aboutsummaryrefslogtreecommitdiffstats
path: root/tools/bugpoint/Miscompilation.cpp
blob: 29274c9df018c5e3a753b3232c0ba2194375705b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
//===- Miscompilation.cpp - Debug program miscompilations -----------------===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This file implements program miscompilation debugging support.
//
//===----------------------------------------------------------------------===//

#include "BugDriver.h"
#include "ListReducer.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Linker.h"
#include "Support/FileUtilities.h"
using namespace llvm;

namespace llvm {

  class ReduceMiscompilingPasses : public ListReducer<const PassInfo*> {
    BugDriver &BD;
  public:
    ReduceMiscompilingPasses(BugDriver &bd) : BD(bd) {}
    
    virtual TestResult doTest(std::vector<const PassInfo*> &Prefix,
                              std::vector<const PassInfo*> &Suffix);
  };
}

ReduceMiscompilingPasses::TestResult
ReduceMiscompilingPasses::doTest(std::vector<const PassInfo*> &Prefix,
                                 std::vector<const PassInfo*> &Suffix) {
  // First, run the program with just the Suffix passes.  If it is still broken
  // with JUST the kept passes, discard the prefix passes.
  std::cout << "Checking to see if '" << getPassesString(Suffix)
            << "' compile correctly: ";

  std::string BytecodeResult;
  if (BD.runPasses(Suffix, BytecodeResult, false/*delete*/, true/*quiet*/)) {
    std::cerr << " Error running this sequence of passes" 
              << " on the input program!\n";
    BD.setPassesToRun(Suffix);
    BD.EmitProgressBytecode("pass-error",  false);
    exit(BD.debugOptimizerCrash());
  }

  // Check to see if the finished program matches the reference output...
  if (BD.diffProgram(BytecodeResult, "", true /*delete bytecode*/)) {
    std::cout << "nope.\n";
    return KeepSuffix;        // Miscompilation detected!
  }
  std::cout << "yup.\n";      // No miscompilation!

  if (Prefix.empty()) return NoFailure;

  // Next, see if the program is broken if we run the "prefix" passes first,
  // then separately run the "kept" passes.
  std::cout << "Checking to see if '" << getPassesString(Prefix)
            << "' compile correctly: ";

  // If it is not broken with the kept passes, it's possible that the prefix
  // passes must be run before the kept passes to break it.  If the program
  // WORKS after the prefix passes, but then fails if running the prefix AND
  // kept passes, we can update our bytecode file to include the result of the
  // prefix passes, then discard the prefix passes.
  //
  if (BD.runPasses(Prefix, BytecodeResult, false/*delete*/, true/*quiet*/)) {
    std::cerr << " Error running this sequence of passes" 
              << " on the input program!\n";
    BD.setPassesToRun(Prefix);
    BD.EmitProgressBytecode("pass-error",  false);
    exit(BD.debugOptimizerCrash());
  }

  // If the prefix maintains the predicate by itself, only keep the prefix!
  if (BD.diffProgram(BytecodeResult)) {
    std::cout << "nope.\n";
    removeFile(BytecodeResult);
    return KeepPrefix;
  }
  std::cout << "yup.\n";      // No miscompilation!

  // Ok, so now we know that the prefix passes work, try running the suffix
  // passes on the result of the prefix passes.
  //
  Module *PrefixOutput = BD.ParseInputFile(BytecodeResult);
  if (PrefixOutput == 0) {
    std::cerr << BD.getToolName() << ": Error reading bytecode file '"
              << BytecodeResult << "'!\n";
    exit(1);
  }
  removeFile(BytecodeResult);  // No longer need the file on disk
    
  std::cout << "Checking to see if '" << getPassesString(Suffix)
            << "' passes compile correctly after the '"
            << getPassesString(Prefix) << "' passes: ";

  Module *OriginalInput = BD.Program;
  BD.Program = PrefixOutput;
  if (BD.runPasses(Suffix, BytecodeResult, false/*delete*/, true/*quiet*/)) {
    std::cerr << " Error running this sequence of passes" 
              << " on the input program!\n";
    BD.setPassesToRun(Suffix);
    BD.EmitProgressBytecode("pass-error",  false);
    exit(BD.debugOptimizerCrash());
  }

  // Run the result...
  if (BD.diffProgram(BytecodeResult, "", true/*delete bytecode*/)) {
    std::cout << "nope.\n";
    delete OriginalInput;     // We pruned down the original input...
    return KeepSuffix;
  }

  // Otherwise, we must not be running the bad pass anymore.
  std::cout << "yup.\n";      // No miscompilation!
  BD.Program = OriginalInput; // Restore original program
  delete PrefixOutput;        // Free experiment
  return NoFailure;
}

namespace llvm {
  class ReduceMiscompilingFunctions : public ListReducer<Function*> {
    BugDriver &BD;
  public:
    ReduceMiscompilingFunctions(BugDriver &bd) : BD(bd) {}
    
    virtual TestResult doTest(std::vector<Function*> &Prefix,
                              std::vector<Function*> &Suffix) {
      if (!Suffix.empty() && TestFuncs(Suffix))
        return KeepSuffix;
      if (!Prefix.empty() && TestFuncs(Prefix))
        return KeepPrefix;
      return NoFailure;
    }
    
    bool TestFuncs(const std::vector<Function*> &Prefix);
  };
}

bool ReduceMiscompilingFunctions::TestFuncs(const std::vector<Function*>&Funcs){
  // Test to see if the function is misoptimized if we ONLY run it on the
  // functions listed in Funcs.
  std::cout << "Checking to see if the program is misoptimized when "
            << (Funcs.size()==1 ? "this function is" : "these functions are")
            << " run through the pass"
            << (BD.PassesToRun.size() == 1 ? "" : "es") << ": ";
  BD.PrintFunctionList(Funcs);
  std::cout << "\n";

  // Split the module into the two halves of the program we want.
  Module *ToOptimize = CloneModule(BD.getProgram());
  Module *ToNotOptimize = SplitFunctionsOutOfModule(ToOptimize, Funcs);

  // Run the optimization passes on ToOptimize, producing a transformed version
  // of the functions being tested.
  Module *OldProgram = BD.Program;
  BD.Program = ToOptimize;

  std::cout << "  Optimizing functions being tested: ";
  std::string BytecodeResult;
  if (BD.runPasses(BD.PassesToRun, BytecodeResult, false/*delete*/,
                   true/*quiet*/)) {
    std::cerr << " Error running this sequence of passes" 
              << " on the input program!\n";
    BD.EmitProgressBytecode("pass-error",  false);
    exit(BD.debugOptimizerCrash());
  }

  std::cout << "done.\n";

  delete BD.getProgram();   // Delete the old "ToOptimize" module
  BD.Program = BD.ParseInputFile(BytecodeResult);

  if (BD.Program == 0) {
    std::cerr << BD.getToolName() << ": Error reading bytecode file '"
              << BytecodeResult << "'!\n";
    exit(1);
  }
  removeFile(BytecodeResult);  // No longer need the file on disk

  // Seventh step: Link the optimized part of the program back to the
  // unoptimized part of the program.
  //
  if (LinkModules(BD.Program, ToNotOptimize, &BytecodeResult)) {
    std::cerr << BD.getToolName() << ": Error linking modules together:"
              << BytecodeResult << "\n";
    exit(1);
  }
  delete ToNotOptimize;  // We are done with this module...

  std::cout << "  Checking to see if the merged program executes correctly: ";

  // Eighth step: Execute the program.  If it does not match the expected
  // output, then 'Funcs' are being misoptimized!
  bool Broken = BD.diffProgram();

  delete BD.Program;         // Delete the hacked up program
  BD.Program = OldProgram;   // Restore the original

  std::cout << (Broken ? " nope.\n" : " yup.\n");
  return Broken;
}

/// debugMiscompilation - This method is used when the passes selected are not
/// crashing, but the generated output is semantically different from the
/// input.
///
bool BugDriver::debugMiscompilation() {
  // Make sure something was miscompiled...
  if (!ReduceMiscompilingPasses(*this).reduceList(PassesToRun)) {
    std::cerr << "*** Optimized program matches reference output!  No problem "
	      << "detected...\nbugpoint can't help you with your problem!\n";
    return false;
  }

  std::cout << "\n*** Found miscompiling pass"
            << (PassesToRun.size() == 1 ? "" : "es") << ": "
            << getPassesString(PassesToRun) << "\n";
  EmitProgressBytecode("passinput");

  // Okay, now that we have reduced the list of passes which are causing the
  // failure, see if we can pin down which functions are being
  // miscompiled... first build a list of all of the non-external functions in
  // the program.
  std::vector<Function*> MiscompiledFunctions;
  for (Module::iterator I = Program->begin(), E = Program->end(); I != E; ++I)
    if (!I->isExternal())
      MiscompiledFunctions.push_back(I);

  // Do the reduction...
  ReduceMiscompilingFunctions(*this).reduceList(MiscompiledFunctions);

  std::cout << "\n*** The following function"
            << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
            << " being miscompiled: ";
  PrintFunctionList(MiscompiledFunctions);
  std::cout << "\n";

  // Output a bunch of bytecode files for the user...
  std::cout << "Outputting reduced bytecode files which expose the problem:\n";
  Module *ToOptimize = CloneModule(getProgram());
  Module *ToNotOptimize = SplitFunctionsOutOfModule(ToOptimize,
                                                    MiscompiledFunctions);

  std::cout << "  Non-optimized portion: ";
  std::swap(Program, ToNotOptimize);
  EmitProgressBytecode("tonotoptimize", true);
  setNewProgram(ToNotOptimize);   // Delete hacked module.
  
  std::cout << "  Portion that is input to optimizer: ";
  std::swap(Program, ToOptimize);
  EmitProgressBytecode("tooptimize");
  setNewProgram(ToOptimize);      // Delete hacked module.

  return false;
}