aboutsummaryrefslogtreecommitdiffstats
path: root/tools/gccld/gccld.cpp
blob: fd752d083e2a325d205cbbf4d40afec5525629d5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
//===- gccld.cpp - LLVM 'ld' compatible linker ----------------------------===//
//
// This utility is intended to be compatible with GCC, and follows standard
// system 'ld' conventions.  As such, the default output file is ./a.out.
// Additionally, this program outputs a shell script that is used to invoke LLI
// to execute the program.  In this manner, the generated executable (a.out for
// example), is directly executable, whereas the bytecode file actually lives in
// the a.out.bc file generated by this program.  Also, Force is on by default.
//
// Note that if someone (or a script) deletes the executable program generated,
// the .bc file will be left around.  Considering that this is a temporary hack,
// I'm not too worried about this.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Utils/Linker.h"
#include "llvm/Module.h"
#include "llvm/PassManager.h"
#include "llvm/Bytecode/Reader.h"
#include "llvm/Bytecode/WriteBytecodePass.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/Scalar.h"
#include "Support/CommandLine.h"
#include "Support/Signals.h"
#include <fstream>
#include <memory>
#include <set>
#include <algorithm>
#include <sys/types.h>     // For FileExists
#include <sys/stat.h>

namespace {
  cl::list<std::string> 
  InputFilenames(cl::Positional, cl::desc("<input bytecode files>"),
                 cl::OneOrMore);

  cl::opt<std::string> 
  OutputFilename("o", cl::desc("Override output filename"), cl::init("a.out"),
                 cl::value_desc("filename"));

  cl::opt<bool>    
  Verbose("v", cl::desc("Print information about actions taken"));
  
  cl::list<std::string> 
  LibPaths("L", cl::desc("Specify a library search path"), cl::Prefix,
           cl::value_desc("directory"));

  cl::list<std::string> 
  Libraries("l", cl::desc("Specify libraries to link to"), cl::Prefix,
            cl::value_desc("library prefix"));

  cl::opt<bool>
  Strip("s", cl::desc("Strip symbol info from executable"));

  cl::opt<bool>
  NoInternalize("disable-internalize",
                cl::desc("Do not mark all symbols as internal"));

  cl::opt<bool>
  LinkAsLibrary("link-as-library", cl::desc("Link the .bc files together as a"
                                            " library, not an executable"));

  // Compatibility options that are ignored, but support by LD
  cl::opt<std::string>
  CO3("soname", cl::Hidden, cl::desc("Compatibility option: ignored"));
  cl::opt<std::string>
  CO4("version-script", cl::Hidden, cl::desc("Compatibility option: ignored"));
  cl::opt<bool>
  CO5("eh-frame-hdr", cl::Hidden, cl::desc("Compatibility option: ignored"));
  cl::opt<bool>
  CO6("r", cl::Hidden, cl::desc("Compatibility option: ignored"));
}

// FileExists - Return true if the specified string is an openable file...
static inline bool FileExists(const std::string &FN) {
  struct stat StatBuf;
  return stat(FN.c_str(), &StatBuf) != -1;
}


// LoadObject - Read the specified "object file", which should not search the
// library path to find it.
static inline std::auto_ptr<Module> LoadObject(std::string FN,
                                               std::string &OutErrorMessage) {
  if (Verbose) std::cerr << "Loading '" << FN << "'\n";
  if (!FileExists(FN)) {
    // Attempt to load from the LLVM_LIB_SEARCH_PATH directory... if we would
    // otherwise fail.  This is used to locate objects like crtend.o.
    //
    char *SearchPath = getenv("LLVM_LIB_SEARCH_PATH");
    if (SearchPath && FileExists(std::string(SearchPath)+"/"+FN))
      FN = std::string(SearchPath)+"/"+FN;
    else {
      OutErrorMessage = "could not find input file '" + FN + "'!";
      return std::auto_ptr<Module>();
    }
  }

  std::string ErrorMessage;
  Module *Result = ParseBytecodeFile(FN, &ErrorMessage);
  if (Result) return std::auto_ptr<Module>(Result);

  OutErrorMessage = "Bytecode file '" + FN + "' corrupt!";
  if (ErrorMessage.size()) OutErrorMessage += ": " + ErrorMessage;
  return std::auto_ptr<Module>();
}


static Module *LoadSingleLibraryObject(const std::string &Filename) {
  std::string ErrorMessage;
  std::auto_ptr<Module> M = LoadObject(Filename, ErrorMessage);
  if (M.get() == 0 && Verbose) {
    std::cerr << "Error loading '" + Filename + "'";
    if (!ErrorMessage.empty()) std::cerr << ": " << ErrorMessage;
    std::cerr << "\n";
  }
  
  return M.release();
}

// IsArchive -  Returns true iff FILENAME appears to be the name of an ar
// archive file. It determines this by checking the magic string at the
// beginning of the file.
static bool IsArchive (const std::string &filename) {
  static const std::string ArchiveMagic ("!<arch>\012");
  char buf[1 + ArchiveMagic.size ()];
  std::ifstream f (filename.c_str ());
  f.read (buf, ArchiveMagic.size ());
  buf[ArchiveMagic.size ()] = '\0';
  return (ArchiveMagic == buf);
}

// LoadLibraryExactName - This looks for a file with a known name and tries to
// load it, similarly to LoadLibraryFromDirectory(). 
static inline bool LoadLibraryExactName (const std::string &FileName,
    std::vector<Module*> &Objects, bool &isArchive) {
  if (Verbose) std::cerr << "  Considering '" << FileName << "'\n";
  if (FileExists(FileName)) {
	if (IsArchive (FileName)) {
      std::string ErrorMessage;
      if (Verbose) std::cerr << "  Loading '" << FileName << "'\n";
      if (!ReadArchiveFile(FileName, Objects, &ErrorMessage)) {
        isArchive = true;
        return false;           // Success!
      }
      if (Verbose) {
        std::cerr << "  Error loading archive '" + FileName + "'";
        if (!ErrorMessage.empty()) std::cerr << ": " << ErrorMessage;
        std::cerr << "\n";
      }
    } else {
      if (Module *M = LoadSingleLibraryObject(FileName)) {
        isArchive = false;
        Objects.push_back(M);
        return false;
      }
    }
  }
  return true;
}

// LoadLibrary - Try to load a library named LIBNAME that contains
// LLVM bytecode. If SEARCH is true, then search for a file named
// libLIBNAME.{a,so,bc} in the current library search path.  Otherwise,
// assume LIBNAME is the real name of the library file.  This method puts
// the loaded modules into the Objects list, and sets isArchive to true if
// a .a file was loaded. It returns true if no library is found or if an
// error occurs; otherwise it returns false.
//
static inline bool LoadLibrary(const std::string &LibName,
                               std::vector<Module*> &Objects, bool &isArchive,
                               bool search, std::string &ErrorMessage) {
  if (search) {
    // First, try the current directory. Then, iterate over the
    // directories in LibPaths, looking for a suitable match for LibName
    // in each one.
    for (unsigned NextLibPathIdx = 0; NextLibPathIdx != LibPaths.size();
		 ++NextLibPathIdx) {
      std::string Directory = LibPaths[NextLibPathIdx] + "/";
      if (!LoadLibraryExactName(Directory + "lib" + LibName + ".a",
        Objects, isArchive))
          return false;
      if (!LoadLibraryExactName(Directory + "lib" + LibName + ".so",
        Objects, isArchive))
          return false;
      if (!LoadLibraryExactName(Directory + "lib" + LibName + ".bc",
        Objects, isArchive))
          return false;
    }
  } else {
    // If they said no searching, then assume LibName is the real name.
    if (!LoadLibraryExactName(LibName, Objects, isArchive))
      return false;
  }
  ErrorMessage = "error linking library '-l" + LibName+ "': library not found!";
  return true;
}

static void GetAllDefinedSymbols(Module *M, 
                                 std::set<std::string> &DefinedSymbols) {
  for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
    if (I->hasName() && !I->isExternal() && !I->hasInternalLinkage())
      DefinedSymbols.insert(I->getName());
  for (Module::giterator I = M->gbegin(), E = M->gend(); I != E; ++I)
    if (I->hasName() && !I->isExternal() && !I->hasInternalLinkage())
      DefinedSymbols.insert(I->getName());
}

// GetAllUndefinedSymbols - This calculates the set of undefined symbols that
// still exist in an LLVM module.  This is a bit tricky because there may be two
// symbols with the same name, but different LLVM types that will be resolved to
// each other, but aren't currently (thus we need to treat it as resolved).
//
static void GetAllUndefinedSymbols(Module *M, 
                                   std::set<std::string> &UndefinedSymbols) {
  std::set<std::string> DefinedSymbols;
  UndefinedSymbols.clear();   // Start out empty
  
  for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
    if (I->hasName()) {
      if (I->isExternal())
        UndefinedSymbols.insert(I->getName());
      else if (!I->hasInternalLinkage())
        DefinedSymbols.insert(I->getName());
    }
  for (Module::giterator I = M->gbegin(), E = M->gend(); I != E; ++I)
    if (I->hasName()) {
      if (I->isExternal())
        UndefinedSymbols.insert(I->getName());
      else if (!I->hasInternalLinkage())
        DefinedSymbols.insert(I->getName());
    }
  
  // Prune out any defined symbols from the undefined symbols set...
  for (std::set<std::string>::iterator I = UndefinedSymbols.begin();
       I != UndefinedSymbols.end(); )
    if (DefinedSymbols.count(*I))
      UndefinedSymbols.erase(I++);  // This symbol really is defined!
    else
      ++I; // Keep this symbol in the undefined symbols list
}


static bool LinkLibrary(Module *M, const std::string &LibName,
                        bool search, std::string &ErrorMessage) {
  std::set<std::string> UndefinedSymbols;
  GetAllUndefinedSymbols(M, UndefinedSymbols);
  if (UndefinedSymbols.empty()) {
    if (Verbose) std::cerr << "  No symbols undefined, don't link library!\n";
    return false;  // No need to link anything in!
  }

  std::vector<Module*> Objects;
  bool isArchive;
  if (LoadLibrary(LibName, Objects, isArchive, search, ErrorMessage))
    return true;

  // Figure out which symbols are defined by all of the modules in the .a file
  std::vector<std::set<std::string> > DefinedSymbols;
  DefinedSymbols.resize(Objects.size());
  for (unsigned i = 0; i != Objects.size(); ++i)
    GetAllDefinedSymbols(Objects[i], DefinedSymbols[i]);

  bool Linked = true;
  while (Linked) {     // While we are linking in object files, loop.
    Linked = false;

    for (unsigned i = 0; i != Objects.size(); ++i) {
      // Consider whether we need to link in this module...  we only need to
      // link it in if it defines some symbol which is so far undefined.
      //
      const std::set<std::string> &DefSymbols = DefinedSymbols[i];

      bool ObjectRequired = false;
      for (std::set<std::string>::iterator I = UndefinedSymbols.begin(),
             E = UndefinedSymbols.end(); I != E; ++I)
        if (DefSymbols.count(*I)) {
          if (Verbose)
            std::cerr << "  Found object providing symbol '" << *I << "'...\n";
          ObjectRequired = true;
          break;
        }
      
      // We DO need to link this object into the program...
      if (ObjectRequired) {
        if (LinkModules(M, Objects[i], &ErrorMessage))
          return true;   // Couldn't link in the right object file...        
        
        // Since we have linked in this object, delete it from the list of
        // objects to consider in this archive file.
        std::swap(Objects[i], Objects.back());
        std::swap(DefinedSymbols[i], DefinedSymbols.back());
        Objects.pop_back();
        DefinedSymbols.pop_back();
        --i;   // Do not skip an entry
        
        // The undefined symbols set should have shrunk.
        GetAllUndefinedSymbols(M, UndefinedSymbols);
        Linked = true;  // We have linked something in!
      }
    }
  }
  
  return false;
}

static int PrintAndReturn(const char *progname, const std::string &Message,
                          const std::string &Extra = "") {
  std::cerr << progname << Extra << ": " << Message << "\n";
  return 1;
}


int main(int argc, char **argv) {
  cl::ParseCommandLineOptions(argc, argv, " llvm linker for GCC\n");

  std::string ErrorMessage;
  std::auto_ptr<Module> Composite(LoadObject(InputFilenames[0], ErrorMessage));
  if (Composite.get() == 0)
    return PrintAndReturn(argv[0], ErrorMessage);

  // We always look first in the current directory when searching for libraries.
  LibPaths.insert(LibPaths.begin(), ".");

  // If the user specied an extra search path in their environment, respect it.
  if (char *SearchPath = getenv("LLVM_LIB_SEARCH_PATH"))
    LibPaths.push_back(SearchPath);

  for (unsigned i = 1; i < InputFilenames.size(); ++i) {
    // A user may specify an ar archive without -l, perhaps because it
    // is not installed as a library. Detect that and link the library.
    if (IsArchive (InputFilenames[i])) {
      if (Verbose) std::cerr << "Linking archive '" << InputFilenames[i]
                             << "'\n";
      if (LinkLibrary (Composite.get(), InputFilenames[i], false, ErrorMessage))
        return PrintAndReturn(argv[0], ErrorMessage,
                              ": error linking in '" + InputFilenames[i] + "'");
      continue;
    }

    std::auto_ptr<Module> M(LoadObject(InputFilenames[i], ErrorMessage));
    if (M.get() == 0)
      return PrintAndReturn(argv[0], ErrorMessage);

    if (Verbose) std::cerr << "Linking in '" << InputFilenames[i] << "'\n";

    if (LinkModules(Composite.get(), M.get(), &ErrorMessage))
      return PrintAndReturn(argv[0], ErrorMessage,
                            ": error linking in '" + InputFilenames[i] + "'");
  }

  // Remove any consecutive duplicates of the same library...
  Libraries.erase(std::unique(Libraries.begin(), Libraries.end()),
                  Libraries.end());

  // Link in all of the libraries next...
  for (unsigned i = 0; i != Libraries.size(); ++i) {
    if (Verbose) std::cerr << "Linking in library: -l" << Libraries[i] << "\n";
    if (LinkLibrary(Composite.get(), Libraries[i], true, ErrorMessage))
      return PrintAndReturn(argv[0], ErrorMessage);
  }

  // In addition to just linking the input from GCC, we also want to spiff it up
  // a little bit.  Do this now.
  //
  PassManager Passes;

  // Add an appropriate TargetData instance for this module...
  Passes.add(new TargetData("gccas", Composite.get()));

  // Linking modules together can lead to duplicated global constants, only keep
  // one copy of each constant...
  //
  Passes.add(createConstantMergePass());

  // If the -s command line option was specified, strip the symbols out of the
  // resulting program to make it smaller.  -s is a GCC option that we are
  // supporting.
  //
  if (Strip)
    Passes.add(createSymbolStrippingPass());

  // Often if the programmer does not specify proper prototypes for the
  // functions they are calling, they end up calling a vararg version of the
  // function that does not get a body filled in (the real function has typed
  // arguments).  This pass merges the two functions.
  //
  Passes.add(createFunctionResolvingPass());

  if (!NoInternalize) {
    // Now that composite has been compiled, scan through the module, looking
    // for a main function.  If main is defined, mark all other functions
    // internal.
    //
    Passes.add(createInternalizePass());
  }

  // Now that we have optimized the program, discard unreachable functions...
  //
  Passes.add(createGlobalDCEPass());

  // Add the pass that writes bytecode to the output file...
  std::string RealBytecodeOutput = OutputFilename;
  if (!LinkAsLibrary) RealBytecodeOutput += ".bc";
  std::ofstream Out(RealBytecodeOutput.c_str());
  if (!Out.good())
    return PrintAndReturn(argv[0], "error opening '" + RealBytecodeOutput +
                                   "' for writing!");
  Passes.add(new WriteBytecodePass(&Out));        // Write bytecode to file...

  // Make sure that the Out file gets unlink'd from the disk if we get a SIGINT
  RemoveFileOnSignal(RealBytecodeOutput);

  // Run our queue of passes all at once now, efficiently.
  Passes.run(*Composite.get());
  Out.close();

  if (!LinkAsLibrary) {
    // Output the script to start the program...
    std::ofstream Out2(OutputFilename.c_str());
    if (!Out2.good())
      return PrintAndReturn(argv[0], "error opening '" + OutputFilename +
                                     "' for writing!");
    Out2 << "#!/bin/sh\nlli -q -abort-on-exception $0.bc $*\n";
    Out2.close();
  
    // Make the script executable...
    chmod(OutputFilename.c_str(), 0755);
  }

  return 0;
}