1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
|
//===-- Verifier.cpp - Implement the Module Verifier -------------*- C++ -*-==//
//
// This file defines the function verifier interface, that can be used for some
// sanity checking of input to the system.
//
// Note that this does not provide full 'java style' security and verifications,
// instead it just tries to ensure that code is well formed.
//
// . There are no duplicated names in a symbol table... ie there !exist a val
// with the same name as something in the symbol table, but with a different
// address as what is in the symbol table...
// * Both of a binary operator's parameters are the same type
// * Verify that the indices of mem access instructions match other operands
// . Verify that arithmetic and other things are only performed on first class
// types. No adding structures or arrays.
// . All of the constants in a switch statement are of the correct type
// . The code is in valid SSA form
// . It should be illegal to put a label into any other type (like a structure)
// or to return one. [except constant arrays!]
// * Only phi nodes can be self referential: 'add int %0, %0 ; <int>:0' is bad
// * PHI nodes must have an entry for each predecessor, with no extras.
// . All basic blocks should only end with terminator insts, not contain them
// * The entry node to a function must not have predecessors
// * All Instructions must be embeded into a basic block
// . Verify that none of the Value getType()'s are null.
// . Function's cannot take a void typed parameter
// * Verify that a function's argument list agrees with it's declared type.
// . Verify that arrays and structures have fixed elements: No unsized arrays.
// * It is illegal to specify a name for a void value.
// * It is illegal to have a internal function that is just a declaration
// * It is illegal to have a ret instruction that returns a value that does not
// agree with the function return value type.
// * All other things that are tested by asserts spread about the code...
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/Verifier.h"
#include "llvm/Pass.h"
#include "llvm/Function.h"
#include "llvm/Module.h"
#include "llvm/BasicBlock.h"
#include "llvm/DerivedTypes.h"
#include "llvm/iPHINode.h"
#include "llvm/iTerminators.h"
#include "llvm/iOther.h"
#include "llvm/iMemory.h"
#include "llvm/Argument.h"
#include "llvm/SymbolTable.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/InstVisitor.h"
#include "Support/STLExtras.h"
#include <algorithm>
namespace { // Anonymous namespace for class
struct Verifier : public FunctionPass, InstVisitor<Verifier> {
bool Broken;
Verifier() : Broken(false) {}
bool doInitialization(Module *M) {
verifySymbolTable(M->getSymbolTable());
return false;
}
bool runOnFunction(Function *F) {
visit(F);
return false;
}
bool doFinalization(Module *M) {
if (Broken) {
cerr << "Broken module found, compilation aborted!\n";
abort();
}
return false;
}
// Verification methods...
void verifySymbolTable(SymbolTable *ST);
void visitFunction(Function *F);
void visitBasicBlock(BasicBlock *BB);
void visitPHINode(PHINode *PN);
void visitBinaryOperator(BinaryOperator *B);
void visitCallInst(CallInst *CI);
void visitGetElementPtrInst(GetElementPtrInst *GEP);
void visitLoadInst(LoadInst *LI);
void visitStoreInst(StoreInst *SI);
void visitInstruction(Instruction *I);
// CheckFailed - A check failed, so print out the condition and the message
// that failed. This provides a nice place to put a breakpoint if you want
// to see why something is not correct.
//
inline void CheckFailed(const char *Cond, const std::string &Message,
const Value *V1 = 0, const Value *V2 = 0) {
std::cerr << Message << "\n";
if (V1) { std::cerr << V1 << "\n"; }
if (V2) { std::cerr << V2 << "\n"; }
Broken = true;
}
};
}
// Assert - We know that cond should be true, if not print an error message.
#define Assert(C, M) \
do { if (!(C)) { CheckFailed(#C, M); return; } } while (0)
#define Assert1(C, M, V1) \
do { if (!(C)) { CheckFailed(#C, M, V1); return; } } while (0)
#define Assert2(C, M, V1, V2) \
do { if (!(C)) { CheckFailed(#C, M, V1, V2); return; } } while (0)
// verifySymbolTable - Verify that a function or module symbol table is ok
//
void Verifier::verifySymbolTable(SymbolTable *ST) {
if (ST == 0) return; // No symbol table to process
// Loop over all of the types in the symbol table...
for (SymbolTable::iterator TI = ST->begin(), TE = ST->end(); TI != TE; ++TI)
for (SymbolTable::type_iterator I = TI->second.begin(),
E = TI->second.end(); I != E; ++I) {
Value *V = I->second;
// Check that there are no void typed values in the symbol table. Values
// with a void type cannot be put into symbol tables because they cannot
// have names!
Assert1(V->getType() != Type::VoidTy,
"Values with void type are not allowed to have names!\n", V);
}
}
// visitFunction - Verify that a function is ok.
//
void Verifier::visitFunction(Function *F) {
if (F->isExternal()) return;
verifySymbolTable(F->getSymbolTable());
// Check linkage of function...
Assert1(!F->isExternal() || F->hasExternalLinkage(),
"Function cannot be an 'internal' 'declare'ation!", F);
// Check function arguments...
const FunctionType *FT = F->getFunctionType();
const Function::ArgumentListType &ArgList = F->getArgumentList();
Assert2(!FT->isVarArg(), "Cannot define varargs functions in LLVM!", F, FT);
Assert2(FT->getParamTypes().size() == ArgList.size(),
"# formal arguments must match # of arguments for function type!",
F, FT);
// Check that the argument values match the function type for this function...
if (FT->getParamTypes().size() == ArgList.size()) {
for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
Assert2(ArgList[i]->getType() == FT->getParamType(i),
"Argument value does not match function argument type!",
ArgList[i], FT->getParamType(i));
}
// Check the entry node
BasicBlock *Entry = F->getEntryNode();
Assert1(pred_begin(Entry) == pred_end(Entry),
"Entry block to function must not have predecessors!", Entry);
}
// verifyBasicBlock - Verify that a basic block is well formed...
//
void Verifier::visitBasicBlock(BasicBlock *BB) {
Assert1(BB->getTerminator(), "Basic Block does not have terminator!\n", BB);
// Check that the terminator is ok as well...
if (isa<ReturnInst>(BB->getTerminator())) {
Instruction *I = BB->getTerminator();
Function *F = I->getParent()->getParent();
if (I->getNumOperands() == 0)
Assert1(F->getReturnType() == Type::VoidTy,
"Function returns no value, but ret instruction found that does!",
I);
else
Assert2(F->getReturnType() == I->getOperand(0)->getType(),
"Function return type does not match operand "
"type of return inst!", I, F->getReturnType());
}
}
// visitPHINode - Ensure that a PHI node is well formed.
void Verifier::visitPHINode(PHINode *PN) {
std::vector<BasicBlock*> Preds(pred_begin(PN->getParent()),
pred_end(PN->getParent()));
// Loop over all of the incoming values, make sure that there are
// predecessors for each one...
//
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
// Make sure all of the incoming values are the right types...
Assert2(PN->getType() == PN->getIncomingValue(i)->getType(),
"PHI node argument type does not agree with PHI node type!",
PN, PN->getIncomingValue(i));
BasicBlock *BB = PN->getIncomingBlock(i);
std::vector<BasicBlock*>::iterator PI =
find(Preds.begin(), Preds.end(), BB);
Assert2(PI != Preds.end(), "PHI node has entry for basic block that"
" is not a predecessor!", PN, BB);
Preds.erase(PI);
}
// There should be no entries left in the predecessor list...
for (std::vector<BasicBlock*>::iterator I = Preds.begin(),
E = Preds.end(); I != E; ++I)
Assert2(0, "PHI node does not have entry for a predecessor basic block!",
PN, *I);
visitInstruction(PN);
}
void Verifier::visitCallInst(CallInst *CI) {
Assert1(isa<PointerType>(CI->getOperand(0)->getType()),
"Called function must be a pointer!", CI);
PointerType *FPTy = cast<PointerType>(CI->getOperand(0)->getType());
Assert1(isa<FunctionType>(FPTy->getElementType()),
"Called function is not pointer to function type!", CI);
}
// visitBinaryOperator - Check that both arguments to the binary operator are
// of the same type!
//
void Verifier::visitBinaryOperator(BinaryOperator *B) {
Assert2(B->getOperand(0)->getType() == B->getOperand(1)->getType(),
"Both operands to a binary operator are not of the same type!",
B->getOperand(0), B->getOperand(1));
visitInstruction(B);
}
void Verifier::visitGetElementPtrInst(GetElementPtrInst *GEP) {
const Type *ElTy =MemAccessInst::getIndexedType(GEP->getOperand(0)->getType(),
GEP->copyIndices(), true);
Assert1(ElTy, "Invalid indices for GEP pointer type!", GEP);
Assert2(PointerType::get(ElTy) == GEP->getType(),
"GEP is not of right type for indices!\n", GEP, ElTy);
visitInstruction(GEP);
}
void Verifier::visitLoadInst(LoadInst *LI) {
const Type *ElTy = LoadInst::getIndexedType(LI->getOperand(0)->getType(),
LI->copyIndices());
Assert1(ElTy, "Invalid indices for load pointer type!", LI);
Assert2(ElTy == LI->getType(),
"Load is not of right type for indices!\n", LI, ElTy);
visitInstruction(LI);
}
void Verifier::visitStoreInst(StoreInst *SI) {
const Type *ElTy = StoreInst::getIndexedType(SI->getOperand(1)->getType(),
SI->copyIndices());
Assert1(ElTy, "Invalid indices for store pointer type!", SI);
Assert2(ElTy == SI->getOperand(0)->getType(),
"Stored value is not of right type for indices!\n", SI, ElTy);
visitInstruction(SI);
}
// verifyInstruction - Verify that a non-terminator instruction is well formed.
//
void Verifier::visitInstruction(Instruction *I) {
assert(I->getParent() && "Instruction not embedded in basic block!");
// Check that all uses of the instruction, if they are instructions
// themselves, actually have parent basic blocks. If the use is not an
// instruction, it is an error!
//
for (User::use_iterator UI = I->use_begin(), UE = I->use_end();
UI != UE; ++UI) {
Assert1(isa<Instruction>(*UI), "Use of instruction is not an instruction!",
*UI);
Instruction *Used = cast<Instruction>(*UI);
Assert2(Used->getParent() != 0, "Instruction referencing instruction not"
" embeded in a basic block!", I, Used);
}
if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
UI != UE; ++UI)
Assert1(*UI != (User*)I,
"Only PHI nodes may reference their own value!", I);
}
Assert1(I->getType() != Type::VoidTy || !I->hasName(),
"Instruction has a name, but provides a void value!", I);
}
//===----------------------------------------------------------------------===//
// Implement the public interfaces to this file...
//===----------------------------------------------------------------------===//
Pass *createVerifierPass() {
return new Verifier();
}
bool verifyFunction(const Function *F) {
Verifier V;
V.visit((Function*)F);
return V.Broken;
}
// verifyModule - Check a module for errors, printing messages on stderr.
// Return true if the module is corrupt.
//
bool verifyModule(const Module *M) {
Verifier V;
V.run((Module*)M);
return V.Broken;
}
|