aboutsummaryrefslogtreecommitdiffstats
path: root/tools/llvm-upgrade/UpgradeLexer.l.cvs
blob: ebab6db9c0c2b101a8f392e4f30a99af436c1e84 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
/*===-- UpgradeLexer.l - Scanner for 1.9 assembly files --------*- C++ -*--===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by Reid Spencer and is distributed under the 
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This file implements the flex scanner for LLVM 1.9 assembly languages files.
//
//===----------------------------------------------------------------------===*/

%option prefix="Upgrade"
%option yylineno
%option nostdinit
%option never-interactive
%option batch
%option noyywrap
%option nodefault
%option 8bit
%option outfile="UpgradeLexer.cpp"
%option ecs
%option noreject
%option noyymore

%{
#include "UpgradeInternals.h"
#include "llvm/Module.h"
#include <list>
#include "UpgradeParser.h"
#include <cctype>
#include <cstdlib>

#define YY_INPUT(buf,result,max_size) \
{ \
  if (LexInput->good() && !LexInput->eof()) { \
    LexInput->read(buf,max_size); \
    result = LexInput->gcount(); \
  } else {\
    result = YY_NULL; \
  } \
}

#define YY_NEVER_INTERACTIVE 1

// Construct a token value for a non-obsolete token
#define RET_TOK(type, Enum, sym) \
  Upgradelval.type = Enum; \
  return sym

#define RET_TY(sym,NewTY,sign) \
  Upgradelval.PrimType.T = NewTY; \
  Upgradelval.PrimType.S = sign; \
  return sym

namespace llvm {

// TODO: All of the static identifiers are figured out by the lexer,
// these should be hashed to reduce the lexer size

// UnEscapeLexed - Run through the specified buffer and change \xx codes to the
// appropriate character.  If AllowNull is set to false, a \00 value will cause
// an exception to be thrown.
//
// If AllowNull is set to true, the return value of the function points to the
// last character of the string in memory.
//
char *UnEscapeLexed(char *Buffer, bool AllowNull) {
  char *BOut = Buffer;
  for (char *BIn = Buffer; *BIn; ) {
    if (BIn[0] == '\\' && isxdigit(BIn[1]) && isxdigit(BIn[2])) {
      char Tmp = BIn[3]; BIn[3] = 0;     // Terminate string
      *BOut = (char)strtol(BIn+1, 0, 16);  // Convert to number
      if (!AllowNull && !*BOut)
        error("String literal cannot accept \\00 escape!");

      BIn[3] = Tmp;                  // Restore character
      BIn += 3;                      // Skip over handled chars
      ++BOut;
    } else {
      *BOut++ = *BIn++;
    }
  }

  return BOut;
}

// atoull - Convert an ascii string of decimal digits into the unsigned long
// long representation... this does not have to do input error checking,
// because we know that the input will be matched by a suitable regex...
//
static uint64_t atoull(const char *Buffer) {
  uint64_t Result = 0;
  for (; *Buffer; Buffer++) {
    uint64_t OldRes = Result;
    Result *= 10;
    Result += *Buffer-'0';
    if (Result < OldRes)   // Uh, oh, overflow detected!!!
      error("constant bigger than 64 bits detected!");
  }
  return Result;
}

static uint64_t HexIntToVal(const char *Buffer) {
  uint64_t Result = 0;
  for (; *Buffer; ++Buffer) {
    uint64_t OldRes = Result;
    Result *= 16;
    char C = *Buffer;
    if (C >= '0' && C <= '9')
      Result += C-'0';
    else if (C >= 'A' && C <= 'F')
      Result += C-'A'+10;
    else if (C >= 'a' && C <= 'f')
      Result += C-'a'+10;

    if (Result < OldRes)   // Uh, oh, overflow detected!!!
      error("constant bigger than 64 bits detected!");
  }
  return Result;
}


// HexToFP - Convert the ascii string in hexidecimal format to the floating
// point representation of it.
//
static double HexToFP(const char *Buffer) {
  // Behave nicely in the face of C TBAA rules... see:
  // http://www.nullstone.com/htmls/category/aliastyp.htm
  union {
    uint64_t UI;
    double FP;
  } UIntToFP;
  UIntToFP.UI = HexIntToVal(Buffer);

  assert(sizeof(double) == sizeof(uint64_t) &&
         "Data sizes incompatible on this target!");
  return UIntToFP.FP;   // Cast Hex constant to double
}


} // End llvm namespace

using namespace llvm;

%}



/* Comments start with a ; and go till end of line */
Comment    ;.*

/* Variable(Value) identifiers start with a % sign */
VarID       [%@][-a-zA-Z$._][-a-zA-Z$._0-9]*

/* Label identifiers end with a colon */
Label       [-a-zA-Z$._0-9]+:
QuoteLabel \"[^\"]+\":

/* Quoted names can contain any character except " and \ */
StringConstant @?\"[^\"]*\"


/* [PN]Integer: match positive and negative literal integer values that
 * are preceeded by a '%' character.  These represent unnamed variable slots.
 */
EPInteger     %[0-9]+
ENInteger    %-[0-9]+


/* E[PN]Integer: match positive and negative literal integer values */
PInteger   [0-9]+
NInteger  -[0-9]+

/* FPConstant - A Floating point constant.
 */
FPConstant [-+]?[0-9]+[.][0-9]*([eE][-+]?[0-9]+)?

/* HexFPConstant - Floating point constant represented in IEEE format as a
 *  hexadecimal number for when exponential notation is not precise enough.
 */
HexFPConstant 0x[0-9A-Fa-f]+

/* HexIntConstant - Hexadecimal constant generated by the CFE to avoid forcing
 * it to deal with 64 bit numbers.
 */
HexIntConstant [us]0x[0-9A-Fa-f]+
%%

{Comment}       { /* Ignore comments for now */ }

begin           { return BEGINTOK; }
end             { return ENDTOK; }
true            { return TRUETOK;  }
false           { return FALSETOK; }
declare         { return DECLARE; }
global          { return GLOBAL; }
constant        { return CONSTANT; }
internal        { return INTERNAL; }
linkonce        { return LINKONCE; }
weak            { return WEAK; }
appending       { return APPENDING; }
dllimport       { return DLLIMPORT; }
dllexport       { return DLLEXPORT; }
extern_weak     { return EXTERN_WEAK; }
uninitialized   { return EXTERNAL; }    /* Deprecated, turn into external */
external        { return EXTERNAL; }
implementation  { return IMPLEMENTATION; }
zeroinitializer { return ZEROINITIALIZER; }
\.\.\.          { return DOTDOTDOT; }
undef           { return UNDEF; }
null            { return NULL_TOK; }
to              { return TO; }
except          { return EXCEPT; }
not             { return NOT; }  /* Deprecated, turned into XOR */
tail            { return TAIL; }
target          { return TARGET; }
triple          { return TRIPLE; }
deplibs         { return DEPLIBS; }
endian          { return ENDIAN; }
pointersize     { return POINTERSIZE; }
datalayout      { return DATALAYOUT; }
little          { return LITTLE; }
big             { return BIG; }
volatile        { return VOLATILE; }
align           { return ALIGN;  }
section         { return SECTION; }
module          { return MODULE; }
asm             { return ASM_TOK; }
sideeffect      { return SIDEEFFECT; }

cc              { return CC_TOK; }
ccc             { return CCC_TOK; }
csretcc         { return CSRETCC_TOK; }
fastcc          { return FASTCC_TOK; }
coldcc          { return COLDCC_TOK; }
x86_stdcallcc   { return X86_STDCALLCC_TOK; }
x86_fastcallcc  { return X86_FASTCALLCC_TOK; }

sbyte           { RET_TY(SBYTE,  Type::Int8Ty,  Signed);  }
ubyte           { RET_TY(UBYTE,  Type::Int8Ty,  Unsigned); }
i8              { RET_TY(UBYTE,  Type::Int8Ty,  Unsigned); }
short           { RET_TY(SHORT,  Type::Int16Ty, Signed);  }
ushort          { RET_TY(USHORT, Type::Int16Ty, Unsigned); }
i16             { RET_TY(USHORT, Type::Int16Ty, Unsigned); }
int             { RET_TY(INT,    Type::Int32Ty, Signed);  }
uint            { RET_TY(UINT,   Type::Int32Ty, Unsigned); }
i32             { RET_TY(UINT,   Type::Int32Ty, Unsigned); }
long            { RET_TY(LONG,   Type::Int64Ty, Signed);  }
ulong           { RET_TY(ULONG,  Type::Int64Ty, Unsigned); }
i64             { RET_TY(ULONG,  Type::Int64Ty, Unsigned); }
void            { RET_TY(VOID,   Type::VoidTy,  Signless  ); }
bool            { RET_TY(BOOL,   Type::Int1Ty,  Unsigned  ); }
i1              { RET_TY(BOOL,   Type::Int1Ty,  Unsigned  ); }
float           { RET_TY(FLOAT,  Type::FloatTy, Signless ); }
double          { RET_TY(DOUBLE, Type::DoubleTy,Signless); }
label           { RET_TY(LABEL,  Type::LabelTy, Signless ); }
type            { return TYPE;   }
opaque          { return OPAQUE; }

add             { RET_TOK(BinaryOpVal, AddOp, ADD); }
sub             { RET_TOK(BinaryOpVal, SubOp, SUB); }
mul             { RET_TOK(BinaryOpVal, MulOp, MUL); }
div             { RET_TOK(BinaryOpVal, DivOp,  DIV); }
udiv            { RET_TOK(BinaryOpVal, UDivOp, UDIV); }
sdiv            { RET_TOK(BinaryOpVal, SDivOp, SDIV); }
fdiv            { RET_TOK(BinaryOpVal, FDivOp, FDIV); }
rem             { RET_TOK(BinaryOpVal, RemOp,  REM); }
urem            { RET_TOK(BinaryOpVal, URemOp, UREM); }
srem            { RET_TOK(BinaryOpVal, SRemOp, SREM); }
frem            { RET_TOK(BinaryOpVal, FRemOp, FREM); }
and             { RET_TOK(BinaryOpVal, AndOp, AND); }
or              { RET_TOK(BinaryOpVal, OrOp , OR ); }
xor             { RET_TOK(BinaryOpVal, XorOp, XOR); }
setne           { RET_TOK(BinaryOpVal, SetNE, SETNE); }
seteq           { RET_TOK(BinaryOpVal, SetEQ, SETEQ); }
setlt           { RET_TOK(BinaryOpVal, SetLT, SETLT); }
setgt           { RET_TOK(BinaryOpVal, SetGT, SETGT); }
setle           { RET_TOK(BinaryOpVal, SetLE, SETLE); }
setge           { RET_TOK(BinaryOpVal, SetGE, SETGE); }
shl             { RET_TOK(BinaryOpVal, ShlOp, SHL); }
shr             { RET_TOK(BinaryOpVal, ShrOp, SHR); }
lshr            { RET_TOK(BinaryOpVal, LShrOp, LSHR); }
ashr            { RET_TOK(BinaryOpVal, AShrOp, ASHR); }

icmp            { RET_TOK(OtherOpVal, ICmpOp, ICMP); }
fcmp            { RET_TOK(OtherOpVal, FCmpOp, FCMP); }

eq              { return EQ; }
ne              { return NE; }
slt             { return SLT; }
sgt             { return SGT; }
sle             { return SLE; }
sge             { return SGE; }
ult             { return ULT; }
ugt             { return UGT; }
ule             { return ULE; }
uge             { return UGE; }
oeq             { return OEQ; }
one             { return ONE; }
olt             { return OLT; }
ogt             { return OGT; }
ole             { return OLE; }
oge             { return OGE; }
ord             { return ORD; }
uno             { return UNO; }
ueq             { return UEQ; }
une             { return UNE; }

phi             { RET_TOK(OtherOpVal, PHIOp, PHI_TOK); }
call            { RET_TOK(OtherOpVal, CallOp, CALL); }
cast            { RET_TOK(CastOpVal, CastOp, CAST);  }
trunc           { RET_TOK(CastOpVal, TruncOp, TRUNC); }
zext            { RET_TOK(CastOpVal, ZExtOp , ZEXT); }
sext            { RET_TOK(CastOpVal, SExtOp, SEXT); }
fptrunc         { RET_TOK(CastOpVal, FPTruncOp, FPTRUNC); }
fpext           { RET_TOK(CastOpVal, FPExtOp, FPEXT); }
fptoui          { RET_TOK(CastOpVal, FPToUIOp, FPTOUI); }
fptosi          { RET_TOK(CastOpVal, FPToSIOp, FPTOSI); }
uitofp          { RET_TOK(CastOpVal, UIToFPOp, UITOFP); }
sitofp          { RET_TOK(CastOpVal, SIToFPOp, SITOFP); }
ptrtoint        { RET_TOK(CastOpVal, PtrToIntOp, PTRTOINT); }
inttoptr        { RET_TOK(CastOpVal, IntToPtrOp, INTTOPTR); }
bitcast         { RET_TOK(CastOpVal, BitCastOp, BITCAST); }
select          { RET_TOK(OtherOpVal, SelectOp, SELECT); }
vanext          { return VANEXT_old; }
vaarg           { return VAARG_old; }
va_arg          { RET_TOK(OtherOpVal, VAArg , VAARG); }
ret             { RET_TOK(TermOpVal, RetOp, RET); }
br              { RET_TOK(TermOpVal, BrOp, BR); }
switch          { RET_TOK(TermOpVal, SwitchOp, SWITCH); }
invoke          { RET_TOK(TermOpVal, InvokeOp, INVOKE); }
unwind          { return UNWIND; }
unreachable     { RET_TOK(TermOpVal, UnreachableOp, UNREACHABLE); }

malloc          { RET_TOK(MemOpVal, MallocOp, MALLOC); }
alloca          { RET_TOK(MemOpVal, AllocaOp, ALLOCA); }
free            { RET_TOK(MemOpVal, FreeOp, FREE); }
load            { RET_TOK(MemOpVal, LoadOp, LOAD); }
store           { RET_TOK(MemOpVal, StoreOp, STORE); }
getelementptr   { RET_TOK(MemOpVal, GetElementPtrOp, GETELEMENTPTR); }

extractelement  { RET_TOK(OtherOpVal, ExtractElementOp, EXTRACTELEMENT); }
insertelement   { RET_TOK(OtherOpVal, InsertElementOp, INSERTELEMENT); }
shufflevector   { RET_TOK(OtherOpVal, ShuffleVectorOp, SHUFFLEVECTOR); }


{VarID}         {
                  UnEscapeLexed(yytext+1);
                  Upgradelval.StrVal = strdup(yytext+1);             // Skip %
                  return VAR_ID;
                }
{Label}         {
                  yytext[strlen(yytext)-1] = 0;  // nuke colon
                  UnEscapeLexed(yytext);
                  Upgradelval.StrVal = strdup(yytext);
                  return LABELSTR;
                }
{QuoteLabel}    {
                  yytext[strlen(yytext)-2] = 0;  // nuke colon, end quote
                  UnEscapeLexed(yytext+1);
                  Upgradelval.StrVal = strdup(yytext+1);
                  return LABELSTR;
                }

{StringConstant} { // Note that we cannot unescape a string constant here!  The
                   // string constant might contain a \00 which would not be
                   // understood by the string stuff.  It is valid to make a
                   // [sbyte] c"Hello World\00" constant, for example.
                   //
                   yytext[strlen(yytext)-1] = 0;           // nuke end quote
                   Upgradelval.StrVal = strdup(yytext+1);  // Nuke start quote
                   return STRINGCONSTANT;
                 }


{PInteger}      { Upgradelval.UInt64Val = atoull(yytext); return EUINT64VAL; }
{NInteger}      {
                  uint64_t Val = atoull(yytext+1);
                  // +1:  we have bigger negative range
                  if (Val > (uint64_t)INT64_MAX+1)
                    error("Constant too large for signed 64 bits!");
                  Upgradelval.SInt64Val = -Val;
                  return ESINT64VAL;
                }
{HexIntConstant} {
                   Upgradelval.UInt64Val = HexIntToVal(yytext+3);
                   return yytext[0] == 's' ? ESINT64VAL : EUINT64VAL;
                 }

{EPInteger}     {
                  uint64_t Val = atoull(yytext+1);
                  if ((unsigned)Val != Val)
                    error("Invalid value number (too large)!");
                  Upgradelval.UIntVal = unsigned(Val);
                  return UINTVAL;
                }
{ENInteger}     {
                  uint64_t Val = atoull(yytext+2);
                  // +1:  we have bigger negative range
                  if (Val > (uint64_t)INT32_MAX+1)
                    error("Constant too large for signed 32 bits!");
                  Upgradelval.SIntVal = (int)-Val;
                  return SINTVAL;
                }

{FPConstant}    { Upgradelval.FPVal = atof(yytext); return FPVAL; }
{HexFPConstant} { Upgradelval.FPVal = HexToFP(yytext); return FPVAL; }

<<EOF>>         {
                  /* Make sure to free the internal buffers for flex when we are
                   * done reading our input!
                   */
                  yy_delete_buffer(YY_CURRENT_BUFFER);
                  return EOF;
                }

[ \r\t\n]       { /* Ignore whitespace */ }
.               { return yytext[0]; }

%%