // Check that logical operators are only used with integral operands.
  if (B.getOpcode() == Instruction::And || B.getOpcode() == Instruction::Or ||
      B.getOpcode() == Instruction::Xor) {
    Assert1(B.getType()->isIntegral(),
            "Logical operators only work with integral types!", &B);
    Assert1(B.getType() == B.getOperand(0)->getType(),
            "Logical operators must have same type for operands and result!",
            &B);
  } else if (isa<SetCondInst>(B)) {
    // Check that setcc instructions return bool
    Assert1(B.getType() == Type::BoolTy,
            "setcc instructions must return boolean values!", &B);
  } else {
    // Arithmetic operators only work on integer or fp values
    Assert1(B.getType() == B.getOperand(0)->getType(),
            "Arithmetic operators must have same type for operands and result!",
            &B);
    Assert1(B.getType()->isInteger() || B.getType()->isFloatingPoint(),
            "Arithmetic operators must have integer or fp type!", &B);
  }
  
  visitInstruction(B);
}

void Verifier::visitShiftInst(ShiftInst &SI) {
  Assert1(SI.getType()->isInteger(),
          "Shift must return an integer result!", &SI);
  Assert1(SI.getType() == SI.getOperand(0)->getType(),
          "Shift return type must be same as first operand!", &SI);
  Assert1(SI.getOperand(1)->getType() == Type::UByteTy,
          "Second operand to shift must be ubyte type!", &SI);
  visitInstruction(SI);
}

void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
  const Type *ElTy =
    GetElementPtrInst::getIndexedType(GEP.getOperand(0)->getType(),
                   std::vector<Value*>(GEP.idx_begin(), GEP.idx_end()), true);
  Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
  Assert2(PointerType::get(ElTy) == GEP.getType(),
          "GEP is not of right type for indices!", &GEP, ElTy);
  visitInstruction(GEP);
}

void Verifier::visitLoadInst(LoadInst &LI) {
  const Type *ElTy =
    cast<PointerType>(LI.getOperand(0)->getType())->getElementType();
  Assert2(ElTy == LI.getType(),
          "Load result type does not match pointer operand type!", &LI, ElTy);
  visitInstruction(LI);
}

void Verifier::visitStoreInst(StoreInst &SI) {
  const Type *ElTy =
    cast<PointerType>(SI.getOperand(1)->getType())->getElementType();
  Assert2(ElTy == SI.getOperand(0)->getType(),
          "Stored value type does not match pointer operand type!", &SI, ElTy);
  visitInstruction(SI);
}


/// verifyInstruction - Verify that an instruction is well formed.
///
void Verifier::visitInstruction(Instruction &I) {
  BasicBlock *BB = I.getParent();  
  Assert1(BB, "Instruction not embedded in basic block!", &I);

  if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
    for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
         UI != UE; ++UI)
      Assert1(*UI != (User*)&I ||
              !DS->dominates(&BB->getParent()->getEntryBlock(), BB),
              "Only PHI nodes may reference their own value!", &I);
  }

  // Check that void typed values don't have names
  Assert1(I.getType() != Type::VoidTy || !I.hasName(),
          "Instruction has a name, but provides a void value!", &I);

  // Check that the return value of the instruction is either void or a legal
  // value type.
  Assert1(I.getType() == Type::VoidTy || I.getType()->isFirstClassType(),
          "Instruction returns a non-scalar type!", &I);

  // Check that all uses of the instruction, if they are instructions
  // themselves, actually have parent basic blocks.  If the use is not an
  // instruction, it is an error!
  for (User::use_iterator UI = I.use_begin(), UE = I.use_end();
       UI != UE; ++UI) {
    Assert1(isa<Instruction>(*UI), "Use of instruction is not an instruction!",
            *UI);
    Instruction *Used = cast<Instruction>(*UI);
    Assert2(Used->getParent() != 0, "Instruction referencing instruction not"
            " embeded in a basic block!", &I, Used);
  }

  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
    // Check to make sure that the "address of" an intrinsic function is never
    // taken.
    if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
      Assert1(!F->isIntrinsic() || (i == 0 && isa<CallInst>(I)),
              "Cannot take the address of an intrinsic!", &I);
    } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
      Assert1(OpBB->getParent() == BB->getParent(),
              "Referring to a basic block in another function!", &I);
    } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
      Assert1(OpArg->getParent() == BB->getParent(),
              "Referring to an argument in another function!", &I);
    } else if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i))) {
      BasicBlock *OpBlock = Op->getParent();

      // Check that a definition dominates all of its uses.
      if (!isa<PHINode>(I)) {
        // Invoke results are only usable in the normal destination, not in the
        // exceptional destination.
        if (InvokeInst *II = dyn_cast<InvokeInst>(Op))
          OpBlock = II->getNormalDest();
        else if (OpBlock == BB) {
          // If they are in the same basic block, make sure that the definition
          // comes before the use.
          Assert2(DS->dominates(Op, &I) ||
                  !DS->dominates(&BB->getParent()->getEntryBlock(), BB),
                  "Instruction does not dominate all uses!", Op, &I);
        }

        // Definition must dominate use unless use is unreachable!
        Assert2(DS->dominates(OpBlock, BB) ||
                !DS->dominates(&BB->getParent()->getEntryBlock(), BB),
                "Instruction does not dominate all uses!", Op, &I);
      } else {
        // PHI nodes are more difficult than other nodes because they actually
        // "use" the value in the predecessor basic blocks they correspond to.
        BasicBlock *PredBB = cast<BasicBlock>(I.getOperand(i+1));
        Assert2(DS->dominates(OpBlock, PredBB) ||
                !DS->dominates(&BB->getParent()->getEntryBlock(), PredBB),
                "Instruction does not dominate all uses!", Op, &I);
      }
    }
  }
}

/// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
///
void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
  Function *IF = CI.getCalledFunction();
  const FunctionType *FT = IF->getFunctionType();
  Assert1(IF->isExternal(), "Intrinsic functions should never be defined!", IF);
  unsigned NumArgs = 0;

  // FIXME: this should check the return type of each intrinsic as well, also
  // arguments!
  switch (ID) {
  case Intrinsic::vastart:
    Assert1(CI.getParent()->getParent()->getFunctionType()->isVarArg(),
            "llvm.va_start intrinsic may only occur in function with variable"
            " args!", &CI);
    NumArgs = 0;
    break;
  case Intrinsic::vaend:          NumArgs = 1; break;
  case Intrinsic::vacopy:         NumArgs = 1; break;

  case Intrinsic::returnaddress:
  case Intrinsic::frameaddress:
    Assert1(isa<PointerType>(FT->getReturnType()),
            "llvm.(frame|return)address must return pointers", IF);
    Assert1(FT->getNumParams() == 1 && isa<ConstantInt>(CI.getOperand(1)),
       "llvm.(frame|return)address require a single constant integer argument",
            &CI);
    NumArgs = 1;
    break;

  // Verify that read and write port have integral parameters of the correct
  // signed-ness.
  case Intrinsic::writeport:
    Assert1(FT->getNumParams() == 2,
            "Illegal # arguments for intrinsic function!", IF);
    Assert1(FT->getParamType(0)->isIntegral(),
            "First argument not unsigned int!", IF);
    Assert1(FT->getParamType(1)->isUnsigned(),
            "First argument not unsigned int!", IF);
    NumArgs = 2;
    break;

  case Intrinsic::writeio:
    Assert1(FT->getNumParams() == 2,
            "Illegal # arguments for intrinsic function!", IF);
    Assert1(FT->getParamType(0)->isFirstClassType(),
            "First argument not a first class type!", IF);
    Assert1(isa<PointerType>(FT->getParamType(1)),
            "Second argument not a pointer!", IF);
    NumArgs = 2;
    break;

  case Intrinsic::readport:
    Assert1(FT->getNumParams() == 1,
            "Illegal # arguments for intrinsic function!", IF);
    Assert1(FT->getReturnType()->isFirstClassType(),
            "Return type is not a first class type!", IF);
    Assert1(FT->getParamType(0)->isUnsigned(),
            "First argument not unsigned int!", IF);
    NumArgs = 1;
    break;

  case Intrinsic::readio: {
    const PointerType *ParamType = dyn_cast<PointerType>(FT->getParamType(0));
    const Type *ReturnType = FT->getReturnType();

    Assert1(FT->getNumParams() == 1,
            "Illegal # arguments for intrinsic function!", IF);
    Assert1(ParamType, "First argument not a pointer!", IF);
    Assert1(ParamType->getElementType() == ReturnType,
            "Pointer type doesn't match return type!", IF);
    NumArgs = 1;
    break;
  }

  case Intrinsic::isunordered:
    Assert1(FT->getNumParams() == 2,
            "Illegal # arguments for intrinsic function!", IF);
    Assert1(FT->getReturnType() == Type::BoolTy,
            "Return type is not bool!", IF);
    Assert1(FT->getParamType(0) == FT->getParamType(1),
            "Arguments must be of the same type!", IF);
    Assert1(FT->getParamType(0)->isFloatingPoint(),
            "Argument is not a floating point type!", IF);
    NumArgs = 2;
    break;

  case Intrinsic::setjmp:          NumArgs = 1; break;
  case Intrinsic::longjmp:         NumArgs = 2; break;
  case Intrinsic::sigsetjmp:       NumArgs = 2; break;
  case Intrinsic::siglongjmp:      NumArgs = 2; break;

  case Intrinsic::gcroot:
    Assert1(FT->getNumParams() == 2,
            "Illegal # arguments for intrinsic function!", IF);
    Assert1(isa<Constant>(CI.getOperand(2)),
            "Second argument to llvm.gcroot must be a constant!", &CI);
    NumArgs = 2;
    break;
  case Intrinsic::gcread:          NumArgs = 1; break;
  case Intrinsic::gcwrite:         NumArgs = 2; break;

  case Intrinsic::dbg_stoppoint:   NumArgs = 4; break;
  case Intrinsic::dbg_region_start:NumArgs = 1; break;
  case Intrinsic::dbg_region_end:  NumArgs = 1; break;
  case Intrinsic::dbg_func_start:  NumArgs = 1; break;
  case Intrinsic::dbg_declare:     NumArgs = 1; break;

  case Intrinsic::memcpy:          NumArgs = 4; break;
  case Intrinsic::memmove:         NumArgs = 4; break;
  case Intrinsic::memset:          NumArgs = 4; break;
 
  case Intrinsic::alpha_ctlz:      NumArgs = 1; break;
  case Intrinsic::alpha_cttz:      NumArgs = 1; break;
  case Intrinsic::alpha_ctpop:     NumArgs = 1; break;
  case Intrinsic::alpha_umulh:     NumArgs = 2; break;
  case Intrinsic::alpha_vecop:     NumArgs = 4; break;
  case Intrinsic::alpha_pup:       NumArgs = 3; break;
  case Intrinsic::alpha_bytezap:   NumArgs = 2; break;
  case Intrinsic::alpha_bytemanip: NumArgs = 3; break;
  case Intrinsic::alpha_dfpbop:    NumArgs = 3; break;
  case Intrinsic::alpha_dfpuop:    NumArgs = 2; break;
  case Intrinsic::alpha_unordered: NumArgs = 2; break;
  case Intrinsic::alpha_uqtodfp:   NumArgs = 2; break;
  case Intrinsic::alpha_uqtosfp:   NumArgs = 2; break;
  case Intrinsic::alpha_dfptosq:   NumArgs = 2; break;
  case Intrinsic::alpha_sfptosq:   NumArgs = 2; break;

  case Intrinsic::not_intrinsic: 
    assert(0 && "Invalid intrinsic!"); NumArgs = 0; break;
  }

  Assert1(FT->getNumParams() == NumArgs || (FT->getNumParams() < NumArgs &&
                                             FT->isVarArg()),
          "Illegal # arguments for intrinsic function!", IF);
}


//===----------------------------------------------------------------------===//
//  Implement the public interfaces to this file...
//===----------------------------------------------------------------------===//

FunctionPass *llvm::createVerifierPass(VerifierFailureAction action) {
  return new Verifier(action);
}


// verifyFunction - Create 
bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) {
  Function &F = const_cast<Function&>(f);
  assert(!F.isExternal() && "Cannot verify external functions");
  
  FunctionPassManager FPM(new ExistingModuleProvider(F.getParent()));
  Verifier *V = new Verifier(action);
  FPM.add(V);
  FPM.run(F);
  return V->Broken;
}

/// verifyModule - Check a module for errors, printing messages on stderr.
/// Return true if the module is corrupt.
///
bool llvm::verifyModule(const Module &M, VerifierFailureAction action) {
  PassManager PM;
  Verifier *V = new Verifier(action);
  PM.add(V);
  PM.run((Module&)M);
  return V->Broken;
}

// vim: sw=2