aboutsummaryrefslogtreecommitdiffstats
path: root/lib/VMCore/Verifier.cpp
blob: c5387c61c17ae7c9a065dfc9e2852e3cc9358db0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
//===-- Verifier.cpp - Implement the Module Verifier -------------*- C++ -*-==//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the function verifier interface, that can be used for some
// sanity checking of input to the system.
//
// Note that this does not provide full `Java style' security and verifications,
// instead it just tries to ensure that code is well-formed.
//
//  * Both of a binary operator's parameters are of the same type
//  * Verify that the indices of mem access instructions match other operands
//  * Verify that arithmetic and other things are only performed on first-class
//    types.  Verify that shifts & logicals only happen on integrals f.e.
//  * All of the constants in a switch statement are of the correct type
//  * The code is in valid SSA form
//  * It should be illegal to put a label into any other type (like a structure)
//    or to return one. [except constant arrays!]
//  * Only phi nodes can be self referential: 'add int %0, %0 ; <int>:0' is bad
//  * PHI nodes must have an entry for each predecessor, with no extras.
//  * PHI nodes must be the first thing in a basic block, all grouped together
//  * PHI nodes must have at least one entry
//  * All basic blocks should only end with terminator insts, not contain them
//  * The entry node to a function must not have predecessors
//  * All Instructions must be embedded into a basic block
//  * Functions cannot take a void-typed parameter
//  * Verify that a function's argument list agrees with it's declared type.
//  * It is illegal to specify a name for a void value.
//  * It is illegal to have a internal global value with no initializer
//  * It is illegal to have a ret instruction that returns a value that does not
//    agree with the function return value type.
//  * Function call argument types match the function prototype
//  * All other things that are tested by asserts spread about the code...
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/Verifier.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/CallingConv.h"
#include "llvm/Constants.h"
#include "llvm/Pass.h"
#include "llvm/Module.h"
#include "llvm/ModuleProvider.h"
#include "llvm/ParameterAttributes.h"
#include "llvm/DerivedTypes.h"
#include "llvm/InlineAsm.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/PassManager.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Support/Streams.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Compiler.h"
#include <algorithm>
#include <sstream>
#include <cstdarg>
using namespace llvm;

namespace {  // Anonymous namespace for class
  struct VISIBILITY_HIDDEN PreVerifier : public FunctionPass {
    static char ID; // Pass ID, replacement for typeid

    PreVerifier() : FunctionPass((intptr_t)&ID) { }

    // Check that the prerequisites for successful DominatorTree construction
    // are satisfied.
    bool runOnFunction(Function &F) {
      bool Broken = false;

      for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
        if (I->empty() || !I->back().isTerminator()) {
          cerr << "Basic Block does not have terminator!\n";
          WriteAsOperand(*cerr, I, true);
          cerr << "\n";
          Broken = true;
        }
      }

      if (Broken)
        abort();

      return false;
    }
  };

  char PreVerifier::ID = 0;
  RegisterPass<PreVerifier> PreVer("preverify", "Preliminary module verification");
  const PassInfo *PreVerifyID = PreVer.getPassInfo();

  struct VISIBILITY_HIDDEN
     Verifier : public FunctionPass, InstVisitor<Verifier> {
    static char ID; // Pass ID, replacement for typeid
    bool Broken;          // Is this module found to be broken?
    bool RealPass;        // Are we not being run by a PassManager?
    VerifierFailureAction action;
                          // What to do if verification fails.
    Module *Mod;          // Module we are verifying right now
    DominatorTree *DT; // Dominator Tree, caution can be null!
    std::stringstream msgs;  // A stringstream to collect messages

    /// InstInThisBlock - when verifying a basic block, keep track of all of the
    /// instructions we have seen so far.  This allows us to do efficient
    /// dominance checks for the case when an instruction has an operand that is
    /// an instruction in the same block.
    SmallPtrSet<Instruction*, 16> InstsInThisBlock;

    Verifier()
      : FunctionPass((intptr_t)&ID), 
      Broken(false), RealPass(true), action(AbortProcessAction),
      DT(0), msgs( std::ios::app | std::ios::out ) {}
    Verifier( VerifierFailureAction ctn )
      : FunctionPass((intptr_t)&ID), 
      Broken(false), RealPass(true), action(ctn), DT(0),
      msgs( std::ios::app | std::ios::out ) {}
    Verifier(bool AB )
      : FunctionPass((intptr_t)&ID), 
      Broken(false), RealPass(true),
      action( AB ? AbortProcessAction : PrintMessageAction), DT(0),
      msgs( std::ios::app | std::ios::out ) {}
    Verifier(DominatorTree &dt)
      : FunctionPass((intptr_t)&ID), 
      Broken(false), RealPass(false), action(PrintMessageAction),
      DT(&dt), msgs( std::ios::app | std::ios::out ) {}


    bool doInitialization(Module &M) {
      Mod = &M;
      verifyTypeSymbolTable(M.getTypeSymbolTable());

      // If this is a real pass, in a pass manager, we must abort before
      // returning back to the pass manager, or else the pass manager may try to
      // run other passes on the broken module.
      if (RealPass)
        return abortIfBroken();
      return false;
    }

    bool runOnFunction(Function &F) {
      // Get dominator information if we are being run by PassManager
      if (RealPass) DT = &getAnalysis<DominatorTree>();

      Mod = F.getParent();

      visit(F);
      InstsInThisBlock.clear();

      // If this is a real pass, in a pass manager, we must abort before
      // returning back to the pass manager, or else the pass manager may try to
      // run other passes on the broken module.
      if (RealPass)
        return abortIfBroken();

      return false;
    }

    bool doFinalization(Module &M) {
      // Scan through, checking all of the external function's linkage now...
      for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
        visitGlobalValue(*I);

        // Check to make sure function prototypes are okay.
        if (I->isDeclaration()) visitFunction(*I);
      }

      for (Module::global_iterator I = M.global_begin(), E = M.global_end(); 
           I != E; ++I)
        visitGlobalVariable(*I);

      for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end(); 
           I != E; ++I)
        visitGlobalAlias(*I);

      // If the module is broken, abort at this time.
      return abortIfBroken();
    }

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.setPreservesAll();
      AU.addRequiredID(PreVerifyID);
      if (RealPass)
        AU.addRequired<DominatorTree>();
    }

    /// abortIfBroken - If the module is broken and we are supposed to abort on
    /// this condition, do so.
    ///
    bool abortIfBroken() {
      if (Broken) {
        msgs << "Broken module found, ";
        switch (action) {
          case AbortProcessAction:
            msgs << "compilation aborted!\n";
            cerr << msgs.str();
            abort();
          case PrintMessageAction:
            msgs << "verification continues.\n";
            cerr << msgs.str();
            return false;
          case ReturnStatusAction:
            msgs << "compilation terminated.\n";
            return Broken;
        }
      }
      return false;
    }


    // Verification methods...
    void verifyTypeSymbolTable(TypeSymbolTable &ST);
    void visitGlobalValue(GlobalValue &GV);
    void visitGlobalVariable(GlobalVariable &GV);
    void visitGlobalAlias(GlobalAlias &GA);
    void visitFunction(Function &F);
    void visitBasicBlock(BasicBlock &BB);
    void visitTruncInst(TruncInst &I);
    void visitZExtInst(ZExtInst &I);
    void visitSExtInst(SExtInst &I);
    void visitFPTruncInst(FPTruncInst &I);
    void visitFPExtInst(FPExtInst &I);
    void visitFPToUIInst(FPToUIInst &I);
    void visitFPToSIInst(FPToSIInst &I);
    void visitUIToFPInst(UIToFPInst &I);
    void visitSIToFPInst(SIToFPInst &I);
    void visitIntToPtrInst(IntToPtrInst &I);
    void visitPtrToIntInst(PtrToIntInst &I);
    void visitBitCastInst(BitCastInst &I);
    void visitPHINode(PHINode &PN);
    void visitBinaryOperator(BinaryOperator &B);
    void visitICmpInst(ICmpInst &IC);
    void visitFCmpInst(FCmpInst &FC);
    void visitExtractElementInst(ExtractElementInst &EI);
    void visitInsertElementInst(InsertElementInst &EI);
    void visitShuffleVectorInst(ShuffleVectorInst &EI);
    void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
    void visitCallInst(CallInst &CI);
    void visitGetElementPtrInst(GetElementPtrInst &GEP);
    void visitLoadInst(LoadInst &LI);
    void visitStoreInst(StoreInst &SI);
    void visitInstruction(Instruction &I);
    void visitTerminatorInst(TerminatorInst &I);
    void visitReturnInst(ReturnInst &RI);
    void visitSwitchInst(SwitchInst &SI);
    void visitSelectInst(SelectInst &SI);
    void visitUserOp1(Instruction &I);
    void visitUserOp2(Instruction &I) { visitUserOp1(I); }
    void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);

    void VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F,
                                  unsigned Count, ...);

    void WriteValue(const Value *V) {
      if (!V) return;
      if (isa<Instruction>(V)) {
        msgs << *V;
      } else {
        WriteAsOperand(msgs, V, true, Mod);
        msgs << "\n";
      }
    }

    void WriteType(const Type* T ) {
      if ( !T ) return;
      WriteTypeSymbolic(msgs, T, Mod );
    }


    // CheckFailed - A check failed, so print out the condition and the message
    // that failed.  This provides a nice place to put a breakpoint if you want
    // to see why something is not correct.
    void CheckFailed(const std::string &Message,
                     const Value *V1 = 0, const Value *V2 = 0,
                     const Value *V3 = 0, const Value *V4 = 0) {
      msgs << Message << "\n";
      WriteValue(V1);
      WriteValue(V2);
      WriteValue(V3);
      WriteValue(V4);
      Broken = true;
    }

    void CheckFailed( const std::string& Message, const Value* V1,
                      const Type* T2, const Value* V3 = 0 ) {
      msgs << Message << "\n";
      WriteValue(V1);
      WriteType(T2);
      WriteValue(V3);
      Broken = true;
    }
  };

  char Verifier::ID = 0;
  RegisterPass<Verifier> X("verify", "Module Verifier");
} // End anonymous namespace


// Assert - We know that cond should be true, if not print an error message.
#define Assert(C, M) \
  do { if (!(C)) { CheckFailed(M); return; } } while (0)
#define Assert1(C, M, V1) \
  do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
#define Assert2(C, M, V1, V2) \
  do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
#define Assert3(C, M, V1, V2, V3) \
  do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
#define Assert4(C, M, V1, V2, V3, V4) \
  do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)


void Verifier::visitGlobalValue(GlobalValue &GV) {
  Assert1(!GV.isDeclaration() ||
          GV.hasExternalLinkage() ||
          GV.hasDLLImportLinkage() ||
          GV.hasExternalWeakLinkage() ||
          (isa<GlobalAlias>(GV) &&
           (GV.hasInternalLinkage() || GV.hasWeakLinkage())),
  "Global is external, but doesn't have external or dllimport or weak linkage!",
          &GV);

  Assert1(!GV.hasDLLImportLinkage() || GV.isDeclaration(),
          "Global is marked as dllimport, but not external", &GV);
  
  Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
          "Only global variables can have appending linkage!", &GV);

  if (GV.hasAppendingLinkage()) {
    GlobalVariable &GVar = cast<GlobalVariable>(GV);
    Assert1(isa<ArrayType>(GVar.getType()->getElementType()),
            "Only global arrays can have appending linkage!", &GV);
  }
}

void Verifier::visitGlobalVariable(GlobalVariable &GV) {
  if (GV.hasInitializer()) {
    Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(),
            "Global variable initializer type does not match global "
            "variable type!", &GV);
  } else {
    Assert1(GV.hasExternalLinkage() || GV.hasDLLImportLinkage() ||
            GV.hasExternalWeakLinkage(),
            "invalid linkage type for global declaration", &GV);
  }

  visitGlobalValue(GV);
}

void Verifier::visitGlobalAlias(GlobalAlias &GA) {
  Assert1(!GA.getName().empty(),
          "Alias name cannot be empty!", &GA);
  Assert1(GA.hasExternalLinkage() || GA.hasInternalLinkage() ||
          GA.hasWeakLinkage(),
          "Alias should have external or external weak linkage!", &GA);
  Assert1(GA.getType() == GA.getAliasee()->getType(),
          "Alias and aliasee types should match!", &GA);
  
  if (!isa<GlobalValue>(GA.getAliasee())) {
    const ConstantExpr *CE = dyn_cast<ConstantExpr>(GA.getAliasee());
    Assert1(CE && CE->getOpcode() == Instruction::BitCast &&
            isa<GlobalValue>(CE->getOperand(0)),
            "Aliasee should be either GlobalValue or bitcast of GlobalValue",
            &GA);
  }
  
  visitGlobalValue(GA);
}

void Verifier::verifyTypeSymbolTable(TypeSymbolTable &ST) {
}

// visitFunction - Verify that a function is ok.
//
void Verifier::visitFunction(Function &F) {
  // Check function arguments.
  const FunctionType *FT = F.getFunctionType();
  unsigned NumArgs = F.arg_size();

  Assert2(FT->getNumParams() == NumArgs,
          "# formal arguments must match # of arguments for function type!",
          &F, FT);
  Assert1(F.getReturnType()->isFirstClassType() ||
          F.getReturnType() == Type::VoidTy,
          "Functions cannot return aggregate values!", &F);

  Assert1(!FT->isStructReturn() || FT->getReturnType() == Type::VoidTy,
          "Invalid struct-return function!", &F);

  const uint16_t ReturnIncompatible =
    ParamAttr::ByVal | ParamAttr::InReg |
    ParamAttr::Nest  | ParamAttr::StructRet;

  const uint16_t ParameterIncompatible =
    ParamAttr::NoReturn | ParamAttr::NoUnwind |
    ParamAttr::Const    | ParamAttr::Pure;

  const uint16_t MutuallyIncompatible[3] = {
    ParamAttr::ByVal | ParamAttr::InReg |
    ParamAttr::Nest  | ParamAttr::StructRet,

    ParamAttr::ZExt | ParamAttr::SExt,

    ParamAttr::Pure | ParamAttr::Const
  };

  const uint16_t IntegerTypeOnly =
    ParamAttr::SExt | ParamAttr::ZExt;

  const uint16_t PointerTypeOnly =
    ParamAttr::ByVal   | ParamAttr::Nest |
    ParamAttr::NoAlias | ParamAttr::StructRet;

  bool SawSRet = false;

  if (const ParamAttrsList *Attrs = FT->getParamAttrs()) {
    bool SawNest = false;

    for (unsigned Idx = 0; Idx <= FT->getNumParams(); ++Idx) {
      uint16_t Attr = Attrs->getParamAttrs(Idx);

      if (!Idx) {
        uint16_t RetI = Attr & ReturnIncompatible;
        Assert1(!RetI, "Attribute " + Attrs->getParamAttrsText(RetI) +
                "should not apply to functions!", &F);
      } else {
        uint16_t ParmI = Attr & ParameterIncompatible;
        Assert1(!ParmI, "Attribute " + Attrs->getParamAttrsText(ParmI) +
                "should only be applied to function!", &F);

      }

      for (unsigned i = 0; i * sizeof MutuallyIncompatible[0] <
           sizeof MutuallyIncompatible; ++i) {
        uint16_t MutI = Attr & MutuallyIncompatible[i];
        Assert1(!(MutI & (MutI - 1)), "Attributes " +
                Attrs->getParamAttrsText(MutI) + "are incompatible!", &F);
      }

      uint16_t IType = Attr & IntegerTypeOnly;
      Assert1(!IType || FT->getParamType(Idx-1)->isInteger(),
              "Attribute " + Attrs->getParamAttrsText(IType) +
              "should only apply to Integer type!", &F);

      uint16_t PType = Attr & PointerTypeOnly;
      Assert1(!PType || isa<PointerType>(FT->getParamType(Idx-1)),
              "Attribute " + Attrs->getParamAttrsText(PType) +
              "should only apply to Pointer type!", &F);

      if (Attr & ParamAttr::ByVal) {
        const PointerType *Ty =
            dyn_cast<PointerType>(FT->getParamType(Idx-1));
        Assert1(!Ty || isa<StructType>(Ty->getElementType()),
                "Attribute byval should only apply to pointer to structs!", &F);
      }

      if (Attr & ParamAttr::Nest) {
        Assert1(!SawNest, "More than one parameter has attribute nest!", &F);
        SawNest = true;
      }

      if (Attr & ParamAttr::StructRet) {
        SawSRet = true;
        Assert1(Idx == 1, "Attribute sret not on first parameter!", &F);
      }
    }
  }

  Assert1(SawSRet == FT->isStructReturn(),
          "StructReturn function with no sret attribute!", &F);

  // Check that this function meets the restrictions on this calling convention.
  switch (F.getCallingConv()) {
  default:
    break;
  case CallingConv::C:
    break;
  case CallingConv::Fast:
  case CallingConv::Cold:
  case CallingConv::X86_FastCall:
    Assert1(!F.isVarArg(),
            "Varargs functions must have C calling conventions!", &F);
    break;
  }
  
  // Check that the argument values match the function type for this function...
  unsigned i = 0;
  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
       I != E; ++I, ++i) {
    Assert2(I->getType() == FT->getParamType(i),
            "Argument value does not match function argument type!",
            I, FT->getParamType(i));
    // Make sure no aggregates are passed by value.
    Assert1(I->getType()->isFirstClassType(),
            "Functions cannot take aggregates as arguments by value!", I);
   }

  if (F.isDeclaration()) {
    Assert1(F.hasExternalLinkage() || F.hasDLLImportLinkage() ||
            F.hasExternalWeakLinkage(),
            "invalid linkage type for function declaration", &F);
  } else {
    // Verify that this function (which has a body) is not named "llvm.*".  It
    // is not legal to define intrinsics.
    if (F.getName().size() >= 5)
      Assert1(F.getName().substr(0, 5) != "llvm.",
              "llvm intrinsics cannot be defined!", &F);
    
    // Check the entry node
    BasicBlock *Entry = &F.getEntryBlock();
    Assert1(pred_begin(Entry) == pred_end(Entry),
            "Entry block to function must not have predecessors!", Entry);
  }
}


// verifyBasicBlock - Verify that a basic block is well formed...
//
void Verifier::visitBasicBlock(BasicBlock &BB) {
  InstsInThisBlock.clear();

  // Ensure that basic blocks have terminators!
  Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB);

  // Check constraints that this basic block imposes on all of the PHI nodes in
  // it.
  if (isa<PHINode>(BB.front())) {
    SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
    SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
    std::sort(Preds.begin(), Preds.end());
    PHINode *PN;
    for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {

      // Ensure that PHI nodes have at least one entry!
      Assert1(PN->getNumIncomingValues() != 0,
              "PHI nodes must have at least one entry.  If the block is dead, "
              "the PHI should be removed!", PN);
      Assert1(PN->getNumIncomingValues() == Preds.size(),
              "PHINode should have one entry for each predecessor of its "
              "parent basic block!", PN);

      // Get and sort all incoming values in the PHI node...
      Values.clear();
      Values.reserve(PN->getNumIncomingValues());
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
        Values.push_back(std::make_pair(PN->getIncomingBlock(i),
                                        PN->getIncomingValue(i)));
      std::sort(Values.begin(), Values.end());

      for (unsigned i = 0, e = Values.size(); i != e; ++i) {
        // Check to make sure that if there is more than one entry for a
        // particular basic block in this PHI node, that the incoming values are
        // all identical.
        //
        Assert4(i == 0 || Values[i].first  != Values[i-1].first ||
                Values[i].second == Values[i-1].second,
                "PHI node has multiple entries for the same basic block with "
                "different incoming values!", PN, Values[i].first,
                Values[i].second, Values[i-1].second);

        // Check to make sure that the predecessors and PHI node entries are
        // matched up.
        Assert3(Values[i].first == Preds[i],
                "PHI node entries do not match predecessors!", PN,
                Values[i].first, Preds[i]);
      }
    }
  }
}

void Verifier::visitTerminatorInst(TerminatorInst &I) {
  // Ensure that terminators only exist at the end of the basic block.
  Assert1(&I == I.getParent()->getTerminator(),
          "Terminator found in the middle of a basic block!", I.getParent());
  visitInstruction(I);
}

void Verifier::visitReturnInst(ReturnInst &RI) {
  Function *F = RI.getParent()->getParent();
  if (RI.getNumOperands() == 0)
    Assert2(F->getReturnType() == Type::VoidTy,
            "Found return instr that returns void in Function of non-void "
            "return type!", &RI, F->getReturnType());
  else
    Assert2(F->getReturnType() == RI.getOperand(0)->getType(),
            "Function return type does not match operand "
            "type of return inst!", &RI, F->getReturnType());

  // Check to make sure that the return value has necessary properties for
  // terminators...
  visitTerminatorInst(RI);
}

void Verifier::visitSwitchInst(SwitchInst &SI) {
  // Check to make sure that all of the constants in the switch instruction
  // have the same type as the switched-on value.
  const Type *SwitchTy = SI.getCondition()->getType();
  for (unsigned i = 1, e = SI.getNumCases(); i != e; ++i)
    Assert1(SI.getCaseValue(i)->getType() == SwitchTy,
            "Switch constants must all be same type as switch value!", &SI);

  visitTerminatorInst(SI);
}

void Verifier::visitSelectInst(SelectInst &SI) {
  Assert1(SI.getCondition()->getType() == Type::Int1Ty,
          "Select condition type must be bool!", &SI);
  Assert1(SI.getTrueValue()->getType() == SI.getFalseValue()->getType(),
          "Select values must have identical types!", &SI);
  Assert1(SI.getTrueValue()->getType() == SI.getType(),
          "Select values must have same type as select instruction!", &SI);
  visitInstruction(SI);
}


/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
/// a pass, if any exist, it's an error.
///
void Verifier::visitUserOp1(Instruction &I) {
  Assert1(0, "User-defined operators should not live outside of a pass!", &I);
}

void Verifier::visitTruncInst(TruncInst &I) {
  // Get the source and destination types
  const Type *SrcTy = I.getOperand(0)->getType();
  const Type *DestTy = I.getType();

  // Get the size of the types in bits, we'll need this later
  unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
  unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();

  Assert1(SrcTy->isInteger(), "Trunc only operates on integer", &I);
  Assert1(DestTy->isInteger(), "Trunc only produces integer", &I);
  Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I);

  visitInstruction(I);
}

void Verifier::visitZExtInst(ZExtInst &I) {
  // Get the source and destination types
  const Type *SrcTy = I.getOperand(0)->getType();
  const Type *DestTy = I.getType();

  // Get the size of the types in bits, we'll need this later
  Assert1(SrcTy->isInteger(), "ZExt only operates on integer", &I);
  Assert1(DestTy->isInteger(), "ZExt only produces an integer", &I);
  unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
  unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();

  Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I);

  visitInstruction(I);
}

void Verifier::visitSExtInst(SExtInst &I) {
  // Get the source and destination types
  const Type *SrcTy = I.getOperand(0)->getType();
  const Type *DestTy = I.getType();

  // Get the size of the types in bits, we'll need this later
  unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
  unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();

  Assert1(SrcTy->isInteger(), "SExt only operates on integer", &I);
  Assert1(DestTy->isInteger(), "SExt only produces an integer", &I);
  Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I);

  visitInstruction(I);
}

void Verifier::visitFPTruncInst(FPTruncInst &I) {
  // Get the source and destination types
  const Type *SrcTy = I.getOperand(0)->getType();
  const Type *DestTy = I.getType();
  // Get the size of the types in bits, we'll need this later
  unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
  unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();

  Assert1(SrcTy->isFloatingPoint(),"FPTrunc only operates on FP", &I);
  Assert1(DestTy->isFloatingPoint(),"FPTrunc only produces an FP", &I);
  Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I);

  visitInstruction(I);
}

void Verifier::visitFPExtInst(FPExtInst &I) {
  // Get the source and destination types
  const Type *SrcTy = I.getOperand(0)->getType();
  const Type *DestTy = I.getType();

  // Get the size of the types in bits, we'll need this later
  unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
  unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();

  Assert1(SrcTy->isFloatingPoint(),"FPExt only operates on FP", &I);
  Assert1(DestTy->isFloatingPoint(),"FPExt only produces an FP", &I);
  Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I);

  visitInstruction(I);
}

void Verifier::visitUIToFPInst(UIToFPInst &I) {
  // Get the source and destination types
  const Type *SrcTy = I.getOperand(0)->getType();
  const Type *DestTy = I.getType();

  Assert1(SrcTy->isInteger(),"UInt2FP source must be integral", &I);
  Assert1(DestTy->isFloatingPoint(),"UInt2FP result must be FP", &I);

  visitInstruction(I);
}

void Verifier::visitSIToFPInst(SIToFPInst &I) {
  // Get the source and destination types
  const Type *SrcTy = I.getOperand(0)->getType();
  const Type *DestTy = I.getType();

  Assert1(SrcTy->isInteger(),"SInt2FP source must be integral", &I);
  Assert1(DestTy->isFloatingPoint(),"SInt2FP result must be FP", &I);

  visitInstruction(I);
}

void Verifier::visitFPToUIInst(FPToUIInst &I) {
  // Get the source and destination types
  const Type *SrcTy = I.getOperand(0)->getType();
  const Type *DestTy = I.getType();

  Assert1(SrcTy->isFloatingPoint(),"FP2UInt source must be FP", &I);
  Assert1(DestTy->isInteger(),"FP2UInt result must be integral", &I);

  visitInstruction(I);
}

void Verifier::visitFPToSIInst(FPToSIInst &I) {
  // Get the source and destination types
  const Type *SrcTy = I.getOperand(0)->getType();
  const Type *DestTy = I.getType();

  Assert1(SrcTy->isFloatingPoint(),"FPToSI source must be FP", &I);
  Assert1(DestTy->isInteger(),"FP2ToI result must be integral", &I);

  visitInstruction(I);
}

void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
  // Get the source and destination types
  const Type *SrcTy = I.getOperand(0)->getType();
  const Type *DestTy = I.getType();

  Assert1(isa<PointerType>(SrcTy), "PtrToInt source must be pointer", &I);
  Assert1(DestTy->isInteger(), "PtrToInt result must be integral", &I);

  visitInstruction(I);
}

void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
  // Get the source and destination types
  const Type *SrcTy = I.getOperand(0)->getType();
  const Type *DestTy = I.getType();

  Assert1(SrcTy->isInteger(), "IntToPtr source must be an integral", &I);
  Assert1(isa<PointerType>(DestTy), "IntToPtr result must be a pointer",&I);

  visitInstruction(I);
}

void Verifier::visitBitCastInst(BitCastInst &I) {
  // Get the source and destination types
  const Type *SrcTy = I.getOperand(0)->getType();
  const Type *DestTy = I.getType();

  // Get the size of the types in bits, we'll need this later
  unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
  unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();

  // BitCast implies a no-op cast of type only. No bits change.
  // However, you can't cast pointers to anything but pointers.
  Assert1(isa<PointerType>(DestTy) == isa<PointerType>(DestTy),
          "Bitcast requires both operands to be pointer or neither", &I);
  Assert1(SrcBitSize == DestBitSize, "Bitcast requies types of same width", &I);

  visitInstruction(I);
}

/// visitPHINode - Ensure that a PHI node is well formed.
///
void Verifier::visitPHINode(PHINode &PN) {
  // Ensure that the PHI nodes are all grouped together at the top of the block.
  // This can be tested by checking whether the instruction before this is
  // either nonexistent (because this is begin()) or is a PHI node.  If not,
  // then there is some other instruction before a PHI.
  Assert2(&PN == &PN.getParent()->front() || 
          isa<PHINode>(--BasicBlock::iterator(&PN)),
          "PHI nodes not grouped at top of basic block!",
          &PN, PN.getParent());

  // Check that all of the operands of the PHI node have the same type as the
  // result.
  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
    Assert1(PN.getType() == PN.getIncomingValue(i)->getType(),
            "PHI node operands are not the same type as the result!", &PN);

  // All other PHI node constraints are checked in the visitBasicBlock method.

  visitInstruction(PN);
}

void Verifier::visitCallInst(CallInst &CI) {
  Assert1(isa<PointerType>(CI.getOperand(0)->getType()),
          "Called function must be a pointer!", &CI);
  const PointerType *FPTy = cast<PointerType>(CI.getOperand(0)->getType());
  Assert1(isa<FunctionType>(FPTy->getElementType()),
          "Called function is not pointer to function type!", &CI);

  const FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());

  // Verify that the correct number of arguments are being passed
  if (FTy->isVarArg())
    Assert1(CI.getNumOperands()-1 >= FTy->getNumParams(),
            "Called function requires more parameters than were provided!",&CI);
  else
    Assert1(CI.getNumOperands()-1 == FTy->getNumParams(),
            "Incorrect number of arguments passed to called function!", &CI);

  // Verify that all arguments to the call match the function type...
  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
    Assert3(CI.getOperand(i+1)->getType() == FTy->getParamType(i),
            "Call parameter type does not match function signature!",
            CI.getOperand(i+1), FTy->getParamType(i), &CI);

  if (Function *F = CI.getCalledFunction()) {
    if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
      visitIntrinsicFunctionCall(ID, CI);
  }
  
  visitInstruction(CI);
}

/// visitBinaryOperator - Check that both arguments to the binary operator are
/// of the same type!
///
void Verifier::visitBinaryOperator(BinaryOperator &B) {
  Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
          "Both operands to a binary operator are not of the same type!", &B);

  switch (B.getOpcode()) {
  // Check that logical operators are only used with integral operands.
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
    Assert1(B.getType()->isInteger() ||
            (isa<VectorType>(B.getType()) && 
             cast<VectorType>(B.getType())->getElementType()->isInteger()),
            "Logical operators only work with integral types!", &B);
    Assert1(B.getType() == B.getOperand(0)->getType(),
            "Logical operators must have same type for operands and result!",
            &B);
    break;
  case Instruction::Shl:
  case Instruction::LShr:
  case Instruction::AShr:
    Assert1(B.getType()->isInteger(),
            "Shift must return an integer result!", &B);
    Assert1(B.getType() == B.getOperand(0)->getType(),
            "Shift return type must be same as operands!", &B);
    /* FALL THROUGH */
  default:
    // Arithmetic operators only work on integer or fp values
    Assert1(B.getType() == B.getOperand(0)->getType(),
            "Arithmetic operators must have same type for operands and result!",
            &B);
    Assert1(B.getType()->isInteger() || B.getType()->isFloatingPoint() ||
            isa<VectorType>(B.getType()),
            "Arithmetic operators must have integer, fp, or vector type!", &B);
    break;
  }

  visitInstruction(B);
}

void Verifier::visitICmpInst(ICmpInst& IC) {
  // Check that the operands are the same type
  const Type* Op0Ty = IC.getOperand(0)->getType();
  const Type* Op1Ty = IC.getOperand(1)->getType();
  Assert1(Op0Ty == Op1Ty,
          "Both operands to ICmp instruction are not of the same type!", &IC);
  // Check that the operands are the right type
  Assert1(Op0Ty->isInteger() || isa<PointerType>(Op0Ty),
          "Invalid operand types for ICmp instruction", &IC);
  visitInstruction(IC);
}

void Verifier::visitFCmpInst(FCmpInst& FC) {
  // Check that the operands are the same type
  const Type* Op0Ty = FC.getOperand(0)->getType();
  const Type* Op1Ty = FC.getOperand(1)->getType();
  Assert1(Op0Ty == Op1Ty,
          "Both operands to FCmp instruction are not of the same type!", &FC);
  // Check that the operands are the right type
  Assert1(Op0Ty->isFloatingPoint(),
          "Invalid operand types for FCmp instruction", &FC);
  visitInstruction(FC);
}

void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
  Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0),
                                              EI.getOperand(1)),
          "Invalid extractelement operands!", &EI);
  visitInstruction(EI);
}

void Verifier::visitInsertElementInst(InsertElementInst &IE) {
  Assert1(InsertElementInst::isValidOperands(IE.getOperand(0),
                                             IE.getOperand(1),
                                             IE.getOperand(2)),
          "Invalid insertelement operands!", &IE);
  visitInstruction(IE);
}

void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
  Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
                                             SV.getOperand(2)),
          "Invalid shufflevector operands!", &SV);
  Assert1(SV.getType() == SV.getOperand(0)->getType(),
          "Result of shufflevector must match first operand type!", &SV);
  
  // Check to see if Mask is valid.
  if (const ConstantVector *MV = dyn_cast<ConstantVector>(SV.getOperand(2))) {
    for (unsigned i = 0, e = MV->getNumOperands(); i != e; ++i) {
      Assert1(isa<ConstantInt>(MV->getOperand(i)) ||
              isa<UndefValue>(MV->getOperand(i)),
              "Invalid shufflevector shuffle mask!", &SV);
    }
  } else {
    Assert1(isa<UndefValue>(SV.getOperand(2)) || 
            isa<ConstantAggregateZero>(SV.getOperand(2)),
            "Invalid shufflevector shuffle mask!", &SV);
  }
  
  visitInstruction(SV);
}

void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
  SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
  const Type *ElTy =
    GetElementPtrInst::getIndexedType(GEP.getOperand(0)->getType(),
                                      Idxs.begin(), Idxs.end(), true);
  Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
  Assert2(isa<PointerType>(GEP.getType()) &&
          cast<PointerType>(GEP.getType())->getElementType() == ElTy,
          "GEP is not of right type for indices!", &GEP, ElTy);
  visitInstruction(GEP);
}

void Verifier::visitLoadInst(LoadInst &LI) {
  const Type *ElTy =
    cast<PointerType>(LI.getOperand(0)->getType())->getElementType();
  Assert2(ElTy == LI.getType(),
          "Load result type does not match pointer operand type!", &LI, ElTy);
  visitInstruction(LI);
}

void Verifier::visitStoreInst(StoreInst &SI) {
  const Type *ElTy =
    cast<PointerType>(SI.getOperand(1)->getType())->getElementType();
  Assert2(ElTy == SI.getOperand(0)->getType(),
          "Stored value type does not match pointer operand type!", &SI, ElTy);
  visitInstruction(SI);
}


/// verifyInstruction - Verify that an instruction is well formed.
///
void Verifier::visitInstruction(Instruction &I) {
  BasicBlock *BB = I.getParent();
  Assert1(BB, "Instruction not embedded in basic block!", &I);

  if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
    for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
         UI != UE; ++UI)
      Assert1(*UI != (User*)&I ||
              !DT->dominates(&BB->getParent()->getEntryBlock(), BB),
              "Only PHI nodes may reference their own value!", &I);
  }

  // Check that void typed values don't have names
  Assert1(I.getType() != Type::VoidTy || !I.hasName(),
          "Instruction has a name, but provides a void value!", &I);

  // Check that the return value of the instruction is either void or a legal
  // value type.
  Assert1(I.getType() == Type::VoidTy || I.getType()->isFirstClassType(),
          "Instruction returns a non-scalar type!", &I);

  // Check that all uses of the instruction, if they are instructions
  // themselves, actually have parent basic blocks.  If the use is not an
  // instruction, it is an error!
  for (User::use_iterator UI = I.use_begin(), UE = I.use_end();
       UI != UE; ++UI) {
    Assert1(isa<Instruction>(*UI), "Use of instruction is not an instruction!",
            *UI);
    Instruction *Used = cast<Instruction>(*UI);
    Assert2(Used->getParent() != 0, "Instruction referencing instruction not"
            " embeded in a basic block!", &I, Used);
  }

  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
    Assert1(I.getOperand(i) != 0, "Instruction has null operand!", &I);

    // Check to make sure that only first-class-values are operands to
    // instructions.
    Assert1(I.getOperand(i)->getType()->isFirstClassType(),
            "Instruction operands must be first-class values!", &I);
  
    if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
      // Check to make sure that the "address of" an intrinsic function is never
      // taken.
      Assert1(!F->isIntrinsic() || (i == 0 && isa<CallInst>(I)),
              "Cannot take the address of an intrinsic!", &I);
      Assert1(F->getParent() == Mod, "Referencing function in another module!",
              &I);
    } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
      Assert1(OpBB->getParent() == BB->getParent(),
              "Referring to a basic block in another function!", &I);
    } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
      Assert1(OpArg->getParent() == BB->getParent(),
              "Referring to an argument in another function!", &I);
    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
      Assert1(GV->getParent() == Mod, "Referencing global in another module!",
              &I);
    } else if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i))) {
      BasicBlock *OpBlock = Op->getParent();

      // Check that a definition dominates all of its uses.
      if (!isa<PHINode>(I)) {
        // Invoke results are only usable in the normal destination, not in the
        // exceptional destination.
        if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
          OpBlock = II->getNormalDest();
          
          Assert2(OpBlock != II->getUnwindDest(),
                  "No uses of invoke possible due to dominance structure!",
                  Op, II);
          
          // If the normal successor of an invoke instruction has multiple
          // predecessors, then the normal edge from the invoke is critical, so
          // the invoke value can only be live if the destination block
          // dominates all of it's predecessors (other than the invoke) or if
          // the invoke value is only used by a phi in the successor.
          if (!OpBlock->getSinglePredecessor() &&
              DT->dominates(&BB->getParent()->getEntryBlock(), BB)) {
            // The first case we allow is if the use is a PHI operand in the
            // normal block, and if that PHI operand corresponds to the invoke's
            // block.
            bool Bad = true;
            if (PHINode *PN = dyn_cast<PHINode>(&I))
              if (PN->getParent() == OpBlock &&
                  PN->getIncomingBlock(i/2) == Op->getParent())
                Bad = false;
            
            // If it is used by something non-phi, then the other case is that
            // 'OpBlock' dominates all of its predecessors other than the
            // invoke.  In this case, the invoke value can still be used.
            if (Bad) {
              Bad = false;
              for (pred_iterator PI = pred_begin(OpBlock),
                   E = pred_end(OpBlock); PI != E; ++PI) {
                if (*PI != II->getParent() && !DT->dominates(OpBlock, *PI)) {
                  Bad = true;
                  break;
                }
              }
            }
            Assert2(!Bad,
                    "Invoke value defined on critical edge but not dead!", &I,
                    Op);
          }
        } else if (OpBlock == BB) {
          // If they are in the same basic block, make sure that the definition
          // comes before the use.
          Assert2(InstsInThisBlock.count(Op) ||
                  !DT->dominates(&BB->getParent()->getEntryBlock(), BB),
                  "Instruction does not dominate all uses!", Op, &I);
        }

        // Definition must dominate use unless use is unreachable!
        Assert2(DT->dominates(OpBlock, BB) ||
                !DT->dominates(&BB->getParent()->getEntryBlock(), BB),
                "Instruction does not dominate all uses!", Op, &I);
      } else {
        // PHI nodes are more difficult than other nodes because they actually
        // "use" the value in the predecessor basic blocks they correspond to.
        BasicBlock *PredBB = cast<BasicBlock>(I.getOperand(i+1));
        Assert2(DT->dominates(OpBlock, PredBB) ||
                !DT->dominates(&BB->getParent()->getEntryBlock(), PredBB),
                "Instruction does not dominate all uses!", Op, &I);
      }
    } else if (isa<InlineAsm>(I.getOperand(i))) {
      Assert1(i == 0 && isa<CallInst>(I),
              "Cannot take the address of an inline asm!", &I);
    }
  }
  InstsInThisBlock.insert(&I);
}

static bool HasPtrPtrType(Value *Val) {
  if (const PointerType *PtrTy = dyn_cast<PointerType>(Val->getType()))
    return isa<PointerType>(PtrTy->getElementType());
  return false;
}

/// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
///
void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
  Function *IF = CI.getCalledFunction();
  Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!",
          IF);
  
#define GET_INTRINSIC_VERIFIER
#include "llvm/Intrinsics.gen"
#undef GET_INTRINSIC_VERIFIER
  
  switch (ID) {
  default:
    break;
  case Intrinsic::gcroot:
    Assert1(HasPtrPtrType(CI.getOperand(1)),
            "llvm.gcroot parameter #1 must be a pointer to a pointer.", &CI);
    Assert1(isa<AllocaInst>(IntrinsicInst::StripPointerCasts(CI.getOperand(1))),
            "llvm.gcroot parameter #1 must be an alloca (or a bitcast of one).",
            &CI);
    Assert1(isa<Constant>(CI.getOperand(2)),
            "llvm.gcroot parameter #2 must be a constant.", &CI);
    break;
  case Intrinsic::gcwrite:
    Assert1(CI.getOperand(3)->getType()
            == PointerType::get(CI.getOperand(1)->getType()),
            "Call to llvm.gcwrite must be with type 'void (%ty*, %ty2*, %ty**)'.",
            &CI);
    break;
  case Intrinsic::gcread:
    Assert1(CI.getOperand(2)->getType() == PointerType::get(CI.getType()),
            "Call to llvm.gcread must be with type '%ty* (%ty2*, %ty**).'",
            &CI);
    break;
  case Intrinsic::init_trampoline:
    Assert1(isa<Function>(IntrinsicInst::StripPointerCasts(CI.getOperand(2))),
            "llvm.init_trampoline parameter #2 must resolve to a function.",
            &CI);
  }
}

/// VerifyIntrinsicPrototype - TableGen emits calls to this function into
/// Intrinsics.gen.  This implements a little state machine that verifies the
/// prototype of intrinsics.
void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID,
                                        Function *F,
                                        unsigned Count, ...) {
  va_list VA;
  va_start(VA, Count);
  
  const FunctionType *FTy = F->getFunctionType();
  
  // For overloaded intrinsics, the Suffix of the function name must match the
  // types of the arguments. This variable keeps track of the expected
  // suffix, to be checked at the end.
  std::string Suffix;

  if (FTy->getNumParams() + FTy->isVarArg() != Count - 1) {
    CheckFailed("Intrinsic prototype has incorrect number of arguments!", F);
    return;
  }

  // Note that "arg#0" is the return type.
  for (unsigned ArgNo = 0; ArgNo < Count; ++ArgNo) {
    MVT::ValueType VT = va_arg(VA, MVT::ValueType);

    if (VT == MVT::isVoid && ArgNo > 0) {
      if (!FTy->isVarArg())
        CheckFailed("Intrinsic prototype has no '...'!", F);
      break;
    }

    const Type *Ty;
    if (ArgNo == 0)
      Ty = FTy->getReturnType();
    else
      Ty = FTy->getParamType(ArgNo-1);

    unsigned NumElts = 0;
    const Type *EltTy = Ty;
    if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
      EltTy = VTy->getElementType();
      NumElts = VTy->getNumElements();
    }
    
    if ((int)VT < 0) {
      int Match = ~VT;
      if (Match == 0) {
        if (Ty != FTy->getReturnType()) {
          CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " does not "
                      "match return type.", F);
          break;
        }
      } else {
        if (Ty != FTy->getParamType(Match-1)) {
          CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " does not "
                      "match parameter %" + utostr(Match-1) + ".", F);
          break;
        }
      }
    } else if (VT == MVT::iAny) {
      if (!EltTy->isInteger()) {
        if (ArgNo == 0)
          CheckFailed("Intrinsic result type is not "
                      "an integer type.", F);
        else
          CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " is not "
                      "an integer type.", F);
        break;
      }
      unsigned GotBits = cast<IntegerType>(EltTy)->getBitWidth();
      Suffix += ".";
      if (EltTy != Ty)
        Suffix += "v" + utostr(NumElts);
      Suffix += "i" + utostr(GotBits);;
      // Check some constraints on various intrinsics.
      switch (ID) {
        default: break; // Not everything needs to be checked.
        case Intrinsic::bswap:
          if (GotBits < 16 || GotBits % 16 != 0)
            CheckFailed("Intrinsic requires even byte width argument", F);
          break;
      }
    } else if (VT == MVT::fAny) {
      if (!EltTy->isFloatingPoint()) {
        if (ArgNo == 0)
          CheckFailed("Intrinsic result type is not "
                      "a floating-point type.", F);
        else
          CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " is not "
                      "a floating-point type.", F);
        break;
      }
      Suffix += ".";
      if (EltTy != Ty)
        Suffix += "v" + utostr(NumElts);
      Suffix += MVT::getValueTypeString(MVT::getValueType(EltTy));
    } else if (VT == MVT::iPTR) {
      if (!isa<PointerType>(Ty)) {
        if (ArgNo == 0)
          CheckFailed("Intrinsic result type is not a "
                      "pointer and a pointer is required.", F);
        else
          CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " is not a "
                      "pointer and a pointer is required.", F);
        break;
      }
    } else if (MVT::isVector(VT)) {
      // If this is a vector argument, verify the number and type of elements.
      if (MVT::getVectorElementType(VT) != MVT::getValueType(EltTy)) {
        CheckFailed("Intrinsic prototype has incorrect vector element type!",
                    F);
        break;
      }
      if (MVT::getVectorNumElements(VT) != NumElts) {
        CheckFailed("Intrinsic prototype has incorrect number of "
                    "vector elements!",F);
        break;
      }
    } else if (MVT::getTypeForValueType(VT) != EltTy) {
      if (ArgNo == 0)
        CheckFailed("Intrinsic prototype has incorrect result type!", F);
      else
        CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " is wrong!",F);
      break;
    } else if (EltTy != Ty) {
      if (ArgNo == 0)
        CheckFailed("Intrinsic result type is vector "
                    "and a scalar is required.", F);
      else
        CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " is vector "
                    "and a scalar is required.", F);
    }
  }

  va_end(VA);

  // If we computed a Suffix then the intrinsic is overloaded and we need to 
  // make sure that the name of the function is correct. We add the suffix to
  // the name of the intrinsic and compare against the given function name. If
  // they are not the same, the function name is invalid. This ensures that
  // overloading of intrinsics uses a sane and consistent naming convention.
  if (!Suffix.empty()) {
    std::string Name(Intrinsic::getName(ID));
    if (Name + Suffix != F->getName())
      CheckFailed("Overloaded intrinsic has incorrect suffix: '" +
                  F->getName().substr(Name.length()) + "'. It should be '" +
                  Suffix + "'", F);
  }
}


//===----------------------------------------------------------------------===//
//  Implement the public interfaces to this file...
//===----------------------------------------------------------------------===//

FunctionPass *llvm::createVerifierPass(VerifierFailureAction action) {
  return new Verifier(action);
}


// verifyFunction - Create
bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) {
  Function &F = const_cast<Function&>(f);
  assert(!F.isDeclaration() && "Cannot verify external functions");

  FunctionPassManager FPM(new ExistingModuleProvider(F.getParent()));
  Verifier *V = new Verifier(action);
  FPM.add(V);
  FPM.run(F);
  return V->Broken;
}

/// verifyModule - Check a module for errors, printing messages on stderr.
/// Return true if the module is corrupt.
///
bool llvm::verifyModule(const Module &M, VerifierFailureAction action,
                        std::string *ErrorInfo) {
  PassManager PM;
  Verifier *V = new Verifier(action);
  PM.add(V);
  PM.run((Module&)M);
  
  if (ErrorInfo && V->Broken)
    *ErrorInfo = V->msgs.str();
  return V->Broken;
}

// vim: sw=2