aboutsummaryrefslogtreecommitdiffstats
path: root/test/Transforms/SROA/basictest.ll
blob: a59192d718cf461a97ea959c33aebfda7b239498 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
; RUN: opt < %s -sroa -S | FileCheck %s
; RUN: opt < %s -sroa -force-ssa-updater -S | FileCheck %s

target datalayout = "e-p:64:64:64-p1:16:16:16-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-n8:16:32:64"

declare void @llvm.lifetime.start(i64, i8* nocapture)
declare void @llvm.lifetime.end(i64, i8* nocapture)

define i32 @test0() {
; CHECK-LABEL: @test0(
; CHECK-NOT: alloca
; CHECK: ret i32

entry:
  %a1 = alloca i32
  %a2 = alloca float

  %a1.i8 = bitcast i32* %a1 to i8*
  call void @llvm.lifetime.start(i64 4, i8* %a1.i8)

  store i32 0, i32* %a1
  %v1 = load i32, i32* %a1

  call void @llvm.lifetime.end(i64 4, i8* %a1.i8)

  %a2.i8 = bitcast float* %a2 to i8*
  call void @llvm.lifetime.start(i64 4, i8* %a2.i8)

  store float 0.0, float* %a2
  %v2 = load float , float * %a2
  %v2.int = bitcast float %v2 to i32
  %sum1 = add i32 %v1, %v2.int

  call void @llvm.lifetime.end(i64 4, i8* %a2.i8)

  ret i32 %sum1
}

define i32 @test1() {
; CHECK-LABEL: @test1(
; CHECK-NOT: alloca
; CHECK: ret i32 0

entry:
  %X = alloca { i32, float }
  %Y = getelementptr { i32, float }, { i32, float }* %X, i64 0, i32 0
  store i32 0, i32* %Y
  %Z = load i32, i32* %Y
  ret i32 %Z
}

define i64 @test2(i64 %X) {
; CHECK-LABEL: @test2(
; CHECK-NOT: alloca
; CHECK: ret i64 %X

entry:
  %A = alloca [8 x i8]
  %B = bitcast [8 x i8]* %A to i64*
  store i64 %X, i64* %B
  br label %L2

L2:
  %Z = load i64, i64* %B
  ret i64 %Z
}

define void @test3(i8* %dst, i8* %src) {
; CHECK-LABEL: @test3(

entry:
  %a = alloca [300 x i8]
; CHECK-NOT:  alloca
; CHECK:      %[[test3_a1:.*]] = alloca [42 x i8]
; CHECK-NEXT: %[[test3_a2:.*]] = alloca [99 x i8]
; CHECK-NEXT: %[[test3_a3:.*]] = alloca [16 x i8]
; CHECK-NEXT: %[[test3_a4:.*]] = alloca [42 x i8]
; CHECK-NEXT: %[[test3_a5:.*]] = alloca [7 x i8]
; CHECK-NEXT: %[[test3_a6:.*]] = alloca [7 x i8]
; CHECK-NEXT: %[[test3_a7:.*]] = alloca [85 x i8]

  %b = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 0
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %b, i8* %src, i32 300, i32 1, i1 false)
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [42 x i8], [42 x i8]* %[[test3_a1]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %src, i32 42
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 42
; CHECK-NEXT: %[[test3_r1:.*]] = load i8, i8* %[[gep]]
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 43
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [99 x i8], [99 x i8]* %[[test3_a2]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 99
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 142
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 16
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 158
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [42 x i8], [42 x i8]* %[[test3_a4]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 42
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 200
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 207
; CHECK-NEXT: %[[test3_r2:.*]] = load i8, i8* %[[gep]]
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 208
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 215
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [85 x i8], [85 x i8]* %[[test3_a7]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 85

  ; Clobber a single element of the array, this should be promotable.
  %c = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 42
  store i8 0, i8* %c

  ; Make a sequence of overlapping stores to the array. These overlap both in
  ; forward strides and in shrinking accesses.
  %overlap.1.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 142
  %overlap.2.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 143
  %overlap.3.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 144
  %overlap.4.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 145
  %overlap.5.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 146
  %overlap.6.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 147
  %overlap.7.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 148
  %overlap.8.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 149
  %overlap.9.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 150
  %overlap.1.i16 = bitcast i8* %overlap.1.i8 to i16*
  %overlap.1.i32 = bitcast i8* %overlap.1.i8 to i32*
  %overlap.1.i64 = bitcast i8* %overlap.1.i8 to i64*
  %overlap.2.i64 = bitcast i8* %overlap.2.i8 to i64*
  %overlap.3.i64 = bitcast i8* %overlap.3.i8 to i64*
  %overlap.4.i64 = bitcast i8* %overlap.4.i8 to i64*
  %overlap.5.i64 = bitcast i8* %overlap.5.i8 to i64*
  %overlap.6.i64 = bitcast i8* %overlap.6.i8 to i64*
  %overlap.7.i64 = bitcast i8* %overlap.7.i8 to i64*
  %overlap.8.i64 = bitcast i8* %overlap.8.i8 to i64*
  %overlap.9.i64 = bitcast i8* %overlap.9.i8 to i64*
  store i8 1, i8* %overlap.1.i8
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 0
; CHECK-NEXT: store i8 1, i8* %[[gep]]
  store i16 1, i16* %overlap.1.i16
; CHECK-NEXT: %[[bitcast:.*]] = bitcast [16 x i8]* %[[test3_a3]] to i16*
; CHECK-NEXT: store i16 1, i16* %[[bitcast]]
  store i32 1, i32* %overlap.1.i32
; CHECK-NEXT: %[[bitcast:.*]] = bitcast [16 x i8]* %[[test3_a3]] to i32*
; CHECK-NEXT: store i32 1, i32* %[[bitcast]]
  store i64 1, i64* %overlap.1.i64
; CHECK-NEXT: %[[bitcast:.*]] = bitcast [16 x i8]* %[[test3_a3]] to i64*
; CHECK-NEXT: store i64 1, i64* %[[bitcast]]
  store i64 2, i64* %overlap.2.i64
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 1
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
; CHECK-NEXT: store i64 2, i64* %[[bitcast]]
  store i64 3, i64* %overlap.3.i64
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 2
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
; CHECK-NEXT: store i64 3, i64* %[[bitcast]]
  store i64 4, i64* %overlap.4.i64
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 3
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
; CHECK-NEXT: store i64 4, i64* %[[bitcast]]
  store i64 5, i64* %overlap.5.i64
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 4
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
; CHECK-NEXT: store i64 5, i64* %[[bitcast]]
  store i64 6, i64* %overlap.6.i64
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 5
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
; CHECK-NEXT: store i64 6, i64* %[[bitcast]]
  store i64 7, i64* %overlap.7.i64
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 6
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
; CHECK-NEXT: store i64 7, i64* %[[bitcast]]
  store i64 8, i64* %overlap.8.i64
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 7
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
; CHECK-NEXT: store i64 8, i64* %[[bitcast]]
  store i64 9, i64* %overlap.9.i64
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 8
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
; CHECK-NEXT: store i64 9, i64* %[[bitcast]]

  ; Make two sequences of overlapping stores with more gaps and irregularities.
  %overlap2.1.0.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 200
  %overlap2.1.1.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 201
  %overlap2.1.2.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 202
  %overlap2.1.3.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 203

  %overlap2.2.0.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 208
  %overlap2.2.1.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 209
  %overlap2.2.2.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 210
  %overlap2.2.3.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 211

  %overlap2.1.0.i16 = bitcast i8* %overlap2.1.0.i8 to i16*
  %overlap2.1.0.i32 = bitcast i8* %overlap2.1.0.i8 to i32*
  %overlap2.1.1.i32 = bitcast i8* %overlap2.1.1.i8 to i32*
  %overlap2.1.2.i32 = bitcast i8* %overlap2.1.2.i8 to i32*
  %overlap2.1.3.i32 = bitcast i8* %overlap2.1.3.i8 to i32*
  store i8 1,  i8*  %overlap2.1.0.i8
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 0
; CHECK-NEXT: store i8 1, i8* %[[gep]]
  store i16 1, i16* %overlap2.1.0.i16
; CHECK-NEXT: %[[bitcast:.*]] = bitcast [7 x i8]* %[[test3_a5]] to i16*
; CHECK-NEXT: store i16 1, i16* %[[bitcast]]
  store i32 1, i32* %overlap2.1.0.i32
; CHECK-NEXT: %[[bitcast:.*]] = bitcast [7 x i8]* %[[test3_a5]] to i32*
; CHECK-NEXT: store i32 1, i32* %[[bitcast]]
  store i32 2, i32* %overlap2.1.1.i32
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 1
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
; CHECK-NEXT: store i32 2, i32* %[[bitcast]]
  store i32 3, i32* %overlap2.1.2.i32
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 2
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
; CHECK-NEXT: store i32 3, i32* %[[bitcast]]
  store i32 4, i32* %overlap2.1.3.i32
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 3
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
; CHECK-NEXT: store i32 4, i32* %[[bitcast]]

  %overlap2.2.0.i32 = bitcast i8* %overlap2.2.0.i8 to i32*
  %overlap2.2.1.i16 = bitcast i8* %overlap2.2.1.i8 to i16*
  %overlap2.2.1.i32 = bitcast i8* %overlap2.2.1.i8 to i32*
  %overlap2.2.2.i32 = bitcast i8* %overlap2.2.2.i8 to i32*
  %overlap2.2.3.i32 = bitcast i8* %overlap2.2.3.i8 to i32*
  store i32 1, i32* %overlap2.2.0.i32
; CHECK-NEXT: %[[bitcast:.*]] = bitcast [7 x i8]* %[[test3_a6]] to i32*
; CHECK-NEXT: store i32 1, i32* %[[bitcast]]
  store i8 1,  i8*  %overlap2.2.1.i8
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 1
; CHECK-NEXT: store i8 1, i8* %[[gep]]
  store i16 1, i16* %overlap2.2.1.i16
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 1
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
; CHECK-NEXT: store i16 1, i16* %[[bitcast]]
  store i32 1, i32* %overlap2.2.1.i32
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 1
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
; CHECK-NEXT: store i32 1, i32* %[[bitcast]]
  store i32 3, i32* %overlap2.2.2.i32
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 2
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
; CHECK-NEXT: store i32 3, i32* %[[bitcast]]
  store i32 4, i32* %overlap2.2.3.i32
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 3
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
; CHECK-NEXT: store i32 4, i32* %[[bitcast]]

  %overlap2.prefix = getelementptr i8, i8* %overlap2.1.1.i8, i64 -4
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %overlap2.prefix, i8* %src, i32 8, i32 1, i1 false)
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [42 x i8], [42 x i8]* %[[test3_a4]], i64 0, i64 39
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %src, i32 3
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 3
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 5

  ; Bridge between the overlapping areas
  call void @llvm.memset.p0i8.i32(i8* %overlap2.1.2.i8, i8 42, i32 8, i32 1, i1 false)
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 2
; CHECK-NEXT: call void @llvm.memset.p0i8.i32(i8* %[[gep]], i8 42, i32 5
; ...promoted i8 store...
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memset.p0i8.i32(i8* %[[gep]], i8 42, i32 2

  ; Entirely within the second overlap.
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %overlap2.2.1.i8, i8* %src, i32 5, i32 1, i1 false)
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 1
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep]], i8* %src, i32 5

  ; Trailing past the second overlap.
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %overlap2.2.2.i8, i8* %src, i32 8, i32 1, i1 false)
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 2
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep]], i8* %src, i32 5
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 5
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [85 x i8], [85 x i8]* %[[test3_a7]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 3

  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %b, i32 300, i32 1, i1 false)
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [42 x i8], [42 x i8]* %[[test3_a1]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %[[gep]], i32 42
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 42
; CHECK-NEXT: store i8 0, i8* %[[gep]]
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 43
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [99 x i8], [99 x i8]* %[[test3_a2]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 99
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 142
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 16
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 158
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [42 x i8], [42 x i8]* %[[test3_a4]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 42
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 200
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 207
; CHECK-NEXT: store i8 42, i8* %[[gep]]
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 208
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 215
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [85 x i8], [85 x i8]* %[[test3_a7]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 85

  ret void
}

define void @test4(i8* %dst, i8* %src) {
; CHECK-LABEL: @test4(

entry:
  %a = alloca [100 x i8]
; CHECK-NOT:  alloca
; CHECK:      %[[test4_a1:.*]] = alloca [20 x i8]
; CHECK-NEXT: %[[test4_a2:.*]] = alloca [7 x i8]
; CHECK-NEXT: %[[test4_a3:.*]] = alloca [10 x i8]
; CHECK-NEXT: %[[test4_a4:.*]] = alloca [7 x i8]
; CHECK-NEXT: %[[test4_a5:.*]] = alloca [7 x i8]
; CHECK-NEXT: %[[test4_a6:.*]] = alloca [40 x i8]

  %b = getelementptr [100 x i8], [100 x i8]* %a, i64 0, i64 0
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %b, i8* %src, i32 100, i32 1, i1 false)
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [20 x i8], [20 x i8]* %[[test4_a1]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep]], i8* %src, i32 20
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 20
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
; CHECK-NEXT: %[[test4_r1:.*]] = load i16, i16* %[[bitcast]]
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 22
; CHECK-NEXT: %[[test4_r2:.*]] = load i8, i8* %[[gep]]
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 23
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a2]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 30
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [10 x i8], [10 x i8]* %[[test4_a3]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 10
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 40
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
; CHECK-NEXT: %[[test4_r3:.*]] = load i16, i16* %[[bitcast]]
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 42
; CHECK-NEXT: %[[test4_r4:.*]] = load i8, i8* %[[gep]]
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 43
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a4]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 50
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
; CHECK-NEXT: %[[test4_r5:.*]] = load i16, i16* %[[bitcast]]
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 52
; CHECK-NEXT: %[[test4_r6:.*]] = load i8, i8* %[[gep]]
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 53
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a5]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 60
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [40 x i8], [40 x i8]* %[[test4_a6]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 40

  %a.src.1 = getelementptr [100 x i8], [100 x i8]* %a, i64 0, i64 20
  %a.dst.1 = getelementptr [100 x i8], [100 x i8]* %a, i64 0, i64 40
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %a.dst.1, i8* %a.src.1, i32 10, i32 1, i1 false)
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a4]], i64 0, i64 0
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a2]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7

  ; Clobber a single element of the array, this should be promotable, and be deleted.
  %c = getelementptr [100 x i8], [100 x i8]* %a, i64 0, i64 42
  store i8 0, i8* %c

  %a.src.2 = getelementptr [100 x i8], [100 x i8]* %a, i64 0, i64 50
  call void @llvm.memmove.p0i8.p0i8.i32(i8* %a.dst.1, i8* %a.src.2, i32 10, i32 1, i1 false)
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a4]], i64 0, i64 0
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a5]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7

  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %b, i32 100, i32 1, i1 false)
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [20 x i8], [20 x i8]* %[[test4_a1]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %[[gep]], i32 20
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 20
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
; CHECK-NEXT: store i16 %[[test4_r1]], i16* %[[bitcast]]
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 22
; CHECK-NEXT: store i8 %[[test4_r2]], i8* %[[gep]]
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 23
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a2]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 30
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [10 x i8], [10 x i8]* %[[test4_a3]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 10
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 40
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
; CHECK-NEXT: store i16 %[[test4_r5]], i16* %[[bitcast]]
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 42
; CHECK-NEXT: store i8 %[[test4_r6]], i8* %[[gep]]
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 43
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a4]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 50
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
; CHECK-NEXT: store i16 %[[test4_r5]], i16* %[[bitcast]]
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 52
; CHECK-NEXT: store i8 %[[test4_r6]], i8* %[[gep]]
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 53
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a5]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 60
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [40 x i8], [40 x i8]* %[[test4_a6]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 40

  ret void
}

declare void @llvm.memcpy.p0i8.p0i8.i32(i8* nocapture, i8* nocapture, i32, i32, i1) nounwind
declare void @llvm.memcpy.p1i8.p0i8.i32(i8 addrspace(1)* nocapture, i8* nocapture, i32, i32, i1) nounwind
declare void @llvm.memmove.p0i8.p0i8.i32(i8* nocapture, i8* nocapture, i32, i32, i1) nounwind
declare void @llvm.memset.p0i8.i32(i8* nocapture, i8, i32, i32, i1) nounwind

define i16 @test5() {
; CHECK-LABEL: @test5(
; CHECK-NOT: alloca float
; CHECK:      %[[cast:.*]] = bitcast float 0.0{{.*}} to i32
; CHECK-NEXT: %[[shr:.*]] = lshr i32 %[[cast]], 16
; CHECK-NEXT: %[[trunc:.*]] = trunc i32 %[[shr]] to i16
; CHECK-NEXT: ret i16 %[[trunc]]

entry:
  %a = alloca [4 x i8]
  %fptr = bitcast [4 x i8]* %a to float*
  store float 0.0, float* %fptr
  %ptr = getelementptr [4 x i8], [4 x i8]* %a, i32 0, i32 2
  %iptr = bitcast i8* %ptr to i16*
  %val = load i16, i16* %iptr
  ret i16 %val
}

define i32 @test6() {
; CHECK-LABEL: @test6(
; CHECK: alloca i32
; CHECK-NEXT: store volatile i32
; CHECK-NEXT: load i32, i32*
; CHECK-NEXT: ret i32

entry:
  %a = alloca [4 x i8]
  %ptr = getelementptr [4 x i8], [4 x i8]* %a, i32 0, i32 0
  call void @llvm.memset.p0i8.i32(i8* %ptr, i8 42, i32 4, i32 1, i1 true)
  %iptr = bitcast i8* %ptr to i32*
  %val = load i32, i32* %iptr
  ret i32 %val
}

define void @test7(i8* %src, i8* %dst) {
; CHECK-LABEL: @test7(
; CHECK: alloca i32
; CHECK-NEXT: bitcast i8* %src to i32*
; CHECK-NEXT: load volatile i32, i32*
; CHECK-NEXT: store volatile i32
; CHECK-NEXT: bitcast i8* %dst to i32*
; CHECK-NEXT: load volatile i32, i32*
; CHECK-NEXT: store volatile i32
; CHECK-NEXT: ret

entry:
  %a = alloca [4 x i8]
  %ptr = getelementptr [4 x i8], [4 x i8]* %a, i32 0, i32 0
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 4, i32 1, i1 true)
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 4, i32 1, i1 true)
  ret void
}


%S1 = type { i32, i32, [16 x i8] }
%S2 = type { %S1*, %S2* }

define %S2 @test8(%S2* %s2) {
; CHECK-LABEL: @test8(
entry:
  %new = alloca %S2
; CHECK-NOT: alloca

  %s2.next.ptr = getelementptr %S2, %S2* %s2, i64 0, i32 1
  %s2.next = load %S2*, %S2** %s2.next.ptr
; CHECK:      %[[gep:.*]] = getelementptr %S2, %S2* %s2, i64 0, i32 1
; CHECK-NEXT: %[[next:.*]] = load %S2*, %S2** %[[gep]]

  %s2.next.s1.ptr = getelementptr %S2, %S2* %s2.next, i64 0, i32 0
  %s2.next.s1 = load %S1*, %S1** %s2.next.s1.ptr
  %new.s1.ptr = getelementptr %S2, %S2* %new, i64 0, i32 0
  store %S1* %s2.next.s1, %S1** %new.s1.ptr
  %s2.next.next.ptr = getelementptr %S2, %S2* %s2.next, i64 0, i32 1
  %s2.next.next = load %S2*, %S2** %s2.next.next.ptr
  %new.next.ptr = getelementptr %S2, %S2* %new, i64 0, i32 1
  store %S2* %s2.next.next, %S2** %new.next.ptr
; CHECK-NEXT: %[[gep:.*]] = getelementptr %S2, %S2* %[[next]], i64 0, i32 0
; CHECK-NEXT: %[[next_s1:.*]] = load %S1*, %S1** %[[gep]]
; CHECK-NEXT: %[[gep:.*]] = getelementptr %S2, %S2* %[[next]], i64 0, i32 1
; CHECK-NEXT: %[[next_next:.*]] = load %S2*, %S2** %[[gep]]

  %new.s1 = load %S1*, %S1** %new.s1.ptr
  %result1 = insertvalue %S2 undef, %S1* %new.s1, 0
; CHECK-NEXT: %[[result1:.*]] = insertvalue %S2 undef, %S1* %[[next_s1]], 0
  %new.next = load %S2*, %S2** %new.next.ptr
  %result2 = insertvalue %S2 %result1, %S2* %new.next, 1
; CHECK-NEXT: %[[result2:.*]] = insertvalue %S2 %[[result1]], %S2* %[[next_next]], 1
  ret %S2 %result2
; CHECK-NEXT: ret %S2 %[[result2]]
}

define i64 @test9() {
; Ensure we can handle loads off the end of an alloca even when wrapped in
; weird bit casts and types. This is valid IR due to the alignment and masking
; off the bits past the end of the alloca.
;
; CHECK-LABEL: @test9(
; CHECK-NOT: alloca
; CHECK:      %[[b2:.*]] = zext i8 26 to i64
; CHECK-NEXT: %[[s2:.*]] = shl i64 %[[b2]], 16
; CHECK-NEXT: %[[m2:.*]] = and i64 undef, -16711681
; CHECK-NEXT: %[[i2:.*]] = or i64 %[[m2]], %[[s2]]
; CHECK-NEXT: %[[b1:.*]] = zext i8 0 to i64
; CHECK-NEXT: %[[s1:.*]] = shl i64 %[[b1]], 8
; CHECK-NEXT: %[[m1:.*]] = and i64 %[[i2]], -65281
; CHECK-NEXT: %[[i1:.*]] = or i64 %[[m1]], %[[s1]]
; CHECK-NEXT: %[[b0:.*]] = zext i8 0 to i64
; CHECK-NEXT: %[[m0:.*]] = and i64 %[[i1]], -256
; CHECK-NEXT: %[[i0:.*]] = or i64 %[[m0]], %[[b0]]
; CHECK-NEXT: %[[result:.*]] = and i64 %[[i0]], 16777215
; CHECK-NEXT: ret i64 %[[result]]

entry:
  %a = alloca { [3 x i8] }, align 8
  %gep1 = getelementptr inbounds { [3 x i8] }, { [3 x i8] }* %a, i32 0, i32 0, i32 0
  store i8 0, i8* %gep1, align 1
  %gep2 = getelementptr inbounds { [3 x i8] }, { [3 x i8] }* %a, i32 0, i32 0, i32 1
  store i8 0, i8* %gep2, align 1
  %gep3 = getelementptr inbounds { [3 x i8] }, { [3 x i8] }* %a, i32 0, i32 0, i32 2
  store i8 26, i8* %gep3, align 1
  %cast = bitcast { [3 x i8] }* %a to { i64 }*
  %elt = getelementptr inbounds { i64 }, { i64 }* %cast, i32 0, i32 0
  %load = load i64, i64* %elt
  %result = and i64 %load, 16777215
  ret i64 %result
}

define %S2* @test10() {
; CHECK-LABEL: @test10(
; CHECK-NOT: alloca %S2*
; CHECK: ret %S2* null

entry:
  %a = alloca [8 x i8]
  %ptr = getelementptr [8 x i8], [8 x i8]* %a, i32 0, i32 0
  call void @llvm.memset.p0i8.i32(i8* %ptr, i8 0, i32 8, i32 1, i1 false)
  %s2ptrptr = bitcast i8* %ptr to %S2**
  %s2ptr = load %S2*, %S2** %s2ptrptr
  ret %S2* %s2ptr
}

define i32 @test11() {
; CHECK-LABEL: @test11(
; CHECK-NOT: alloca
; CHECK: ret i32 0

entry:
  %X = alloca i32
  br i1 undef, label %good, label %bad

good:
  %Y = getelementptr i32, i32* %X, i64 0
  store i32 0, i32* %Y
  %Z = load i32, i32* %Y
  ret i32 %Z

bad:
  %Y2 = getelementptr i32, i32* %X, i64 1
  store i32 0, i32* %Y2
  %Z2 = load i32, i32* %Y2
  ret i32 %Z2
}

define i8 @test12() {
; We fully promote these to the i24 load or store size, resulting in just masks
; and other operations that instcombine will fold, but no alloca.
;
; CHECK-LABEL: @test12(

entry:
  %a = alloca [3 x i8]
  %b = alloca [3 x i8]
; CHECK-NOT: alloca

  %a0ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 0
  store i8 0, i8* %a0ptr
  %a1ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 1
  store i8 0, i8* %a1ptr
  %a2ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 2
  store i8 0, i8* %a2ptr
  %aiptr = bitcast [3 x i8]* %a to i24*
  %ai = load i24, i24* %aiptr
; CHECK-NOT: store
; CHECK-NOT: load
; CHECK:      %[[ext2:.*]] = zext i8 0 to i24
; CHECK-NEXT: %[[shift2:.*]] = shl i24 %[[ext2]], 16
; CHECK-NEXT: %[[mask2:.*]] = and i24 undef, 65535
; CHECK-NEXT: %[[insert2:.*]] = or i24 %[[mask2]], %[[shift2]]
; CHECK-NEXT: %[[ext1:.*]] = zext i8 0 to i24
; CHECK-NEXT: %[[shift1:.*]] = shl i24 %[[ext1]], 8
; CHECK-NEXT: %[[mask1:.*]] = and i24 %[[insert2]], -65281
; CHECK-NEXT: %[[insert1:.*]] = or i24 %[[mask1]], %[[shift1]]
; CHECK-NEXT: %[[ext0:.*]] = zext i8 0 to i24
; CHECK-NEXT: %[[mask0:.*]] = and i24 %[[insert1]], -256
; CHECK-NEXT: %[[insert0:.*]] = or i24 %[[mask0]], %[[ext0]]

  %biptr = bitcast [3 x i8]* %b to i24*
  store i24 %ai, i24* %biptr
  %b0ptr = getelementptr [3 x i8], [3 x i8]* %b, i64 0, i32 0
  %b0 = load i8, i8* %b0ptr
  %b1ptr = getelementptr [3 x i8], [3 x i8]* %b, i64 0, i32 1
  %b1 = load i8, i8* %b1ptr
  %b2ptr = getelementptr [3 x i8], [3 x i8]* %b, i64 0, i32 2
  %b2 = load i8, i8* %b2ptr
; CHECK-NOT: store
; CHECK-NOT: load
; CHECK:      %[[trunc0:.*]] = trunc i24 %[[insert0]] to i8
; CHECK-NEXT: %[[shift1:.*]] = lshr i24 %[[insert0]], 8
; CHECK-NEXT: %[[trunc1:.*]] = trunc i24 %[[shift1]] to i8
; CHECK-NEXT: %[[shift2:.*]] = lshr i24 %[[insert0]], 16
; CHECK-NEXT: %[[trunc2:.*]] = trunc i24 %[[shift2]] to i8

  %bsum0 = add i8 %b0, %b1
  %bsum1 = add i8 %bsum0, %b2
  ret i8 %bsum1
; CHECK:      %[[sum0:.*]] = add i8 %[[trunc0]], %[[trunc1]]
; CHECK-NEXT: %[[sum1:.*]] = add i8 %[[sum0]], %[[trunc2]]
; CHECK-NEXT: ret i8 %[[sum1]]
}

define i32 @test13() {
; Ensure we don't crash and handle undefined loads that straddle the end of the
; allocation.
; CHECK-LABEL: @test13(
; CHECK:      %[[value:.*]] = zext i8 0 to i16
; CHECK-NEXT: %[[ret:.*]] = zext i16 %[[value]] to i32
; CHECK-NEXT: ret i32 %[[ret]]

entry:
  %a = alloca [3 x i8], align 2
  %b0ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 0
  store i8 0, i8* %b0ptr
  %b1ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 1
  store i8 0, i8* %b1ptr
  %b2ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 2
  store i8 0, i8* %b2ptr
  %iptrcast = bitcast [3 x i8]* %a to i16*
  %iptrgep = getelementptr i16, i16* %iptrcast, i64 1
  %i = load i16, i16* %iptrgep
  %ret = zext i16 %i to i32
  ret i32 %ret
}

%test14.struct = type { [3 x i32] }

define void @test14(...) nounwind uwtable {
; This is a strange case where we split allocas into promotable partitions, but
; also gain enough data to prove they must be dead allocas due to GEPs that walk
; across two adjacent allocas. Test that we don't try to promote or otherwise
; do bad things to these dead allocas, they should just be removed.
; CHECK-LABEL: @test14(
; CHECK-NEXT: entry:
; CHECK-NEXT: ret void

entry:
  %a = alloca %test14.struct
  %p = alloca %test14.struct*
  %0 = bitcast %test14.struct* %a to i8*
  %1 = getelementptr i8, i8* %0, i64 12
  %2 = bitcast i8* %1 to %test14.struct*
  %3 = getelementptr inbounds %test14.struct, %test14.struct* %2, i32 0, i32 0
  %4 = getelementptr inbounds %test14.struct, %test14.struct* %a, i32 0, i32 0
  %5 = bitcast [3 x i32]* %3 to i32*
  %6 = bitcast [3 x i32]* %4 to i32*
  %7 = load i32, i32* %6, align 4
  store i32 %7, i32* %5, align 4
  %8 = getelementptr inbounds i32, i32* %5, i32 1
  %9 = getelementptr inbounds i32, i32* %6, i32 1
  %10 = load i32, i32* %9, align 4
  store i32 %10, i32* %8, align 4
  %11 = getelementptr inbounds i32, i32* %5, i32 2
  %12 = getelementptr inbounds i32, i32* %6, i32 2
  %13 = load i32, i32* %12, align 4
  store i32 %13, i32* %11, align 4
  ret void
}

define i32 @test15(i1 %flag) nounwind uwtable {
; Ensure that when there are dead instructions using an alloca that are not
; loads or stores we still delete them during partitioning and rewriting.
; Otherwise we'll go to promote them while thy still have unpromotable uses.
; CHECK-LABEL: @test15(
; CHECK-NEXT: entry:
; CHECK-NEXT:   br label %loop
; CHECK:      loop:
; CHECK-NEXT:   br label %loop

entry:
  %l0 = alloca i64
  %l1 = alloca i64
  %l2 = alloca i64
  %l3 = alloca i64
  br label %loop

loop:
  %dead3 = phi i8* [ %gep3, %loop ], [ null, %entry ]

  store i64 1879048192, i64* %l0, align 8
  %bc0 = bitcast i64* %l0 to i8*
  %gep0 = getelementptr i8, i8* %bc0, i64 3
  %dead0 = bitcast i8* %gep0 to i64*

  store i64 1879048192, i64* %l1, align 8
  %bc1 = bitcast i64* %l1 to i8*
  %gep1 = getelementptr i8, i8* %bc1, i64 3
  %dead1 = getelementptr i8, i8* %gep1, i64 1

  store i64 1879048192, i64* %l2, align 8
  %bc2 = bitcast i64* %l2 to i8*
  %gep2.1 = getelementptr i8, i8* %bc2, i64 1
  %gep2.2 = getelementptr i8, i8* %bc2, i64 3
  ; Note that this select should get visited multiple times due to using two
  ; different GEPs off the same alloca. We should only delete it once.
  %dead2 = select i1 %flag, i8* %gep2.1, i8* %gep2.2

  store i64 1879048192, i64* %l3, align 8
  %bc3 = bitcast i64* %l3 to i8*
  %gep3 = getelementptr i8, i8* %bc3, i64 3

  br label %loop
}

define void @test16(i8* %src, i8* %dst) {
; Ensure that we can promote an alloca of [3 x i8] to an i24 SSA value.
; CHECK-LABEL: @test16(
; CHECK-NOT: alloca
; CHECK:      %[[srccast:.*]] = bitcast i8* %src to i24*
; CHECK-NEXT: load i24, i24* %[[srccast]]
; CHECK-NEXT: %[[dstcast:.*]] = bitcast i8* %dst to i24*
; CHECK-NEXT: store i24 0, i24* %[[dstcast]]
; CHECK-NEXT: ret void

entry:
  %a = alloca [3 x i8]
  %ptr = getelementptr [3 x i8], [3 x i8]* %a, i32 0, i32 0
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 4, i32 1, i1 false)
  %cast = bitcast i8* %ptr to i24*
  store i24 0, i24* %cast
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 4, i32 1, i1 false)
  ret void
}

define void @test17(i8* %src, i8* %dst) {
; Ensure that we can rewrite unpromotable memcpys which extend past the end of
; the alloca.
; CHECK-LABEL: @test17(
; CHECK:      %[[a:.*]] = alloca [3 x i8]
; CHECK-NEXT: %[[ptr:.*]] = getelementptr [3 x i8], [3 x i8]* %[[a]], i32 0, i32 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[ptr]], i8* %src,
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %[[ptr]],
; CHECK-NEXT: ret void

entry:
  %a = alloca [3 x i8]
  %ptr = getelementptr [3 x i8], [3 x i8]* %a, i32 0, i32 0
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 4, i32 1, i1 true)
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 4, i32 1, i1 true)
  ret void
}

define void @test18(i8* %src, i8* %dst, i32 %size) {
; Preserve transfer instrinsics with a variable size, even if they overlap with
; fixed size operations. Further, continue to split and promote allocas preceding
; the variable sized intrinsic.
; CHECK-LABEL: @test18(
; CHECK:      %[[a:.*]] = alloca [34 x i8]
; CHECK:      %[[srcgep1:.*]] = getelementptr inbounds i8, i8* %src, i64 4
; CHECK-NEXT: %[[srccast1:.*]] = bitcast i8* %[[srcgep1]] to i32*
; CHECK-NEXT: %[[srcload:.*]] = load i32, i32* %[[srccast1]]
; CHECK-NEXT: %[[agep1:.*]] = getelementptr inbounds [34 x i8], [34 x i8]* %[[a]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[agep1]], i8* %src, i32 %size,
; CHECK-NEXT: %[[agep2:.*]] = getelementptr inbounds [34 x i8], [34 x i8]* %[[a]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memset.p0i8.i32(i8* %[[agep2]], i8 42, i32 %size,
; CHECK-NEXT: %[[dstcast1:.*]] = bitcast i8* %dst to i32*
; CHECK-NEXT: store i32 42, i32* %[[dstcast1]]
; CHECK-NEXT: %[[dstgep1:.*]] = getelementptr inbounds i8, i8* %dst, i64 4
; CHECK-NEXT: %[[dstcast2:.*]] = bitcast i8* %[[dstgep1]] to i32*
; CHECK-NEXT: store i32 %[[srcload]], i32* %[[dstcast2]]
; CHECK-NEXT: %[[agep3:.*]] = getelementptr inbounds [34 x i8], [34 x i8]* %[[a]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %[[agep3]], i32 %size,
; CHECK-NEXT: ret void

entry:
  %a = alloca [42 x i8]
  %ptr = getelementptr [42 x i8], [42 x i8]* %a, i32 0, i32 0
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 8, i32 1, i1 false)
  %ptr2 = getelementptr [42 x i8], [42 x i8]* %a, i32 0, i32 8
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr2, i8* %src, i32 %size, i32 1, i1 false)
  call void @llvm.memset.p0i8.i32(i8* %ptr2, i8 42, i32 %size, i32 1, i1 false)
  %cast = bitcast i8* %ptr to i32*
  store i32 42, i32* %cast
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 8, i32 1, i1 false)
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr2, i32 %size, i32 1, i1 false)
  ret void
}

%opaque = type opaque

define i32 @test19(%opaque* %x) {
; This input will cause us to try to compute a natural GEP when rewriting
; pointers in such a way that we try to GEP through the opaque type. Previously,
; a check for an unsized type was missing and this crashed. Ensure it behaves
; reasonably now.
; CHECK-LABEL: @test19(
; CHECK-NOT: alloca
; CHECK: ret i32 undef

entry:
  %a = alloca { i64, i8* }
  %cast1 = bitcast %opaque* %x to i8*
  %cast2 = bitcast { i64, i8* }* %a to i8*
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %cast2, i8* %cast1, i32 16, i32 1, i1 false)
  %gep = getelementptr inbounds { i64, i8* }, { i64, i8* }* %a, i32 0, i32 0
  %val = load i64, i64* %gep
  ret i32 undef
}

define i32 @test20() {
; Ensure we can track negative offsets (before the beginning of the alloca) and
; negative relative offsets from offsets starting past the end of the alloca.
; CHECK-LABEL: @test20(
; CHECK-NOT: alloca
; CHECK: %[[sum1:.*]] = add i32 1, 2
; CHECK: %[[sum2:.*]] = add i32 %[[sum1]], 3
; CHECK: ret i32 %[[sum2]]

entry:
  %a = alloca [3 x i32]
  %gep1 = getelementptr [3 x i32], [3 x i32]* %a, i32 0, i32 0
  store i32 1, i32* %gep1
  %gep2.1 = getelementptr [3 x i32], [3 x i32]* %a, i32 0, i32 -2
  %gep2.2 = getelementptr i32, i32* %gep2.1, i32 3
  store i32 2, i32* %gep2.2
  %gep3.1 = getelementptr [3 x i32], [3 x i32]* %a, i32 0, i32 14
  %gep3.2 = getelementptr i32, i32* %gep3.1, i32 -12
  store i32 3, i32* %gep3.2

  %load1 = load i32, i32* %gep1
  %load2 = load i32, i32* %gep2.2
  %load3 = load i32, i32* %gep3.2
  %sum1 = add i32 %load1, %load2
  %sum2 = add i32 %sum1, %load3
  ret i32 %sum2
}

declare void @llvm.memset.p0i8.i64(i8* nocapture, i8, i64, i32, i1) nounwind

define i8 @test21() {
; Test allocations and offsets which border on overflow of the int64_t used
; internally. This is really awkward to really test as LLVM doesn't really
; support such extreme constructs cleanly.
; CHECK-LABEL: @test21(
; CHECK-NOT: alloca
; CHECK: or i8 -1, -1

entry:
  %a = alloca [2305843009213693951 x i8]
  %gep0 = getelementptr [2305843009213693951 x i8], [2305843009213693951 x i8]* %a, i64 0, i64 2305843009213693949
  store i8 255, i8* %gep0
  %gep1 = getelementptr [2305843009213693951 x i8], [2305843009213693951 x i8]* %a, i64 0, i64 -9223372036854775807
  %gep2 = getelementptr i8, i8* %gep1, i64 -1
  call void @llvm.memset.p0i8.i64(i8* %gep2, i8 0, i64 18446744073709551615, i32 1, i1 false)
  %gep3 = getelementptr i8, i8* %gep1, i64 9223372036854775807
  %gep4 = getelementptr i8, i8* %gep3, i64 9223372036854775807
  %gep5 = getelementptr i8, i8* %gep4, i64 -6917529027641081857
  store i8 255, i8* %gep5
  %cast1 = bitcast i8* %gep4 to i32*
  store i32 0, i32* %cast1
  %load = load i8, i8* %gep0
  %gep6 = getelementptr i8, i8* %gep0, i32 1
  %load2 = load i8, i8* %gep6
  %result = or i8 %load, %load2
  ret i8 %result
}

%PR13916.struct = type { i8 }

define void @PR13916.1() {
; Ensure that we handle overlapping memcpy intrinsics correctly, especially in
; the case where there is a directly identical value for both source and dest.
; CHECK: @PR13916.1
; CHECK-NOT: alloca
; CHECK: ret void

entry:
  %a = alloca i8
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %a, i8* %a, i32 1, i32 1, i1 false)
  %tmp2 = load i8, i8* %a
  ret void
}

define void @PR13916.2() {
; Check whether we continue to handle them correctly when they start off with
; different pointer value chains, but during rewriting we coalesce them into the
; same value.
; CHECK: @PR13916.2
; CHECK-NOT: alloca
; CHECK: ret void

entry:
  %a = alloca %PR13916.struct, align 1
  br i1 undef, label %if.then, label %if.end

if.then:
  %tmp0 = bitcast %PR13916.struct* %a to i8*
  %tmp1 = bitcast %PR13916.struct* %a to i8*
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %tmp0, i8* %tmp1, i32 1, i32 1, i1 false)
  br label %if.end

if.end:
  %gep = getelementptr %PR13916.struct, %PR13916.struct* %a, i32 0, i32 0
  %tmp2 = load i8, i8* %gep
  ret void
}

define void @PR13990() {
; Ensure we can handle cases where processing one alloca causes the other
; alloca to become dead and get deleted. This might crash or fail under
; Valgrind if we regress.
; CHECK-LABEL: @PR13990(
; CHECK-NOT: alloca
; CHECK: unreachable
; CHECK: unreachable

entry:
  %tmp1 = alloca i8*
  %tmp2 = alloca i8*
  br i1 undef, label %bb1, label %bb2

bb1:
  store i8* undef, i8** %tmp2
  br i1 undef, label %bb2, label %bb3

bb2:
  %tmp50 = select i1 undef, i8** %tmp2, i8** %tmp1
  br i1 undef, label %bb3, label %bb4

bb3:
  unreachable

bb4:
  unreachable
}

define double @PR13969(double %x) {
; Check that we detect when promotion will un-escape an alloca and iterate to
; re-try running SROA over that alloca. Without that, the two allocas that are
; stored into a dead alloca don't get rewritten and promoted.
; CHECK-LABEL: @PR13969(

entry:
  %a = alloca double
  %b = alloca double*
  %c = alloca double
; CHECK-NOT: alloca

  store double %x, double* %a
  store double* %c, double** %b
  store double* %a, double** %b
  store double %x, double* %c
  %ret = load double, double* %a
; CHECK-NOT: store
; CHECK-NOT: load

  ret double %ret
; CHECK: ret double %x
}

%PR14034.struct = type { { {} }, i32, %PR14034.list }
%PR14034.list = type { %PR14034.list*, %PR14034.list* }

define void @PR14034() {
; This test case tries to form GEPs into the empty leading struct members, and
; subsequently crashed (under valgrind) before we fixed the PR. The important
; thing is to handle empty structs gracefully.
; CHECK-LABEL: @PR14034(

entry:
  %a = alloca %PR14034.struct
  %list = getelementptr %PR14034.struct, %PR14034.struct* %a, i32 0, i32 2
  %prev = getelementptr %PR14034.list, %PR14034.list* %list, i32 0, i32 1
  store %PR14034.list* undef, %PR14034.list** %prev
  %cast0 = bitcast %PR14034.struct* undef to i8*
  %cast1 = bitcast %PR14034.struct* %a to i8*
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %cast0, i8* %cast1, i32 12, i32 0, i1 false)
  ret void
}

define i32 @test22(i32 %x) {
; Test that SROA and promotion is not confused by a grab bax mixture of pointer
; types involving wrapper aggregates and zero-length aggregate members.
; CHECK-LABEL: @test22(

entry:
  %a1 = alloca { { [1 x { i32 }] } }
  %a2 = alloca { {}, { float }, [0 x i8] }
  %a3 = alloca { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }
; CHECK-NOT: alloca

  %wrap1 = insertvalue [1 x { i32 }] undef, i32 %x, 0, 0
  %gep1 = getelementptr { { [1 x { i32 }] } }, { { [1 x { i32 }] } }* %a1, i32 0, i32 0, i32 0
  store [1 x { i32 }] %wrap1, [1 x { i32 }]* %gep1

  %gep2 = getelementptr { { [1 x { i32 }] } }, { { [1 x { i32 }] } }* %a1, i32 0, i32 0
  %ptrcast1 = bitcast { [1 x { i32 }] }* %gep2 to { [1 x { float }] }*
  %load1 = load { [1 x { float }] }, { [1 x { float }] }* %ptrcast1
  %unwrap1 = extractvalue { [1 x { float }] } %load1, 0, 0

  %wrap2 = insertvalue { {}, { float }, [0 x i8] } undef, { float } %unwrap1, 1
  store { {}, { float }, [0 x i8] } %wrap2, { {}, { float }, [0 x i8] }* %a2

  %gep3 = getelementptr { {}, { float }, [0 x i8] }, { {}, { float }, [0 x i8] }* %a2, i32 0, i32 1, i32 0
  %ptrcast2 = bitcast float* %gep3 to <4 x i8>*
  %load3 = load <4 x i8>, <4 x i8>* %ptrcast2
  %valcast1 = bitcast <4 x i8> %load3 to i32

  %wrap3 = insertvalue [1 x [1 x i32]] undef, i32 %valcast1, 0, 0
  %wrap4 = insertvalue { [1 x [1 x i32]], {} } undef, [1 x [1 x i32]] %wrap3, 0
  %gep4 = getelementptr { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }, { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }* %a3, i32 0, i32 1
  %ptrcast3 = bitcast { [0 x double], [1 x [1 x <4 x i8>]], {} }* %gep4 to { [1 x [1 x i32]], {} }*
  store { [1 x [1 x i32]], {} } %wrap4, { [1 x [1 x i32]], {} }* %ptrcast3

  %gep5 = getelementptr { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }, { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }* %a3, i32 0, i32 1, i32 1, i32 0
  %ptrcast4 = bitcast [1 x <4 x i8>]* %gep5 to { {}, float, {} }*
  %load4 = load { {}, float, {} }, { {}, float, {} }* %ptrcast4
  %unwrap2 = extractvalue { {}, float, {} } %load4, 1
  %valcast2 = bitcast float %unwrap2 to i32

  ret i32 %valcast2
; CHECK: ret i32
}

define void @PR14059.1(double* %d) {
; In PR14059 a peculiar construct was identified as something that is used
; pervasively in ARM's ABI-calling-convention lowering: the passing of a struct
; of doubles via an array of i32 in order to place the data into integer
; registers. This in turn was missed as an optimization by SROA due to the
; partial loads and stores of integers to the double alloca we were trying to
; form and promote. The solution is to widen the integer operations to be
; whole-alloca operations, and perform the appropriate bitcasting on the
; *values* rather than the pointers. When this works, partial reads and writes
; via integers can be promoted away.
; CHECK: @PR14059.1
; CHECK-NOT: alloca
; CHECK: ret void

entry:
  %X.sroa.0.i = alloca double, align 8
  %0 = bitcast double* %X.sroa.0.i to i8*
  call void @llvm.lifetime.start(i64 -1, i8* %0)

  ; Store to the low 32-bits...
  %X.sroa.0.0.cast2.i = bitcast double* %X.sroa.0.i to i32*
  store i32 0, i32* %X.sroa.0.0.cast2.i, align 8

  ; Also use a memset to the middle 32-bits for fun.
  %X.sroa.0.2.raw_idx2.i = getelementptr inbounds i8, i8* %0, i32 2
  call void @llvm.memset.p0i8.i64(i8* %X.sroa.0.2.raw_idx2.i, i8 0, i64 4, i32 1, i1 false)

  ; Or a memset of the whole thing.
  call void @llvm.memset.p0i8.i64(i8* %0, i8 0, i64 8, i32 1, i1 false)

  ; Write to the high 32-bits with a memcpy.
  %X.sroa.0.4.raw_idx4.i = getelementptr inbounds i8, i8* %0, i32 4
  %d.raw = bitcast double* %d to i8*
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %X.sroa.0.4.raw_idx4.i, i8* %d.raw, i32 4, i32 1, i1 false)

  ; Store to the high 32-bits...
  %X.sroa.0.4.cast5.i = bitcast i8* %X.sroa.0.4.raw_idx4.i to i32*
  store i32 1072693248, i32* %X.sroa.0.4.cast5.i, align 4

  ; Do the actual math...
  %X.sroa.0.0.load1.i = load double, double* %X.sroa.0.i, align 8
  %accum.real.i = load double, double* %d, align 8
  %add.r.i = fadd double %accum.real.i, %X.sroa.0.0.load1.i
  store double %add.r.i, double* %d, align 8
  call void @llvm.lifetime.end(i64 -1, i8* %0)
  ret void
}

define i64 @PR14059.2({ float, float }* %phi) {
; Check that SROA can split up alloca-wide integer loads and stores where the
; underlying alloca has smaller components that are accessed independently. This
; shows up particularly with ABI lowering patterns coming out of Clang that rely
; on the particular register placement of a single large integer return value.
; CHECK: @PR14059.2

entry:
  %retval = alloca { float, float }, align 4
  ; CHECK-NOT: alloca

  %0 = bitcast { float, float }* %retval to i64*
  store i64 0, i64* %0
  ; CHECK-NOT: store

  %phi.realp = getelementptr inbounds { float, float }, { float, float }* %phi, i32 0, i32 0
  %phi.real = load float, float* %phi.realp
  %phi.imagp = getelementptr inbounds { float, float }, { float, float }* %phi, i32 0, i32 1
  %phi.imag = load float, float* %phi.imagp
  ; CHECK:      %[[realp:.*]] = getelementptr inbounds { float, float }, { float, float }* %phi, i32 0, i32 0
  ; CHECK-NEXT: %[[real:.*]] = load float, float* %[[realp]]
  ; CHECK-NEXT: %[[imagp:.*]] = getelementptr inbounds { float, float }, { float, float }* %phi, i32 0, i32 1
  ; CHECK-NEXT: %[[imag:.*]] = load float, float* %[[imagp]]

  %real = getelementptr inbounds { float, float }, { float, float }* %retval, i32 0, i32 0
  %imag = getelementptr inbounds { float, float }, { float, float }* %retval, i32 0, i32 1
  store float %phi.real, float* %real
  store float %phi.imag, float* %imag
  ; CHECK-NEXT: %[[real_convert:.*]] = bitcast float %[[real]] to i32
  ; CHECK-NEXT: %[[imag_convert:.*]] = bitcast float %[[imag]] to i32
  ; CHECK-NEXT: %[[imag_ext:.*]] = zext i32 %[[imag_convert]] to i64
  ; CHECK-NEXT: %[[imag_shift:.*]] = shl i64 %[[imag_ext]], 32
  ; CHECK-NEXT: %[[imag_mask:.*]] = and i64 undef, 4294967295
  ; CHECK-NEXT: %[[imag_insert:.*]] = or i64 %[[imag_mask]], %[[imag_shift]]
  ; CHECK-NEXT: %[[real_ext:.*]] = zext i32 %[[real_convert]] to i64
  ; CHECK-NEXT: %[[real_mask:.*]] = and i64 %[[imag_insert]], -4294967296
  ; CHECK-NEXT: %[[real_insert:.*]] = or i64 %[[real_mask]], %[[real_ext]]

  %1 = load i64, i64* %0, align 1
  ret i64 %1
  ; CHECK-NEXT: ret i64 %[[real_insert]]
}

define void @PR14105({ [16 x i8] }* %ptr) {
; Ensure that when rewriting the GEP index '-1' for this alloca we preserve is
; sign as negative. We use a volatile memcpy to ensure promotion never actually
; occurs.
; CHECK-LABEL: @PR14105(

entry:
  %a = alloca { [16 x i8] }, align 8
; CHECK: alloca [16 x i8], align 8

  %gep = getelementptr inbounds { [16 x i8] }, { [16 x i8] }* %ptr, i64 -1
; CHECK-NEXT: getelementptr inbounds { [16 x i8] }, { [16 x i8] }* %ptr, i64 -1, i32 0, i64 0

  %cast1 = bitcast { [16 x i8 ] }* %gep to i8*
  %cast2 = bitcast { [16 x i8 ] }* %a to i8*
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %cast1, i8* %cast2, i32 16, i32 8, i1 true)
  ret void
; CHECK: ret
}

define void @PR14105_as1({ [16 x i8] } addrspace(1)* %ptr) {
; Make sure this the right address space pointer is used for type check.
; CHECK-LABEL: @PR14105_as1(

entry:
  %a = alloca { [16 x i8] }, align 8
; CHECK: alloca [16 x i8], align 8

  %gep = getelementptr inbounds { [16 x i8] }, { [16 x i8] } addrspace(1)* %ptr, i64 -1
; CHECK-NEXT: getelementptr inbounds { [16 x i8] }, { [16 x i8] } addrspace(1)* %ptr, i16 -1, i32 0, i16 0

  %cast1 = bitcast { [16 x i8 ] } addrspace(1)* %gep to i8 addrspace(1)*
  %cast2 = bitcast { [16 x i8 ] }* %a to i8*
  call void @llvm.memcpy.p1i8.p0i8.i32(i8 addrspace(1)* %cast1, i8* %cast2, i32 16, i32 8, i1 true)
  ret void
; CHECK: ret
}

define void @PR14465() {
; Ensure that we don't crash when analyzing a alloca larger than the maximum
; integer type width (MAX_INT_BITS) supported by llvm (1048576*32 > (1<<23)-1).
; CHECK-LABEL: @PR14465(

  %stack = alloca [1048576 x i32], align 16
; CHECK: alloca [1048576 x i32]
  %cast = bitcast [1048576 x i32]* %stack to i8*
  call void @llvm.memset.p0i8.i64(i8* %cast, i8 -2, i64 4194304, i32 16, i1 false)
  ret void
; CHECK: ret
}

define void @PR14548(i1 %x) {
; Handle a mixture of i1 and i8 loads and stores to allocas. This particular
; pattern caused crashes and invalid output in the PR, and its nature will
; trigger a mixture in several permutations as we resolve each alloca
; iteratively.
; Note that we don't do a particularly good *job* of handling these mixtures,
; but the hope is that this is very rare.
; CHECK-LABEL: @PR14548(

entry:
  %a = alloca <{ i1 }>, align 8
  %b = alloca <{ i1 }>, align 8
; CHECK:      %[[a:.*]] = alloca i8, align 8

  %b.i1 = bitcast <{ i1 }>* %b to i1*
  store i1 %x, i1* %b.i1, align 8
  %b.i8 = bitcast <{ i1 }>* %b to i8*
  %foo = load i8, i8* %b.i8, align 1
; CHECK-NEXT: %[[ext:.*]] = zext i1 %x to i8
; CHECK-NEXT: store i8 %[[ext]], i8* %[[a]], align 8
; CHECK-NEXT: {{.*}} = load i8, i8* %[[a]], align 8

  %a.i8 = bitcast <{ i1 }>* %a to i8*
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %a.i8, i8* %b.i8, i32 1, i32 1, i1 false) nounwind
  %bar = load i8, i8* %a.i8, align 1
  %a.i1 = getelementptr inbounds <{ i1 }>, <{ i1 }>* %a, i32 0, i32 0
  %baz = load i1, i1* %a.i1, align 1
; CHECK-NEXT: %[[a_cast:.*]] = bitcast i8* %[[a]] to i1*
; CHECK-NEXT: {{.*}} = load i1, i1* %[[a_cast]], align 8

  ret void
}

define <3 x i8> @PR14572.1(i32 %x) {
; Ensure that a split integer store which is wider than the type size of the
; alloca (relying on the alloc size padding) doesn't trigger an assert.
; CHECK: @PR14572.1

entry:
  %a = alloca <3 x i8>, align 4
; CHECK-NOT: alloca

  %cast = bitcast <3 x i8>* %a to i32*
  store i32 %x, i32* %cast, align 1
  %y = load <3 x i8>, <3 x i8>* %a, align 4
  ret <3 x i8> %y
; CHECK: ret <3 x i8>
}

define i32 @PR14572.2(<3 x i8> %x) {
; Ensure that a split integer load which is wider than the type size of the
; alloca (relying on the alloc size padding) doesn't trigger an assert.
; CHECK: @PR14572.2

entry:
  %a = alloca <3 x i8>, align 4
; CHECK-NOT: alloca

  store <3 x i8> %x, <3 x i8>* %a, align 1
  %cast = bitcast <3 x i8>* %a to i32*
  %y = load i32, i32* %cast, align 4
  ret i32 %y
; CHECK: ret i32
}

define i32 @PR14601(i32 %x) {
; Don't try to form a promotable integer alloca when there is a variable length
; memory intrinsic.
; CHECK-LABEL: @PR14601(

entry:
  %a = alloca i32
; CHECK: alloca

  %a.i8 = bitcast i32* %a to i8*
  call void @llvm.memset.p0i8.i32(i8* %a.i8, i8 0, i32 %x, i32 1, i1 false)
  %v = load i32, i32* %a
  ret i32 %v
}

define void @PR15674(i8* %data, i8* %src, i32 %size) {
; Arrange (via control flow) to have unmerged stores of a particular width to
; an alloca where we incrementally store from the end of the array toward the
; beginning of the array. Ensure that the final integer store, despite being
; convertable to the integer type that we end up promoting this alloca toward,
; doesn't get widened to a full alloca store.
; CHECK-LABEL: @PR15674(

entry:
  %tmp = alloca [4 x i8], align 1
; CHECK: alloca i32

  switch i32 %size, label %end [
    i32 4, label %bb4
    i32 3, label %bb3
    i32 2, label %bb2
    i32 1, label %bb1
  ]

bb4:
  %src.gep3 = getelementptr inbounds i8, i8* %src, i32 3
  %src.3 = load i8, i8* %src.gep3
  %tmp.gep3 = getelementptr inbounds [4 x i8], [4 x i8]* %tmp, i32 0, i32 3
  store i8 %src.3, i8* %tmp.gep3
; CHECK: store i8

  br label %bb3

bb3:
  %src.gep2 = getelementptr inbounds i8, i8* %src, i32 2
  %src.2 = load i8, i8* %src.gep2
  %tmp.gep2 = getelementptr inbounds [4 x i8], [4 x i8]* %tmp, i32 0, i32 2
  store i8 %src.2, i8* %tmp.gep2
; CHECK: store i8

  br label %bb2

bb2:
  %src.gep1 = getelementptr inbounds i8, i8* %src, i32 1
  %src.1 = load i8, i8* %src.gep1
  %tmp.gep1 = getelementptr inbounds [4 x i8], [4 x i8]* %tmp, i32 0, i32 1
  store i8 %src.1, i8* %tmp.gep1
; CHECK: store i8

  br label %bb1

bb1:
  %src.gep0 = getelementptr inbounds i8, i8* %src, i32 0
  %src.0 = load i8, i8* %src.gep0
  %tmp.gep0 = getelementptr inbounds [4 x i8], [4 x i8]* %tmp, i32 0, i32 0
  store i8 %src.0, i8* %tmp.gep0
; CHECK: store i8

  br label %end

end:
  %tmp.raw = bitcast [4 x i8]* %tmp to i8*
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %data, i8* %tmp.raw, i32 %size, i32 1, i1 false)
  ret void
; CHECK: ret void
}

define void @PR15805(i1 %a, i1 %b) {
; CHECK-LABEL: @PR15805(
; CHECK-NOT: alloca
; CHECK: ret void

  %c = alloca i64, align 8
  %p.0.c = select i1 undef, i64* %c, i64* %c
  %cond.in = select i1 undef, i64* %p.0.c, i64* %c
  %cond = load i64, i64* %cond.in, align 8
  ret void
}

define void @PR15805.1(i1 %a, i1 %b) {
; Same as the normal PR15805, but rigged to place the use before the def inside
; of looping unreachable code. This helps ensure that we aren't sensitive to the
; order in which the uses of the alloca are visited.
;
; CHECK-LABEL: @PR15805.1(
; CHECK-NOT: alloca
; CHECK: ret void

  %c = alloca i64, align 8
  br label %exit

loop:
  %cond.in = select i1 undef, i64* %c, i64* %p.0.c
  %p.0.c = select i1 undef, i64* %c, i64* %c
  %cond = load i64, i64* %cond.in, align 8
  br i1 undef, label %loop, label %exit

exit:
  ret void
}

define void @PR16651.1(i8* %a) {
; This test case caused a crash due to the volatile memcpy in combination with
; lowering to integer loads and stores of a width other than that of the original
; memcpy.
;
; CHECK-LABEL: @PR16651.1(
; CHECK: alloca i16
; CHECK: alloca i8
; CHECK: alloca i8
; CHECK: unreachable

entry:
  %b = alloca i32, align 4
  %b.cast = bitcast i32* %b to i8*
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %b.cast, i8* %a, i32 4, i32 4, i1 true)
  %b.gep = getelementptr inbounds i8, i8* %b.cast, i32 2
  load i8, i8* %b.gep, align 2
  unreachable
}

define void @PR16651.2() {
; This test case caused a crash due to failing to promote given a select that
; can't be speculated. It shouldn't be promoted, but we missed that fact when
; analyzing whether we could form a vector promotion because that code didn't
; bail on select instructions.
;
; CHECK-LABEL: @PR16651.2(
; CHECK: alloca <2 x float>
; CHECK: ret void

entry:
  %tv1 = alloca { <2 x float>, <2 x float> }, align 8
  %0 = getelementptr { <2 x float>, <2 x float> }, { <2 x float>, <2 x float> }* %tv1, i64 0, i32 1
  store <2 x float> undef, <2 x float>* %0, align 8
  %1 = getelementptr inbounds { <2 x float>, <2 x float> }, { <2 x float>, <2 x float> }* %tv1, i64 0, i32 1, i64 0
  %cond105.in.i.i = select i1 undef, float* null, float* %1
  %cond105.i.i = load float, float* %cond105.in.i.i, align 8
  ret void
}

define void @test23(i32 %x) {
; CHECK-LABEL: @test23(
; CHECK-NOT: alloca
; CHECK: ret void
entry:
  %a = alloca i32, align 4
  store i32 %x, i32* %a, align 4
  %gep1 = getelementptr inbounds i32, i32* %a, i32 1
  %gep0 = getelementptr inbounds i32, i32* %a, i32 0
  %cast1 = bitcast i32* %gep1 to i8*
  %cast0 = bitcast i32* %gep0 to i8*
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %cast1, i8* %cast0, i32 4, i32 1, i1 false)
  ret void
}

define void @PR18615() {
; CHECK-LABEL: @PR18615(
; CHECK-NOT: alloca
; CHECK: ret void
entry:
  %f = alloca i8
  %gep = getelementptr i8, i8* %f, i64 -1
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* undef, i8* %gep, i32 1, i32 1, i1 false)
  ret void
}

define void @test24(i8* %src, i8* %dst) {
; CHECK-LABEL: @test24(
; CHECK: alloca i64, align 16
; CHECK: load volatile i64, i64* %{{[^,]*}}, align 1
; CHECK: store volatile i64 %{{[^,]*}}, i64* %{{[^,]*}}, align 16
; CHECK: load volatile i64, i64* %{{[^,]*}}, align 16
; CHECK: store volatile i64 %{{[^,]*}}, i64* %{{[^,]*}}, align 1

entry:
  %a = alloca i64, align 16
  %ptr = bitcast i64* %a to i8*
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 8, i32 1, i1 true)
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 8, i32 1, i1 true)
  ret void
}

define float @test25() {
; Check that we split up stores in order to promote the smaller SSA values.. These types
; of patterns can arise because LLVM maps small memcpy's to integer load and
; stores. If we get a memcpy of an aggregate (such as C and C++ frontends would
; produce, but so might any language frontend), this will in many cases turn into
; an integer load and store. SROA needs to be extremely powerful to correctly
; handle these cases and form splitable and promotable SSA values.
;
; CHECK-LABEL: @test25(
; CHECK-NOT: alloca
; CHECK: %[[F1:.*]] = bitcast i32 0 to float
; CHECK: %[[F2:.*]] = bitcast i32 1065353216 to float
; CHECK: %[[SUM:.*]] = fadd float %[[F1]], %[[F2]]
; CHECK: ret float %[[SUM]]

entry:
  %a = alloca i64
  %b = alloca i64
  %a.cast = bitcast i64* %a to [2 x float]*
  %a.gep1 = getelementptr [2 x float], [2 x float]* %a.cast, i32 0, i32 0
  %a.gep2 = getelementptr [2 x float], [2 x float]* %a.cast, i32 0, i32 1
  %b.cast = bitcast i64* %b to [2 x float]*
  %b.gep1 = getelementptr [2 x float], [2 x float]* %b.cast, i32 0, i32 0
  %b.gep2 = getelementptr [2 x float], [2 x float]* %b.cast, i32 0, i32 1
  store float 0.0, float* %a.gep1
  store float 1.0, float* %a.gep2
  %v = load i64, i64* %a
  store i64 %v, i64* %b
  %f1 = load float, float* %b.gep1
  %f2 = load float, float* %b.gep2
  %ret = fadd float %f1, %f2
  ret float %ret
}

@complex1 = external global [2 x float]
@complex2 = external global [2 x float]

define void @test26() {
; Test a case of splitting up loads and stores against a globals.
;
; CHECK-LABEL: @test26(
; CHECK-NOT: alloca
; CHECK: %[[L1:.*]] = load i32, i32* bitcast
; CHECK: %[[L2:.*]] = load i32, i32* bitcast
; CHECK: %[[F1:.*]] = bitcast i32 %[[L1]] to float
; CHECK: %[[F2:.*]] = bitcast i32 %[[L2]] to float
; CHECK: %[[SUM:.*]] = fadd float %[[F1]], %[[F2]]
; CHECK: %[[C1:.*]] = bitcast float %[[SUM]] to i32
; CHECK: %[[C2:.*]] = bitcast float %[[SUM]] to i32
; CHECK: store i32 %[[C1]], i32* bitcast
; CHECK: store i32 %[[C2]], i32* bitcast
; CHECK: ret void

entry:
  %a = alloca i64
  %a.cast = bitcast i64* %a to [2 x float]*
  %a.gep1 = getelementptr [2 x float], [2 x float]* %a.cast, i32 0, i32 0
  %a.gep2 = getelementptr [2 x float], [2 x float]* %a.cast, i32 0, i32 1
  %v1 = load i64, i64* bitcast ([2 x float]* @complex1 to i64*)
  store i64 %v1, i64* %a
  %f1 = load float, float* %a.gep1
  %f2 = load float, float* %a.gep2
  %sum = fadd float %f1, %f2
  store float %sum, float* %a.gep1
  store float %sum, float* %a.gep2
  %v2 = load i64, i64* %a
  store i64 %v2, i64* bitcast ([2 x float]* @complex2 to i64*)
  ret void
}

define float @test27() {
; Another, more complex case of splittable i64 loads and stores. This example
; is a particularly challenging one because the load and store both point into
; the alloca SROA is processing, and they overlap but at an offset.
;
; CHECK-LABEL: @test27(
; CHECK-NOT: alloca
; CHECK: %[[F1:.*]] = bitcast i32 0 to float
; CHECK: %[[F2:.*]] = bitcast i32 1065353216 to float
; CHECK: %[[SUM:.*]] = fadd float %[[F1]], %[[F2]]
; CHECK: ret float %[[SUM]]

entry:
  %a = alloca [12 x i8]
  %gep1 = getelementptr [12 x i8], [12 x i8]* %a, i32 0, i32 0
  %gep2 = getelementptr [12 x i8], [12 x i8]* %a, i32 0, i32 4
  %gep3 = getelementptr [12 x i8], [12 x i8]* %a, i32 0, i32 8
  %iptr1 = bitcast i8* %gep1 to i64*
  %iptr2 = bitcast i8* %gep2 to i64*
  %fptr1 = bitcast i8* %gep1 to float*
  %fptr2 = bitcast i8* %gep2 to float*
  %fptr3 = bitcast i8* %gep3 to float*
  store float 0.0, float* %fptr1
  store float 1.0, float* %fptr2
  %v = load i64, i64* %iptr1
  store i64 %v, i64* %iptr2
  %f1 = load float, float* %fptr2
  %f2 = load float, float* %fptr3
  %ret = fadd float %f1, %f2
  ret float %ret
}

define i32 @PR22093() {
; Test that we don't try to pre-split a splittable store of a splittable but
; not pre-splittable load over the same alloca. We "handle" this case when the
; load is unsplittable but unrelated to this alloca by just generating extra
; loads without touching the original, but when the original load was out of
; this alloca we need to handle it specially to ensure the splits line up
; properly for rewriting.
;
; CHECK-LABEL: @PR22093(
; CHECK-NOT: alloca
; CHECK: alloca i16
; CHECK-NOT: alloca
; CHECK: store volatile i16

entry:
  %a = alloca i32
  %a.cast = bitcast i32* %a to i16*
  store volatile i16 42, i16* %a.cast
  %load = load i32, i32* %a
  store i32 %load, i32* %a
  ret i32 %load
}

define void @PR22093.2() {
; Another way that we end up being unable to split a particular set of loads
; and stores can even have ordering importance. Here we have a load which is
; pre-splittable by itself, and the first store is also compatible. But the
; second store of the load makes the load unsplittable because of a mismatch of
; splits. Because this makes the load unsplittable, we also have to go back and
; remove the first store from the presplit candidates as its load won't be
; presplit.
;
; CHECK-LABEL: @PR22093.2(
; CHECK-NOT: alloca
; CHECK: alloca i16
; CHECK-NEXT: alloca i8
; CHECK-NOT: alloca
; CHECK: store volatile i16
; CHECK: store volatile i8

entry:
  %a = alloca i64
  %a.cast1 = bitcast i64* %a to i32*
  %a.cast2 = bitcast i64* %a to i16*
  store volatile i16 42, i16* %a.cast2
  %load = load i32, i32* %a.cast1
  store i32 %load, i32* %a.cast1
  %a.gep1 = getelementptr i32, i32* %a.cast1, i32 1
  %a.cast3 = bitcast i32* %a.gep1 to i8*
  store volatile i8 13, i8* %a.cast3
  store i32 %load, i32* %a.gep1
  ret void
}