1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
|
//===----- llvm/unittest/ADT/SCCIteratorTest.cpp - SCCIterator tests ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/SCCIterator.h"
#include "llvm/ADT/GraphTraits.h"
#include "gtest/gtest.h"
#include <limits.h>
using namespace llvm;
namespace llvm {
/// Graph<N> - A graph with N nodes. Note that N can be at most 8.
template <unsigned N>
class Graph {
private:
// Disable copying.
Graph(const Graph&);
Graph& operator=(const Graph&);
static void ValidateIndex(unsigned Idx) {
assert(Idx < N && "Invalid node index!");
}
public:
/// NodeSubset - A subset of the graph's nodes.
class NodeSubset {
typedef unsigned char BitVector; // Where the limitation N <= 8 comes from.
BitVector Elements;
NodeSubset(BitVector e) : Elements(e) {}
public:
/// NodeSubset - Default constructor, creates an empty subset.
NodeSubset() : Elements(0) {
assert(N <= sizeof(BitVector)*CHAR_BIT && "Graph too big!");
}
/// Comparison operators.
bool operator==(const NodeSubset &other) const {
return other.Elements == this->Elements;
}
bool operator!=(const NodeSubset &other) const {
return !(*this == other);
}
/// AddNode - Add the node with the given index to the subset.
void AddNode(unsigned Idx) {
ValidateIndex(Idx);
Elements |= 1U << Idx;
}
/// DeleteNode - Remove the node with the given index from the subset.
void DeleteNode(unsigned Idx) {
ValidateIndex(Idx);
Elements &= ~(1U << Idx);
}
/// count - Return true if the node with the given index is in the subset.
bool count(unsigned Idx) {
ValidateIndex(Idx);
return (Elements & (1U << Idx)) != 0;
}
/// isEmpty - Return true if this is the empty set.
bool isEmpty() const {
return Elements == 0;
}
/// isSubsetOf - Return true if this set is a subset of the given one.
bool isSubsetOf(const NodeSubset &other) const {
return (this->Elements | other.Elements) == other.Elements;
}
/// Complement - Return the complement of this subset.
NodeSubset Complement() const {
return ~(unsigned)this->Elements & ((1U << N) - 1);
}
/// Join - Return the union of this subset and the given one.
NodeSubset Join(const NodeSubset &other) const {
return this->Elements | other.Elements;
}
/// Meet - Return the intersection of this subset and the given one.
NodeSubset Meet(const NodeSubset &other) const {
return this->Elements & other.Elements;
}
};
/// NodeType - Node index and set of children of the node.
typedef std::pair<unsigned, NodeSubset> NodeType;
private:
/// Nodes - The list of nodes for this graph.
NodeType Nodes[N];
public:
/// Graph - Default constructor. Creates an empty graph.
Graph() {
// Let each node know which node it is. This allows us to find the start of
// the Nodes array given a pointer to any element of it.
for (unsigned i = 0; i != N; ++i)
Nodes[i].first = i;
}
/// AddEdge - Add an edge from the node with index FromIdx to the node with
/// index ToIdx.
void AddEdge(unsigned FromIdx, unsigned ToIdx) {
ValidateIndex(FromIdx);
Nodes[FromIdx].second.AddNode(ToIdx);
}
/// DeleteEdge - Remove the edge (if any) from the node with index FromIdx to
/// the node with index ToIdx.
void DeleteEdge(unsigned FromIdx, unsigned ToIdx) {
ValidateIndex(FromIdx);
Nodes[FromIdx].second.DeleteNode(ToIdx);
}
/// AccessNode - Get a pointer to the node with the given index.
NodeType *AccessNode(unsigned Idx) const {
ValidateIndex(Idx);
// The constant cast is needed when working with GraphTraits, which insists
// on taking a constant Graph.
return const_cast<NodeType *>(&Nodes[Idx]);
}
/// NodesReachableFrom - Return the set of all nodes reachable from the given
/// node.
NodeSubset NodesReachableFrom(unsigned Idx) const {
// This algorithm doesn't scale, but that doesn't matter given the small
// size of our graphs.
NodeSubset Reachable;
// The initial node is reachable.
Reachable.AddNode(Idx);
do {
NodeSubset Previous(Reachable);
// Add in all nodes which are children of a reachable node.
for (unsigned i = 0; i != N; ++i)
if (Previous.count(i))
Reachable = Reachable.Join(Nodes[i].second);
// If nothing changed then we have found all reachable nodes.
if (Reachable == Previous)
return Reachable;
// Rinse and repeat.
} while (1);
}
/// ChildIterator - Visit all children of a node.
class ChildIterator {
friend class Graph;
/// FirstNode - Pointer to first node in the graph's Nodes array.
NodeType *FirstNode;
/// Children - Set of nodes which are children of this one and that haven't
/// yet been visited.
NodeSubset Children;
ChildIterator(); // Disable default constructor.
protected:
ChildIterator(NodeType *F, NodeSubset C) : FirstNode(F), Children(C) {}
public:
/// ChildIterator - Copy constructor.
ChildIterator(const ChildIterator& other) : FirstNode(other.FirstNode),
Children(other.Children) {}
/// Comparison operators.
bool operator==(const ChildIterator &other) const {
return other.FirstNode == this->FirstNode &&
other.Children == this->Children;
}
bool operator!=(const ChildIterator &other) const {
return !(*this == other);
}
/// Prefix increment operator.
ChildIterator& operator++() {
// Find the next unvisited child node.
for (unsigned i = 0; i != N; ++i)
if (Children.count(i)) {
// Remove that child - it has been visited. This is the increment!
Children.DeleteNode(i);
return *this;
}
assert(false && "Incrementing end iterator!");
return *this; // Avoid compiler warnings.
}
/// Postfix increment operator.
ChildIterator operator++(int) {
ChildIterator Result(*this);
++(*this);
return Result;
}
/// Dereference operator.
NodeType *operator*() {
// Find the next unvisited child node.
for (unsigned i = 0; i != N; ++i)
if (Children.count(i))
// Return a pointer to it.
return FirstNode + i;
assert(false && "Dereferencing end iterator!");
return nullptr; // Avoid compiler warning.
}
};
/// child_begin - Return an iterator pointing to the first child of the given
/// node.
static ChildIterator child_begin(NodeType *Parent) {
return ChildIterator(Parent - Parent->first, Parent->second);
}
/// child_end - Return the end iterator for children of the given node.
static ChildIterator child_end(NodeType *Parent) {
return ChildIterator(Parent - Parent->first, NodeSubset());
}
};
template <unsigned N>
struct GraphTraits<Graph<N> > {
typedef typename Graph<N>::NodeType NodeType;
typedef typename Graph<N>::ChildIterator ChildIteratorType;
static inline NodeType *getEntryNode(const Graph<N> &G) { return G.AccessNode(0); }
static inline ChildIteratorType child_begin(NodeType *Node) {
return Graph<N>::child_begin(Node);
}
static inline ChildIteratorType child_end(NodeType *Node) {
return Graph<N>::child_end(Node);
}
};
TEST(SCCIteratorTest, AllSmallGraphs) {
// Test SCC computation against every graph with NUM_NODES nodes or less.
// Since SCC considers every node to have an implicit self-edge, we only
// create graphs for which every node has a self-edge.
#define NUM_NODES 4
#define NUM_GRAPHS (NUM_NODES * (NUM_NODES - 1))
typedef Graph<NUM_NODES> GT;
/// Enumerate all graphs using NUM_GRAPHS bits.
static_assert(NUM_GRAPHS < sizeof(unsigned) * CHAR_BIT, "Too many graphs!");
for (unsigned GraphDescriptor = 0; GraphDescriptor < (1U << NUM_GRAPHS);
++GraphDescriptor) {
GT G;
// Add edges as specified by the descriptor.
unsigned DescriptorCopy = GraphDescriptor;
for (unsigned i = 0; i != NUM_NODES; ++i)
for (unsigned j = 0; j != NUM_NODES; ++j) {
// Always add a self-edge.
if (i == j) {
G.AddEdge(i, j);
continue;
}
if (DescriptorCopy & 1)
G.AddEdge(i, j);
DescriptorCopy >>= 1;
}
// Test the SCC logic on this graph.
/// NodesInSomeSCC - Those nodes which are in some SCC.
GT::NodeSubset NodesInSomeSCC;
for (scc_iterator<GT> I = scc_begin(G), E = scc_end(G); I != E; ++I) {
const std::vector<GT::NodeType *> &SCC = *I;
// Get the nodes in this SCC as a NodeSubset rather than a vector.
GT::NodeSubset NodesInThisSCC;
for (unsigned i = 0, e = SCC.size(); i != e; ++i)
NodesInThisSCC.AddNode(SCC[i]->first);
// There should be at least one node in every SCC.
EXPECT_FALSE(NodesInThisSCC.isEmpty());
// Check that every node in the SCC is reachable from every other node in
// the SCC.
for (unsigned i = 0; i != NUM_NODES; ++i)
if (NodesInThisSCC.count(i))
EXPECT_TRUE(NodesInThisSCC.isSubsetOf(G.NodesReachableFrom(i)));
// OK, now that we now that every node in the SCC is reachable from every
// other, this means that the set of nodes reachable from any node in the
// SCC is the same as the set of nodes reachable from every node in the
// SCC. Check that for every node N not in the SCC but reachable from the
// SCC, no element of the SCC is reachable from N.
for (unsigned i = 0; i != NUM_NODES; ++i)
if (NodesInThisSCC.count(i)) {
GT::NodeSubset NodesReachableFromSCC = G.NodesReachableFrom(i);
GT::NodeSubset ReachableButNotInSCC =
NodesReachableFromSCC.Meet(NodesInThisSCC.Complement());
for (unsigned j = 0; j != NUM_NODES; ++j)
if (ReachableButNotInSCC.count(j))
EXPECT_TRUE(G.NodesReachableFrom(j).Meet(NodesInThisSCC).isEmpty());
// The result must be the same for all other nodes in this SCC, so
// there is no point in checking them.
break;
}
// This is indeed a SCC: a maximal set of nodes for which each node is
// reachable from every other.
// Check that we didn't already see this SCC.
EXPECT_TRUE(NodesInSomeSCC.Meet(NodesInThisSCC).isEmpty());
NodesInSomeSCC = NodesInSomeSCC.Join(NodesInThisSCC);
// Check a property that is specific to the LLVM SCC iterator and
// guaranteed by it: if a node in SCC S1 has an edge to a node in
// SCC S2, then S1 is visited *after* S2. This means that the set
// of nodes reachable from this SCC must be contained either in the
// union of this SCC and all previously visited SCC's.
for (unsigned i = 0; i != NUM_NODES; ++i)
if (NodesInThisSCC.count(i)) {
GT::NodeSubset NodesReachableFromSCC = G.NodesReachableFrom(i);
EXPECT_TRUE(NodesReachableFromSCC.isSubsetOf(NodesInSomeSCC));
// The result must be the same for all other nodes in this SCC, so
// there is no point in checking them.
break;
}
}
// Finally, check that the nodes in some SCC are exactly those that are
// reachable from the initial node.
EXPECT_EQ(NodesInSomeSCC, G.NodesReachableFrom(0));
}
}
}
|