1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
|
//===-- CppWriter.cpp - Printing LLVM IR as a C++ Source File -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Reid Spencer and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the writing of the LLVM IR as a set of C++ calls to the
// LLVM IR interface. The input module is assumed to be verified.
//
//===----------------------------------------------------------------------===//
#include "llvm/CallingConv.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/InlineAsm.h"
#include "llvm/Instruction.h"
#include "llvm/Instructions.h"
#include "llvm/Module.h"
#include "llvm/SymbolTable.h"
#include "llvm/Support/CFG.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <iostream>
using namespace llvm;
namespace {
typedef std::vector<const Type*> TypeList;
typedef std::map<const Type*,std::string> TypeMap;
typedef std::map<const Value*,std::string> ValueMap;
class CppWriter {
std::ostream &Out;
const Module *TheModule;
unsigned long uniqueNum;
TypeMap TypeNames;
ValueMap ValueNames;
TypeMap UnresolvedTypes;
TypeList TypeStack;
public:
inline CppWriter(std::ostream &o, const Module *M)
: Out(o), TheModule(M), uniqueNum(0), TypeNames(),
ValueNames(), UnresolvedTypes(), TypeStack() { }
const Module* getModule() { return TheModule; }
void printModule(const Module *M);
private:
void printTypes(const Module* M);
void printConstants(const Module* M);
void printConstant(const Constant *CPV);
void printGlobal(const GlobalVariable *GV);
void printFunction(const Function *F);
void printInstruction(const Instruction *I, const std::string& bbname);
void printSymbolTable(const SymbolTable &ST);
void printLinkageType(GlobalValue::LinkageTypes LT);
void printCallingConv(unsigned cc);
std::string getCppName(const Type* val);
std::string getCppName(const Value* val);
inline void printCppName(const Value* val);
inline void printCppName(const Type* val);
bool isOnStack(const Type*) const;
inline void printTypeDef(const Type* Ty);
bool printTypeDefInternal(const Type* Ty);
void printEscapedString(const std::string& str);
};
// printEscapedString - Print each character of the specified string, escaping
// it if it is not printable or if it is an escape char.
void
CppWriter::printEscapedString(const std::string &Str) {
for (unsigned i = 0, e = Str.size(); i != e; ++i) {
unsigned char C = Str[i];
if (isprint(C) && C != '"' && C != '\\') {
Out << C;
} else {
Out << '\\'
<< (char) ((C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
<< (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
}
}
}
std::string
CppWriter::getCppName(const Value* val) {
std::string name;
ValueMap::iterator I = ValueNames.find(val);
if (I != ValueNames.end()) {
name = I->second;
} else {
const char* prefix;
switch (val->getType()->getTypeID()) {
case Type::VoidTyID: prefix = "void_"; break;
case Type::BoolTyID: prefix = "bool_"; break;
case Type::UByteTyID: prefix = "ubyte_"; break;
case Type::SByteTyID: prefix = "sbyte_"; break;
case Type::UShortTyID: prefix = "ushort_"; break;
case Type::ShortTyID: prefix = "short_"; break;
case Type::UIntTyID: prefix = "uint_"; break;
case Type::IntTyID: prefix = "int_"; break;
case Type::ULongTyID: prefix = "ulong_"; break;
case Type::LongTyID: prefix = "long_"; break;
case Type::FloatTyID: prefix = "float_"; break;
case Type::DoubleTyID: prefix = "double_"; break;
case Type::LabelTyID: prefix = "label_"; break;
case Type::FunctionTyID: prefix = "func_"; break;
case Type::StructTyID: prefix = "struct_"; break;
case Type::ArrayTyID: prefix = "array_"; break;
case Type::PointerTyID: prefix = "ptr_"; break;
case Type::PackedTyID: prefix = "packed_"; break;
default: prefix = "other_"; break;
}
name = ValueNames[val] = std::string(prefix) +
(val->hasName() ? val->getName() : utostr(uniqueNum++));
}
return name;
}
void
CppWriter::printCppName(const Value* val) {
printEscapedString(getCppName(val));
}
void
CppWriter::printCppName(const Type* Ty)
{
printEscapedString(getCppName(Ty));
}
// Gets the C++ name for a type. Returns true if we already saw the type,
// false otherwise.
//
inline const std::string*
findTypeName(const SymbolTable& ST, const Type* Ty)
{
SymbolTable::type_const_iterator TI = ST.type_begin();
SymbolTable::type_const_iterator TE = ST.type_end();
for (;TI != TE; ++TI)
if (TI->second == Ty)
return &(TI->first);
return 0;
}
std::string
CppWriter::getCppName(const Type* Ty)
{
// First, handle the primitive types .. easy
if (Ty->isPrimitiveType()) {
switch (Ty->getTypeID()) {
case Type::VoidTyID: return "Type::VoidTy";
case Type::BoolTyID: return "Type::BoolTy";
case Type::UByteTyID: return "Type::UByteTy";
case Type::SByteTyID: return "Type::SByteTy";
case Type::UShortTyID: return "Type::UShortTy";
case Type::ShortTyID: return "Type::ShortTy";
case Type::UIntTyID: return "Type::UIntTy";
case Type::IntTyID: return "Type::IntTy";
case Type::ULongTyID: return "Type::ULongTy";
case Type::LongTyID: return "Type::LongTy";
case Type::FloatTyID: return "Type::FloatTy";
case Type::DoubleTyID: return "Type::DoubleTy";
case Type::LabelTyID: return "Type::LabelTy";
default:
assert(!"Can't get here");
break;
}
return "Type::VoidTy"; // shouldn't be returned, but make it sensible
}
// Now, see if we've seen the type before and return that
TypeMap::iterator I = TypeNames.find(Ty);
if (I != TypeNames.end())
return I->second;
// Okay, let's build a new name for this type. Start with a prefix
const char* prefix = 0;
switch (Ty->getTypeID()) {
case Type::FunctionTyID: prefix = "FuncTy_"; break;
case Type::StructTyID: prefix = "StructTy_"; break;
case Type::ArrayTyID: prefix = "ArrayTy_"; break;
case Type::PointerTyID: prefix = "PointerTy_"; break;
case Type::OpaqueTyID: prefix = "OpaqueTy_"; break;
case Type::PackedTyID: prefix = "PackedTy_"; break;
default: prefix = "OtherTy_"; break; // prevent breakage
}
// See if the type has a name in the symboltable and build accordingly
const std::string* tName = findTypeName(TheModule->getSymbolTable(), Ty);
std::string name;
if (tName)
name = std::string(prefix) + *tName;
else
name = std::string(prefix) + utostr(uniqueNum++);
// Save the name
return TypeNames[Ty] = name;
}
void CppWriter::printModule(const Module *M) {
Out << "\n// Module Construction\n";
Out << "Module* mod = new Module(\"";
if (M->getModuleIdentifier() == "-")
printEscapedString("<stdin>");
else
printEscapedString(M->getModuleIdentifier());
Out << "\");\n";
Out << "mod->setEndianness(";
switch (M->getEndianness()) {
case Module::LittleEndian: Out << "Module::LittleEndian);\n"; break;
case Module::BigEndian: Out << "Module::BigEndian);\n"; break;
case Module::AnyEndianness:Out << "Module::AnyEndianness);\n"; break;
}
Out << "mod->setPointerSize(";
switch (M->getPointerSize()) {
case Module::Pointer32: Out << "Module::Pointer32);\n"; break;
case Module::Pointer64: Out << "Module::Pointer64);\n"; break;
case Module::AnyPointerSize: Out << "Module::AnyPointerSize);\n"; break;
}
if (!M->getTargetTriple().empty())
Out << "mod->setTargetTriple(\"" << M->getTargetTriple() << "\");\n";
if (!M->getModuleInlineAsm().empty()) {
Out << "mod->setModuleInlineAsm(\"";
printEscapedString(M->getModuleInlineAsm());
Out << "\");\n";
}
// Loop over the dependent libraries and emit them.
Module::lib_iterator LI = M->lib_begin();
Module::lib_iterator LE = M->lib_end();
while (LI != LE) {
Out << "mod->addLibrary(\"" << *LI << "\");\n";
++LI;
}
// Print out all the type definitions
Out << "\n// Type Definitions\n";
printTypes(M);
// Print out all the constants declarations
Out << "\n// Constants Construction\n";
printConstants(M);
// Process the global variables
Out << "\n// Global Variable Construction\n";
for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
I != E; ++I) {
printGlobal(I);
}
// Output all of the functions.
Out << "\n// Function Construction\n";
for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
printFunction(I);
}
void
CppWriter::printCallingConv(unsigned cc){
// Print the calling convention.
switch (cc) {
default:
case CallingConv::C: Out << "CallingConv::C"; break;
case CallingConv::CSRet: Out << "CallingConv::CSRet"; break;
case CallingConv::Fast: Out << "CallingConv::Fast"; break;
case CallingConv::Cold: Out << "CallingConv::Cold"; break;
case CallingConv::FirstTargetCC: Out << "CallingConv::FirstTargetCC"; break;
}
}
void
CppWriter::printLinkageType(GlobalValue::LinkageTypes LT) {
switch (LT) {
case GlobalValue::InternalLinkage:
Out << "GlobalValue::InternalLinkage"; break;
case GlobalValue::LinkOnceLinkage:
Out << "GlobalValue::LinkOnceLinkage "; break;
case GlobalValue::WeakLinkage:
Out << "GlobalValue::WeakLinkage"; break;
case GlobalValue::AppendingLinkage:
Out << "GlobalValue::AppendingLinkage"; break;
case GlobalValue::ExternalLinkage:
Out << "GlobalValue::ExternalLinkage"; break;
case GlobalValue::GhostLinkage:
Out << "GlobalValue::GhostLinkage"; break;
}
}
void CppWriter::printGlobal(const GlobalVariable *GV) {
Out << "\n";
Out << "GlobalVariable* ";
printCppName(GV);
Out << " = new GlobalVariable(\n";
Out << " /*Type=*/";
printCppName(GV->getType()->getElementType());
Out << ",\n";
Out << " /*isConstant=*/" << (GV->isConstant()?"true":"false")
<< ",\n /*Linkage=*/";
printLinkageType(GV->getLinkage());
Out << ",\n /*Initializer=*/";
if (GV->hasInitializer()) {
printCppName(GV->getInitializer());
} else {
Out << "0";
}
Out << ",\n /*Name=*/\"";
printEscapedString(GV->getName());
Out << "\",\n mod);\n";
if (GV->hasSection()) {
printCppName(GV);
Out << "->setSection(\"";
printEscapedString(GV->getSection());
Out << "\");\n";
}
if (GV->getAlignment()) {
printCppName(GV);
Out << "->setAlignment(" << utostr(GV->getAlignment()) << ");\n";
};
}
bool
CppWriter::isOnStack(const Type* Ty) const {
TypeList::const_iterator TI =
std::find(TypeStack.begin(),TypeStack.end(),Ty);
return TI != TypeStack.end();
}
// Prints a type definition. Returns true if it could not resolve all the types
// in the definition but had to use a forward reference.
void
CppWriter::printTypeDef(const Type* Ty) {
assert(TypeStack.empty());
TypeStack.clear();
printTypeDefInternal(Ty);
assert(TypeStack.empty());
// early resolve as many unresolved types as possible. Search the unresolved
// types map for the type we just printed. Now that its definition is complete
// we can resolve any preview references to it. This prevents a cascade of
// unresolved types.
TypeMap::iterator I = UnresolvedTypes.find(Ty);
if (I != UnresolvedTypes.end()) {
Out << "cast<OpaqueType>(" << I->second
<< "_fwd.get())->refineAbstractTypeTo(" << I->second << ");\n";
Out << I->second << " = cast<";
switch (Ty->getTypeID()) {
case Type::FunctionTyID: Out << "FunctionType"; break;
case Type::ArrayTyID: Out << "ArrayType"; break;
case Type::StructTyID: Out << "StructType"; break;
case Type::PackedTyID: Out << "PackedType"; break;
case Type::PointerTyID: Out << "PointerType"; break;
case Type::OpaqueTyID: Out << "OpaqueType"; break;
default: Out << "NoSuchDerivedType"; break;
}
Out << ">(" << I->second << "_fwd.get());\n\n";
UnresolvedTypes.erase(I);
}
}
bool
CppWriter::printTypeDefInternal(const Type* Ty) {
// We don't print definitions for primitive types
if (Ty->isPrimitiveType())
return false;
// Determine if the name is in the name list before we modify that list.
TypeMap::const_iterator TNI = TypeNames.find(Ty);
// Everything below needs the name for the type so get it now
std::string typeName(getCppName(Ty));
// Search the type stack for recursion. If we find it, then generate this
// as an OpaqueType, but make sure not to do this multiple times because
// the type could appear in multiple places on the stack. Once the opaque
// definition is issues, it must not be re-issued. Consequently we have to
// check the UnresolvedTypes list as well.
if (isOnStack(Ty)) {
TypeMap::const_iterator I = UnresolvedTypes.find(Ty);
if (I == UnresolvedTypes.end()) {
Out << "PATypeHolder " << typeName << "_fwd = OpaqueType::get();\n";
UnresolvedTypes[Ty] = typeName;
return true;
}
}
// Avoid printing things we have already printed. Since TNI was obtained
// before the name was inserted with getCppName and because we know the name
// is not on the stack (currently being defined), we can surmise here that if
// we got the name we've also already emitted its definition.
if (TNI != TypeNames.end())
return false;
// We're going to print a derived type which, by definition, contains other
// types. So, push this one we're printing onto the type stack to assist with
// recursive definitions.
TypeStack.push_back(Ty); // push on type stack
bool didRecurse = false;
// Print the type definition
switch (Ty->getTypeID()) {
case Type::FunctionTyID: {
const FunctionType* FT = cast<FunctionType>(Ty);
Out << "std::vector<const Type*>" << typeName << "_args;\n";
FunctionType::param_iterator PI = FT->param_begin();
FunctionType::param_iterator PE = FT->param_end();
for (; PI != PE; ++PI) {
const Type* argTy = static_cast<const Type*>(*PI);
bool isForward = printTypeDefInternal(argTy);
std::string argName(getCppName(argTy));
Out << typeName << "_args.push_back(" << argName;
if (isForward)
Out << "_fwd";
Out << ");\n";
}
bool isForward = printTypeDefInternal(FT->getReturnType());
std::string retTypeName(getCppName(FT->getReturnType()));
Out << "FunctionType* " << typeName << " = FunctionType::get(\n"
<< " /*Result=*/" << retTypeName;
if (isForward)
Out << "_fwd";
Out << ",\n /*Params=*/" << typeName << "_args,\n /*isVarArg=*/"
<< (FT->isVarArg() ? "true" : "false") << ");\n";
break;
}
case Type::StructTyID: {
const StructType* ST = cast<StructType>(Ty);
Out << "std::vector<const Type*>" << typeName << "_fields;\n";
StructType::element_iterator EI = ST->element_begin();
StructType::element_iterator EE = ST->element_end();
for (; EI != EE; ++EI) {
const Type* fieldTy = static_cast<const Type*>(*EI);
bool isForward = printTypeDefInternal(fieldTy);
std::string fieldName(getCppName(fieldTy));
Out << typeName << "_fields.push_back(" << fieldName;
if (isForward)
Out << "_fwd";
Out << ");\n";
}
Out << "StructType* " << typeName << " = StructType::get("
<< typeName << "_fields);\n";
break;
}
case Type::ArrayTyID: {
const ArrayType* AT = cast<ArrayType>(Ty);
const Type* ET = AT->getElementType();
bool isForward = printTypeDefInternal(ET);
std::string elemName(getCppName(ET));
Out << "ArrayType* " << typeName << " = ArrayType::get("
<< elemName << (isForward ? "_fwd" : "")
<< ", " << utostr(AT->getNumElements()) << ");\n";
break;
}
case Type::PointerTyID: {
const PointerType* PT = cast<PointerType>(Ty);
const Type* ET = PT->getElementType();
bool isForward = printTypeDefInternal(ET);
std::string elemName(getCppName(ET));
Out << "PointerType* " << typeName << " = PointerType::get("
<< elemName << (isForward ? "_fwd" : "") << ");\n";
break;
}
case Type::PackedTyID: {
const PackedType* PT = cast<PackedType>(Ty);
const Type* ET = PT->getElementType();
bool isForward = printTypeDefInternal(ET);
std::string elemName(getCppName(ET));
Out << "PackedType* " << typeName << " = PackedType::get("
<< elemName << (isForward ? "_fwd" : "")
<< ", " << utostr(PT->getNumElements()) << ");\n";
break;
}
case Type::OpaqueTyID: {
const OpaqueType* OT = cast<OpaqueType>(Ty);
Out << "OpaqueType* " << typeName << " = OpaqueType::get();\n";
break;
}
default:
assert(!"Invalid TypeID");
}
// If the type had a name, make sure we recreate it.
const std::string* progTypeName =
findTypeName(TheModule->getSymbolTable(),Ty);
if (progTypeName)
Out << "mod->addTypeName(\"" << *progTypeName << "\", "
<< typeName << ");\n";
// Pop us off the type stack
TypeStack.pop_back();
Out << "\n";
// We weren't a recursive type
return false;
}
void
CppWriter::printTypes(const Module* M) {
// Add all of the global variables to the value table...
for (Module::const_global_iterator I = TheModule->global_begin(),
E = TheModule->global_end(); I != E; ++I) {
if (I->hasInitializer())
printTypeDef(I->getInitializer()->getType());
printTypeDef(I->getType());
}
// Add all the functions to the table
for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
FI != FE; ++FI) {
printTypeDef(FI->getReturnType());
printTypeDef(FI->getFunctionType());
// Add all the function arguments
for(Function::const_arg_iterator AI = FI->arg_begin(),
AE = FI->arg_end(); AI != AE; ++AI) {
printTypeDef(AI->getType());
}
// Add all of the basic blocks and instructions
for (Function::const_iterator BB = FI->begin(),
E = FI->end(); BB != E; ++BB) {
printTypeDef(BB->getType());
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
++I) {
printTypeDef(I->getType());
}
}
}
}
void
CppWriter::printConstants(const Module* M) {
// Add all of the global variables to the value table...
for (Module::const_global_iterator I = TheModule->global_begin(),
E = TheModule->global_end(); I != E; ++I)
if (I->hasInitializer())
printConstant(I->getInitializer());
// Traverse the LLVM functions looking for constants
for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
FI != FE; ++FI) {
// Add all of the basic blocks and instructions
for (Function::const_iterator BB = FI->begin(),
E = FI->end(); BB != E; ++BB) {
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
++I) {
for (unsigned i = 0; i < I->getNumOperands(); ++i) {
if (Constant* C = dyn_cast<Constant>(I->getOperand(i))) {
printConstant(C);
}
}
}
}
}
}
// printConstant - Print out a constant pool entry...
void CppWriter::printConstant(const Constant *CV) {
// First, if the constant is in the constant list then we've printed it
// already and we shouldn't reprint it.
if (ValueNames.find(CV) != ValueNames.end())
return;
const int IndentSize = 2;
static std::string Indent = "\n";
std::string constName(getCppName(CV));
std::string typeName(getCppName(CV->getType()));
if (CV->isNullValue()) {
Out << "Constant* " << constName << " = Constant::getNullValue("
<< typeName << ");\n";
return;
}
if (isa<GlobalValue>(CV)) {
// Skip variables and functions, we emit them elsewhere
return;
}
if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
Out << "Constant* " << constName << " = ConstantBool::get("
<< (CB == ConstantBool::True ? "true" : "false")
<< ");";
} else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV)) {
Out << "Constant* " << constName << " = ConstantSInt::get("
<< typeName << ", " << CI->getValue() << ");";
} else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV)) {
Out << "Constant* " << constName << " = ConstantUInt::get("
<< typeName << ", " << CI->getValue() << ");";
} else if (isa<ConstantAggregateZero>(CV)) {
Out << "Constant* " << constName << " = ConstantAggregateZero::get("
<< typeName << ");";
} else if (isa<ConstantPointerNull>(CV)) {
Out << "Constant* " << constName << " = ConstanPointerNull::get("
<< typeName << ");";
} else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
Out << "ConstantFP::get(" << typeName << ", ";
// We would like to output the FP constant value in exponential notation,
// but we cannot do this if doing so will lose precision. Check here to
// make sure that we only output it in exponential format if we can parse
// the value back and get the same value.
//
std::string StrVal = ftostr(CFP->getValue());
// Check to make sure that the stringized number is not some string like
// "Inf" or NaN, that atof will accept, but the lexer will not. Check that
// the string matches the "[-+]?[0-9]" regex.
//
if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
((StrVal[0] == '-' || StrVal[0] == '+') &&
(StrVal[1] >= '0' && StrVal[1] <= '9')))
// Reparse stringized version!
if (atof(StrVal.c_str()) == CFP->getValue()) {
Out << StrVal;
return;
}
// Otherwise we could not reparse it to exactly the same value, so we must
// output the string in hexadecimal format!
assert(sizeof(double) == sizeof(uint64_t) &&
"assuming that double is 64 bits!");
Out << "0x" << utohexstr(DoubleToBits(CFP->getValue())) << ");";
} else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
if (CA->isString() && CA->getType()->getElementType() == Type::SByteTy) {
Out << "Constant* " << constName << " = ConstantArray::get(\"";
printEscapedString(CA->getAsString());
Out << "\");";
} else {
Out << "std::vector<Constant*> " << constName << "_elems;\n";
unsigned N = CA->getNumOperands();
for (unsigned i = 0; i < N; ++i) {
printConstant(CA->getOperand(i));
Out << constName << "_elems.push_back("
<< getCppName(CA->getOperand(i)) << ");\n";
}
Out << "Constant* " << constName << " = ConstantArray::get("
<< typeName << ", " << constName << "_elems);";
}
} else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
Out << "std::vector<Constant*> " << constName << "_fields;\n";
unsigned N = CS->getNumOperands();
for (unsigned i = 0; i < N; i++) {
printConstant(CS->getOperand(i));
Out << constName << "_fields.push_back("
<< getCppName(CA->getOperand(i)) << ");\n";
}
Out << "Constant* " << constName << " = ConstantStruct::get("
<< typeName << ", " << constName << "_fields);";
} else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(CV)) {
Out << "std::vector<Constant*> " << constName << "_elems;\n";
unsigned N = CP->getNumOperands();
for (unsigned i = 0; i < N; ++i) {
printConstant(CP->getOperand(i));
Out << constName << "_elems.push_back("
<< getCppName(CP->getOperand(i)) << ");\n";
}
Out << "Constant* " << constName << " = ConstantPacked::get("
<< typeName << ", " << constName << "_elems);";
} else if (isa<UndefValue>(CV)) {
Out << "Constant* " << constName << " = UndefValue::get("
<< typeName << ");";
} else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
if (CE->getOpcode() == Instruction::GetElementPtr) {
Out << "std::vector<Constant*> " << constName << "_indices;\n";
for (unsigned i = 1; i < CE->getNumOperands(); ++i ) {
Out << constName << "_indices.push_back("
<< getCppName(CE->getOperand(i)) << ");\n";
}
Out << "Constant* " << constName << " = new GetElementPtrInst("
<< getCppName(CE->getOperand(0)) << ", " << constName << "_indices";
} else if (CE->getOpcode() == Instruction::Cast) {
Out << "Constant* " << constName << " = ConstantExpr::getCast(";
Out << getCppName(CE->getOperand(0)) << ", " << getCppName(CE->getType())
<< ");";
} else {
Out << "Constant* " << constName << " = ConstantExpr::";
switch (CE->getOpcode()) {
case Instruction::Add: Out << "getAdd"; break;
case Instruction::Sub: Out << "getSub"; break;
case Instruction::Mul: Out << "getMul"; break;
case Instruction::Div: Out << "getDiv"; break;
case Instruction::Rem: Out << "getRem"; break;
case Instruction::And: Out << "getAnd"; break;
case Instruction::Or: Out << "getOr"; break;
case Instruction::Xor: Out << "getXor"; break;
case Instruction::SetEQ: Out << "getSetEQ"; break;
case Instruction::SetNE: Out << "getSetNE"; break;
case Instruction::SetLE: Out << "getSetLE"; break;
case Instruction::SetGE: Out << "getSetGE"; break;
case Instruction::SetLT: Out << "getSetLT"; break;
case Instruction::SetGT: Out << "getSetGT"; break;
case Instruction::Shl: Out << "getShl"; break;
case Instruction::Shr: Out << "getShr"; break;
case Instruction::Select: Out << "getSelect"; break;
case Instruction::ExtractElement: Out << "getExtractElement"; break;
case Instruction::InsertElement: Out << "getInsertElement"; break;
case Instruction::ShuffleVector: Out << "getShuffleVector"; break;
default:
assert(!"Invalid constant expression");
break;
}
Out << getCppName(CE->getOperand(0));
for (unsigned i = 1; i < CE->getNumOperands(); ++i)
Out << ", " << getCppName(CE->getOperand(i));
Out << ");";
}
} else {
assert(!"Bad Constant");
Out << "Constant* " << constName << " = 0; ";
}
Out << "\n";
}
/// printFunction - Print all aspects of a function.
///
void CppWriter::printFunction(const Function *F) {
std::string funcTypeName(getCppName(F->getFunctionType()));
Out << "Function* ";
printCppName(F);
Out << " = new Function(" << funcTypeName << ", " ;
printLinkageType(F->getLinkage());
Out << ",\n \"" << F->getName() << "\", mod);\n";
printCppName(F);
Out << "->setCallingConv(";
printCallingConv(F->getCallingConv());
Out << ");\n";
if (F->hasSection()) {
printCppName(F);
Out << "->setSection(" << F->getSection() << ");\n";
}
if (F->getAlignment()) {
printCppName(F);
Out << "->setAlignment(" << F->getAlignment() << ");\n";
}
if (!F->isExternal()) {
Out << "{\n";
// Create all the argument values
for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
AI != AE; ++AI) {
Out << " Argument* " << getCppName(AI) << " = new Argument("
<< getCppName(AI->getType()) << ", \"";
printEscapedString(AI->getName());
Out << "\", " << getCppName(F) << ");\n";
}
// Create all the basic blocks
for (Function::const_iterator BI = F->begin(), BE = F->end();
BI != BE; ++BI) {
std::string bbname(getCppName(BI));
Out << " BasicBlock* " << bbname << " = new BasicBlock(\"";
if (BI->hasName())
printEscapedString(BI->getName());
Out << "\"," << getCppName(BI->getParent()) << ",0);\n";
}
// Output all of its basic blocks... for the function
for (Function::const_iterator BI = F->begin(), BE = F->end();
BI != BE; ++BI) {
// Output all of the instructions in the basic block...
Out << " {\n";
for (BasicBlock::const_iterator I = BI->begin(), E = BI->end();
I != E; ++I) {
std::string bbname(getCppName(BI));
printInstruction(I,bbname);
}
Out << " }\n";
}
Out << "}\n";
}
}
// printInstruction - This member is called for each Instruction in a function.
void
CppWriter::printInstruction(const Instruction *I, const std::string& bbname)
{
std::string iName(getCppName(I));
switch (I->getOpcode()) {
case Instruction::Ret: {
const ReturnInst* ret = cast<ReturnInst>(I);
Out << " ReturnInst* " << iName << " = new ReturnInst(";
if (ret->getReturnValue())
Out << getCppName(ret->getReturnValue()) << ", ";
Out << bbname << ");";
break;
}
case Instruction::Br: {
const BranchInst* br = cast<BranchInst>(I);
Out << " BranchInst* " << iName << " = new BranchInst(" ;
if (br->getNumOperands() == 3 ) {
Out << getCppName(br->getOperand(0)) << ", "
<< getCppName(br->getOperand(1)) << ", "
<< getCppName(br->getOperand(2)) << ", ";
} else if (br->getNumOperands() == 1) {
Out << getCppName(br->getOperand(0)) << ", ";
} else {
assert(!"branch with 2 operands?");
}
Out << bbname << ");";
break;
}
case Instruction::Switch:
case Instruction::Invoke:
case Instruction::Unwind:
case Instruction::Unreachable:
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
case Instruction::Div:
case Instruction::Rem:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
case Instruction::SetEQ:
case Instruction::SetNE:
case Instruction::SetLE:
case Instruction::SetGE:
case Instruction::SetLT:
case Instruction::SetGT:
break;
case Instruction::Malloc: {
const MallocInst* mallocI = cast<MallocInst>(I);
Out << " MallocInst* " << iName << " = new MallocInst("
<< getCppName(mallocI->getAllocatedType()) << ", ";
if (mallocI->isArrayAllocation())
Out << getCppName(mallocI->getArraySize()) << ", ";
Out << "\"";
printEscapedString(mallocI->getName());
Out << "\", " << bbname << ");";
if (mallocI->getAlignment())
Out << "\n " << iName << "->setAlignment("
<< mallocI->getAlignment() << ");";
break;
}
case Instruction::Free:
case Instruction::Alloca: {
const AllocaInst* allocaI = cast<AllocaInst>(I);
Out << " AllocaInst* " << iName << " = new AllocaInst("
<< getCppName(allocaI->getAllocatedType()) << ", ";
if (allocaI->isArrayAllocation())
Out << getCppName(allocaI->getArraySize()) << ", ";
Out << "\"";
printEscapedString(allocaI->getName());
Out << "\", " << bbname << ");";
if (allocaI->getAlignment())
Out << "\n " << iName << "->setAlignment("
<< allocaI->getAlignment() << ");";
break;
}
case Instruction::Load:
break;
case Instruction::Store: {
const StoreInst* store = cast<StoreInst>(I);
Out << " StoreInst* " << iName << " = new StoreInst("
<< getCppName(store->getOperand(0)) << ", "
<< getCppName(store->getOperand(1)) << ", " << bbname << ");\n";
if (store->isVolatile())
Out << "iName->setVolatile(true);";
break;
}
case Instruction::GetElementPtr: {
const GetElementPtrInst* gep = cast<GetElementPtrInst>(I);
if (gep->getNumOperands() <= 2) {
Out << " GetElementPtrInst* " << iName << " = new GetElementPtrInst("
<< getCppName(gep->getOperand(0));
if (gep->getNumOperands() == 2)
Out << ", " << getCppName(gep->getOperand(1));
Out << ", " << bbname;
} else {
Out << " std::vector<Value*> " << iName << "_indices;\n";
for (unsigned i = 1; i < gep->getNumOperands(); ++i ) {
Out << " " << iName << "_indices.push_back("
<< getCppName(gep->getOperand(i)) << ");\n";
}
Out << " Instruction* " << iName << " = new GetElementPtrInst("
<< getCppName(gep->getOperand(0)) << ", " << iName << "_indices";
}
Out << ", \"";
printEscapedString(gep->getName());
Out << "\", " << bbname << ");";
break;
}
case Instruction::PHI:
case Instruction::Cast:
case Instruction::Call:
case Instruction::Shl:
case Instruction::Shr:
case Instruction::Select:
case Instruction::UserOp1:
case Instruction::UserOp2:
case Instruction::VAArg:
case Instruction::ExtractElement:
case Instruction::InsertElement:
case Instruction::ShuffleVector:
break;
}
Out << "\n";
/*
// Print out name if it exists...
if (I.hasName())
Out << getLLVMName(I.getName()) << " = ";
// If this is a volatile load or store, print out the volatile marker.
if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) ||
(isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())) {
Out << "volatile ";
} else if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) {
// If this is a call, check if it's a tail call.
Out << "tail ";
}
// Print out the opcode...
Out << I.getOpcodeName();
// Print out the type of the operands...
const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
// Special case conditional branches to swizzle the condition out to the front
if (isa<BranchInst>(I) && I.getNumOperands() > 1) {
writeOperand(I.getOperand(2), true);
Out << ',';
writeOperand(Operand, true);
Out << ',';
writeOperand(I.getOperand(1), true);
} else if (isa<SwitchInst>(I)) {
// Special case switch statement to get formatting nice and correct...
writeOperand(Operand , true); Out << ',';
writeOperand(I.getOperand(1), true); Out << " [";
for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
Out << "\n\t\t";
writeOperand(I.getOperand(op ), true); Out << ',';
writeOperand(I.getOperand(op+1), true);
}
Out << "\n\t]";
} else if (isa<PHINode>(I)) {
Out << ' ';
printType(I.getType());
Out << ' ';
for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
if (op) Out << ", ";
Out << '[';
writeOperand(I.getOperand(op ), false); Out << ',';
writeOperand(I.getOperand(op+1), false); Out << " ]";
}
} else if (isa<ReturnInst>(I) && !Operand) {
Out << " void";
} else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
// Print the calling convention being used.
switch (CI->getCallingConv()) {
case CallingConv::C: break; // default
case CallingConv::CSRet: Out << " csretcc"; break;
case CallingConv::Fast: Out << " fastcc"; break;
case CallingConv::Cold: Out << " coldcc"; break;
default: Out << " cc" << CI->getCallingConv(); break;
}
const PointerType *PTy = cast<PointerType>(Operand->getType());
const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
const Type *RetTy = FTy->getReturnType();
// If possible, print out the short form of the call instruction. We can
// only do this if the first argument is a pointer to a nonvararg function,
// and if the return type is not a pointer to a function.
//
if (!FTy->isVarArg() &&
(!isa<PointerType>(RetTy) ||
!isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
Out << ' '; printType(RetTy);
writeOperand(Operand, false);
} else {
writeOperand(Operand, true);
}
Out << '(';
if (CI->getNumOperands() > 1) writeOperand(CI->getOperand(1), true);
for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; ++op) {
Out << ',';
writeOperand(I.getOperand(op), true);
}
Out << " )";
} else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
const PointerType *PTy = cast<PointerType>(Operand->getType());
const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
const Type *RetTy = FTy->getReturnType();
// Print the calling convention being used.
switch (II->getCallingConv()) {
case CallingConv::C: break; // default
case CallingConv::CSRet: Out << " csretcc"; break;
case CallingConv::Fast: Out << " fastcc"; break;
case CallingConv::Cold: Out << " coldcc"; break;
default: Out << " cc" << II->getCallingConv(); break;
}
// If possible, print out the short form of the invoke instruction. We can
// only do this if the first argument is a pointer to a nonvararg function,
// and if the return type is not a pointer to a function.
//
if (!FTy->isVarArg() &&
(!isa<PointerType>(RetTy) ||
!isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
Out << ' '; printType(RetTy);
writeOperand(Operand, false);
} else {
writeOperand(Operand, true);
}
Out << '(';
if (I.getNumOperands() > 3) writeOperand(I.getOperand(3), true);
for (unsigned op = 4, Eop = I.getNumOperands(); op < Eop; ++op) {
Out << ',';
writeOperand(I.getOperand(op), true);
}
Out << " )\n\t\t\tto";
writeOperand(II->getNormalDest(), true);
Out << " unwind";
writeOperand(II->getUnwindDest(), true);
} else if (const AllocationInst *AI = dyn_cast<AllocationInst>(&I)) {
Out << ' ';
printType(AI->getType()->getElementType());
if (AI->isArrayAllocation()) {
Out << ',';
writeOperand(AI->getArraySize(), true);
}
if (AI->getAlignment()) {
Out << ", align " << AI->getAlignment();
}
} else if (isa<CastInst>(I)) {
if (Operand) writeOperand(Operand, true); // Work with broken code
Out << " to ";
printType(I.getType());
} else if (isa<VAArgInst>(I)) {
if (Operand) writeOperand(Operand, true); // Work with broken code
Out << ", ";
printType(I.getType());
} else if (Operand) { // Print the normal way...
// PrintAllTypes - Instructions who have operands of all the same type
// omit the type from all but the first operand. If the instruction has
// different type operands (for example br), then they are all printed.
bool PrintAllTypes = false;
const Type *TheType = Operand->getType();
// Shift Left & Right print both types even for Ubyte LHS, and select prints
// types even if all operands are bools.
if (isa<ShiftInst>(I) || isa<SelectInst>(I) || isa<StoreInst>(I) ||
isa<ShuffleVectorInst>(I)) {
PrintAllTypes = true;
} else {
for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
Operand = I.getOperand(i);
if (Operand->getType() != TheType) {
PrintAllTypes = true; // We have differing types! Print them all!
break;
}
}
}
if (!PrintAllTypes) {
Out << ' ';
printType(TheType);
}
for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
if (i) Out << ',';
writeOperand(I.getOperand(i), PrintAllTypes);
}
}
Out << "\n";
*/
}
} // end anonymous llvm
namespace llvm {
void WriteModuleToCppFile(Module* mod, std::ostream& o) {
o << "#include <llvm/Module.h>\n";
o << "#include <llvm/DerivedTypes.h>\n";
o << "#include <llvm/Constants.h>\n";
o << "#include <llvm/GlobalVariable.h>\n";
o << "#include <llvm/Function.h>\n";
o << "#include <llvm/CallingConv.h>\n";
o << "#include <llvm/BasicBlock.h>\n";
o << "#include <llvm/Instructions.h>\n";
o << "#include <llvm/Pass.h>\n";
o << "#include <llvm/PassManager.h>\n";
o << "#include <llvm/Analysis/Verifier.h>\n";
o << "#include <llvm/Assembly/PrintModulePass.h>\n";
o << "#include <algorithm>\n";
o << "#include <iostream>\n\n";
o << "using namespace llvm;\n\n";
o << "Module* makeLLVMModule();\n\n";
o << "int main(int argc, char**argv) {\n";
o << " Module* Mod = makeLLVMModule();\n";
o << " verifyModule(*Mod, PrintMessageAction);\n";
o << " std::cerr.flush();\n";
o << " std::cout.flush();\n";
o << " PassManager PM;\n";
o << " PM.add(new PrintModulePass(&std::cout));\n";
o << " PM.run(*Mod);\n";
o << " return 0;\n";
o << "}\n\n";
o << "Module* makeLLVMModule() {\n";
CppWriter W(o, mod);
W.printModule(mod);
o << "return mod;\n";
o << "}\n";
}
}
|