aboutsummaryrefslogtreecommitdiffstats
path: root/lib/VMCore/iOperators.cpp
blob: 977849e22cc315ee3c9f5a562594fa8cc0d6c7cd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
//===-- iOperators.cpp - Implement binary Operators ------------*- C++ -*--===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This file implements the nontrivial binary operator instructions.
//
//===----------------------------------------------------------------------===//

#include "llvm/iOperators.h"
#include "llvm/Type.h"
#include "llvm/Constants.h"
#include "llvm/BasicBlock.h"
using namespace llvm;

//===----------------------------------------------------------------------===//
//                             BinaryOperator Class
//===----------------------------------------------------------------------===//

BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, 
                               const Type *Ty, const std::string &Name,
                               Instruction *InsertBefore)
  : Instruction(Ty, iType, Name, InsertBefore) {

  Operands.reserve(2);
  Operands.push_back(Use(S1, this));
  Operands.push_back(Use(S2, this));
  assert(S1 && S2 && S1->getType() == S2->getType());

#ifndef NDEBUG
  switch (iType) {
  case Add: case Sub:
  case Mul: case Div:
  case Rem:
    assert(Ty == S1->getType() &&
           "Arithmetic operation should return same type as operands!");
    assert((Ty->isInteger() || Ty->isFloatingPoint()) && 
           "Tried to create an arithmetic operation on a non-arithmetic type!");
    break;
  case And: case Or:
  case Xor:
    assert(Ty == S1->getType() &&
           "Logical operation should return same type as operands!");
    assert(Ty->isIntegral() &&
           "Tried to create an logical operation on a non-integral type!");
    break;
  case SetLT: case SetGT: case SetLE:
  case SetGE: case SetEQ: case SetNE:
    assert(Ty == Type::BoolTy && "Setcc must return bool!");
  default:
    break;
  }
#endif
}




BinaryOperator *BinaryOperator::create(BinaryOps Op, Value *S1, Value *S2,
				       const std::string &Name,
                                       Instruction *InsertBefore) {
  assert(S1->getType() == S2->getType() &&
         "Cannot create binary operator with two operands of differing type!");
  switch (Op) {
  // Binary comparison operators...
  case SetLT: case SetGT: case SetLE:
  case SetGE: case SetEQ: case SetNE:
    return new SetCondInst(Op, S1, S2, Name, InsertBefore);

  default:
    return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
  }
}

BinaryOperator *BinaryOperator::createNeg(Value *Op, const std::string &Name,
                                          Instruction *InsertBefore) {
  if (!Op->getType()->isFloatingPoint())
    return new BinaryOperator(Instruction::Sub,
                              Constant::getNullValue(Op->getType()), Op,
                              Op->getType(), Name, InsertBefore);
  else
    return new BinaryOperator(Instruction::Sub,
                              ConstantFP::get(Op->getType(), -0.0), Op,
                              Op->getType(), Name, InsertBefore);
}

BinaryOperator *BinaryOperator::createNot(Value *Op, const std::string &Name,
                                          Instruction *InsertBefore) {
  return new BinaryOperator(Instruction::Xor, Op,
                            ConstantIntegral::getAllOnesValue(Op->getType()),
                            Op->getType(), Name, InsertBefore);
}


// isConstantAllOnes - Helper function for several functions below
static inline bool isConstantAllOnes(const Value *V) {
  return isa<ConstantIntegral>(V) &&cast<ConstantIntegral>(V)->isAllOnesValue();
}

bool BinaryOperator::isNeg(const Value *V) {
  if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
    if (Bop->getOpcode() == Instruction::Sub)
      if (!V->getType()->isFloatingPoint())
        return Bop->getOperand(0) == Constant::getNullValue(Bop->getType());
      else
        return Bop->getOperand(0) == ConstantFP::get(Bop->getType(), -0.0);
  return false;
}

bool BinaryOperator::isNot(const Value *V) {
  if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
    return (Bop->getOpcode() == Instruction::Xor &&
            (isConstantAllOnes(Bop->getOperand(1)) ||
             isConstantAllOnes(Bop->getOperand(0))));
  return false;
}

Value *BinaryOperator::getNegArgument(BinaryOperator *Bop) {
  assert(isNeg(Bop) && "getNegArgument from non-'neg' instruction!");
  return Bop->getOperand(1);
}

const Value *BinaryOperator::getNegArgument(const BinaryOperator *Bop) {
  return getNegArgument((BinaryOperator*)Bop);
}

Value *BinaryOperator::getNotArgument(BinaryOperator *Bop) {
  assert(isNot(Bop) && "getNotArgument on non-'not' instruction!");
  Value *Op0 = Bop->getOperand(0);
  Value *Op1 = Bop->getOperand(1);
  if (isConstantAllOnes(Op0)) return Op1;

  assert(isConstantAllOnes(Op1));
  return Op0;
}

const Value *BinaryOperator::getNotArgument(const BinaryOperator *Bop) {
  return getNotArgument((BinaryOperator*)Bop);
}


// swapOperands - Exchange the two operands to this instruction.  This
// instruction is safe to use on any binary instruction and does not
// modify the semantics of the instruction.  If the instruction is
// order dependent (SetLT f.e.) the opcode is changed.
//
bool BinaryOperator::swapOperands() {
  if (isCommutative())
    ;  // If the instruction is commutative, it is safe to swap the operands
  else if (SetCondInst *SCI = dyn_cast<SetCondInst>(this))
    iType = SCI->getSwappedCondition();
  else
    return true;   // Can't commute operands

  std::swap(Operands[0], Operands[1]);
  return false;
}


//===----------------------------------------------------------------------===//
//                             SetCondInst Class
//===----------------------------------------------------------------------===//

SetCondInst::SetCondInst(BinaryOps Opcode, Value *S1, Value *S2, 
                         const std::string &Name, Instruction *InsertBefore)
  : BinaryOperator(Opcode, S1, S2, Type::BoolTy, Name, InsertBefore) {

  // Make sure it's a valid type... getInverseCondition will assert out if not.
  assert(getInverseCondition(Opcode));
}

// getInverseCondition - Return the inverse of the current condition opcode.
// For example seteq -> setne, setgt -> setle, setlt -> setge, etc...
//
Instruction::BinaryOps SetCondInst::getInverseCondition(BinaryOps Opcode) {
  switch (Opcode) {
  default:
    assert(0 && "Unknown setcc opcode!");
  case SetEQ: return SetNE;
  case SetNE: return SetEQ;
  case SetGT: return SetLE;
  case SetLT: return SetGE;
  case SetGE: return SetLT;
  case SetLE: return SetGT;
  }
}

// getSwappedCondition - Return the condition opcode that would be the result
// of exchanging the two operands of the setcc instruction without changing
// the result produced.  Thus, seteq->seteq, setle->setge, setlt->setgt, etc.
//
Instruction::BinaryOps SetCondInst::getSwappedCondition(BinaryOps Opcode) {
  switch (Opcode) {
  default: assert(0 && "Unknown setcc instruction!");
  case SetEQ: case SetNE: return Opcode;
  case SetGT: return SetLT;
  case SetLT: return SetGT;
  case SetGE: return SetLE;
  case SetLE: return SetGE;
  }
}