aboutsummaryrefslogtreecommitdiffstats
path: root/utils/TableGen/CodeGenDAGPatterns.h
blob: 936fd0146455e77e6bc60c1790c8fb4e86e44a00 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
//===- CodeGenDAGPatterns.h - Read DAG patterns from .td file ---*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares the CodeGenDAGPatterns class, which is used to read and
// represent the patterns present in a .td file for instructions.
//
//===----------------------------------------------------------------------===//

#ifndef CODEGEN_DAGPATTERNS_H
#define CODEGEN_DAGPATTERNS_H

#include "CodeGenTarget.h"
#include "CodeGenIntrinsics.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include <set>
#include <algorithm>
#include <vector>
#include <map>

namespace llvm {
  class Record;
  class Init;
  class ListInit;
  class DagInit;
  class SDNodeInfo;
  class TreePattern;
  class TreePatternNode;
  class CodeGenDAGPatterns;
  class ComplexPattern;

/// EEVT::DAGISelGenValueType - These are some extended forms of
/// MVT::SimpleValueType that we use as lattice values during type inference.
/// The existing MVT iAny, fAny and vAny types suffice to represent
/// arbitrary integer, floating-point, and vector types, so only an unknown
/// value is needed.
namespace EEVT {
  /// TypeSet - This is either empty if it's completely unknown, or holds a set
  /// of types.  It is used during type inference because register classes can
  /// have multiple possible types and we don't know which one they get until
  /// type inference is complete.
  ///
  /// TypeSet can have three states:
  ///    Vector is empty: The type is completely unknown, it can be any valid
  ///       target type.
  ///    Vector has multiple constrained types: (e.g. v4i32 + v4f32) it is one
  ///       of those types only.
  ///    Vector has one concrete type: The type is completely known.
  ///
  class TypeSet {
    SmallVector<MVT::SimpleValueType, 4> TypeVec;
  public:
    TypeSet() {}
    TypeSet(MVT::SimpleValueType VT, TreePattern &TP);
    TypeSet(const std::vector<MVT::SimpleValueType> &VTList);

    bool isCompletelyUnknown() const { return TypeVec.empty(); }

    bool isConcrete() const {
      if (TypeVec.size() != 1) return false;
      unsigned char T = TypeVec[0]; (void)T;
      assert(T < MVT::LAST_VALUETYPE || T == MVT::iPTR || T == MVT::iPTRAny);
      return true;
    }

    MVT::SimpleValueType getConcrete() const {
      assert(isConcrete() && "Type isn't concrete yet");
      return (MVT::SimpleValueType)TypeVec[0];
    }

    bool isDynamicallyResolved() const {
      return getConcrete() == MVT::iPTR || getConcrete() == MVT::iPTRAny;
    }

    const SmallVectorImpl<MVT::SimpleValueType> &getTypeList() const {
      assert(!TypeVec.empty() && "Not a type list!");
      return TypeVec;
    }

    bool isVoid() const {
      return TypeVec.size() == 1 && TypeVec[0] == MVT::isVoid;
    }

    /// hasIntegerTypes - Return true if this TypeSet contains any integer value
    /// types.
    bool hasIntegerTypes() const;

    /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or
    /// a floating point value type.
    bool hasFloatingPointTypes() const;

    /// hasVectorTypes - Return true if this TypeSet contains a vector value
    /// type.
    bool hasVectorTypes() const;

    /// getName() - Return this TypeSet as a string.
    std::string getName() const;

    /// MergeInTypeInfo - This merges in type information from the specified
    /// argument.  If 'this' changes, it returns true.  If the two types are
    /// contradictory (e.g. merge f32 into i32) then this throws an exception.
    bool MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP);

    bool MergeInTypeInfo(MVT::SimpleValueType InVT, TreePattern &TP) {
      return MergeInTypeInfo(EEVT::TypeSet(InVT, TP), TP);
    }

    /// Force this type list to only contain integer types.
    bool EnforceInteger(TreePattern &TP);

    /// Force this type list to only contain floating point types.
    bool EnforceFloatingPoint(TreePattern &TP);

    /// EnforceScalar - Remove all vector types from this type list.
    bool EnforceScalar(TreePattern &TP);

    /// EnforceVector - Remove all non-vector types from this type list.
    bool EnforceVector(TreePattern &TP);

    /// EnforceSmallerThan - 'this' must be a smaller VT than Other.  Update
    /// this an other based on this information.
    bool EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP);

    /// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type
    /// whose element is VT.
    bool EnforceVectorEltTypeIs(EEVT::TypeSet &VT, TreePattern &TP);

    /// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to
    /// be a vector type VT.
    bool EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VT, TreePattern &TP);

    bool operator!=(const TypeSet &RHS) const { return TypeVec != RHS.TypeVec; }
    bool operator==(const TypeSet &RHS) const { return TypeVec == RHS.TypeVec; }

  private:
    /// FillWithPossibleTypes - Set to all legal types and return true, only
    /// valid on completely unknown type sets.  If Pred is non-null, only MVTs
    /// that pass the predicate are added.
    bool FillWithPossibleTypes(TreePattern &TP,
                               bool (*Pred)(MVT::SimpleValueType) = 0,
                               const char *PredicateName = 0);
  };
}

/// Set type used to track multiply used variables in patterns
typedef std::set<std::string> MultipleUseVarSet;

/// SDTypeConstraint - This is a discriminated union of constraints,
/// corresponding to the SDTypeConstraint tablegen class in Target.td.
struct SDTypeConstraint {
  SDTypeConstraint(Record *R);

  unsigned OperandNo;   // The operand # this constraint applies to.
  enum {
    SDTCisVT, SDTCisPtrTy, SDTCisInt, SDTCisFP, SDTCisVec, SDTCisSameAs,
    SDTCisVTSmallerThanOp, SDTCisOpSmallerThanOp, SDTCisEltOfVec,
    SDTCisSubVecOfVec
  } ConstraintType;

  union {   // The discriminated union.
    struct {
      MVT::SimpleValueType VT;
    } SDTCisVT_Info;
    struct {
      unsigned OtherOperandNum;
    } SDTCisSameAs_Info;
    struct {
      unsigned OtherOperandNum;
    } SDTCisVTSmallerThanOp_Info;
    struct {
      unsigned BigOperandNum;
    } SDTCisOpSmallerThanOp_Info;
    struct {
      unsigned OtherOperandNum;
    } SDTCisEltOfVec_Info;
    struct {
      unsigned OtherOperandNum;
    } SDTCisSubVecOfVec_Info;
  } x;

  /// ApplyTypeConstraint - Given a node in a pattern, apply this type
  /// constraint to the nodes operands.  This returns true if it makes a
  /// change, false otherwise.  If a type contradiction is found, throw an
  /// exception.
  bool ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo,
                           TreePattern &TP) const;
};

/// SDNodeInfo - One of these records is created for each SDNode instance in
/// the target .td file.  This represents the various dag nodes we will be
/// processing.
class SDNodeInfo {
  Record *Def;
  std::string EnumName;
  std::string SDClassName;
  unsigned Properties;
  unsigned NumResults;
  int NumOperands;
  std::vector<SDTypeConstraint> TypeConstraints;
public:
  SDNodeInfo(Record *R);  // Parse the specified record.

  unsigned getNumResults() const { return NumResults; }

  /// getNumOperands - This is the number of operands required or -1 if
  /// variadic.
  int getNumOperands() const { return NumOperands; }
  Record *getRecord() const { return Def; }
  const std::string &getEnumName() const { return EnumName; }
  const std::string &getSDClassName() const { return SDClassName; }

  const std::vector<SDTypeConstraint> &getTypeConstraints() const {
    return TypeConstraints;
  }

  /// getKnownType - If the type constraints on this node imply a fixed type
  /// (e.g. all stores return void, etc), then return it as an
  /// MVT::SimpleValueType.  Otherwise, return MVT::Other.
  MVT::SimpleValueType getKnownType(unsigned ResNo) const;

  /// hasProperty - Return true if this node has the specified property.
  ///
  bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); }

  /// ApplyTypeConstraints - Given a node in a pattern, apply the type
  /// constraints for this node to the operands of the node.  This returns
  /// true if it makes a change, false otherwise.  If a type contradiction is
  /// found, throw an exception.
  bool ApplyTypeConstraints(TreePatternNode *N, TreePattern &TP) const {
    bool MadeChange = false;
    for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i)
      MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP);
    return MadeChange;
  }
};
  
/// TreePredicateFn - This is an abstraction that represents the predicates on
/// a PatFrag node.  This is a simple one-word wrapper around a pointer to
/// provide nice accessors.
class TreePredicateFn {
  /// PatFragRec - This is the TreePattern for the PatFrag that we
  /// originally came from.
  TreePattern *PatFragRec;
public:
  /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
  TreePredicateFn(TreePattern *N);

  
  TreePattern *getOrigPatFragRecord() const { return PatFragRec; }
  
  /// isAlwaysTrue - Return true if this is a noop predicate.
  bool isAlwaysTrue() const;
  
  bool isImmediatePattern() const { return !getImmCode().empty(); }
  
  /// getImmediatePredicateCode - Return the code that evaluates this pattern if
  /// this is an immediate predicate.  It is an error to call this on a
  /// non-immediate pattern.
  std::string getImmediatePredicateCode() const {
    std::string Result = getImmCode();
    assert(!Result.empty() && "Isn't an immediate pattern!");
    return Result;
  }
  
  
  bool operator==(const TreePredicateFn &RHS) const {
    return PatFragRec == RHS.PatFragRec;
  }

  bool operator!=(const TreePredicateFn &RHS) const { return !(*this == RHS); }

  /// Return the name to use in the generated code to reference this, this is
  /// "Predicate_foo" if from a pattern fragment "foo".
  std::string getFnName() const;
  
  /// getCodeToRunOnSDNode - Return the code for the function body that
  /// evaluates this predicate.  The argument is expected to be in "Node",
  /// not N.  This handles casting and conversion to a concrete node type as
  /// appropriate.
  std::string getCodeToRunOnSDNode() const;
  
private:
  std::string getPredCode() const;
  std::string getImmCode() const;
};
  

/// FIXME: TreePatternNode's can be shared in some cases (due to dag-shaped
/// patterns), and as such should be ref counted.  We currently just leak all
/// TreePatternNode objects!
class TreePatternNode {
  /// The type of each node result.  Before and during type inference, each
  /// result may be a set of possible types.  After (successful) type inference,
  /// each is a single concrete type.
  SmallVector<EEVT::TypeSet, 1> Types;

  /// Operator - The Record for the operator if this is an interior node (not
  /// a leaf).
  Record *Operator;

  /// Val - The init value (e.g. the "GPRC" record, or "7") for a leaf.
  ///
  Init *Val;

  /// Name - The name given to this node with the :$foo notation.
  ///
  std::string Name;

  /// PredicateFns - The predicate functions to execute on this node to check
  /// for a match.  If this list is empty, no predicate is involved.
  std::vector<TreePredicateFn> PredicateFns;

  /// TransformFn - The transformation function to execute on this node before
  /// it can be substituted into the resulting instruction on a pattern match.
  Record *TransformFn;

  std::vector<TreePatternNode*> Children;
public:
  TreePatternNode(Record *Op, const std::vector<TreePatternNode*> &Ch,
                  unsigned NumResults)
    : Operator(Op), Val(0), TransformFn(0), Children(Ch) {
    Types.resize(NumResults);
  }
  TreePatternNode(Init *val, unsigned NumResults)    // leaf ctor
    : Operator(0), Val(val), TransformFn(0) {
    Types.resize(NumResults);
  }
  ~TreePatternNode();

  const std::string &getName() const { return Name; }
  void setName(StringRef N) { Name.assign(N.begin(), N.end()); }

  bool isLeaf() const { return Val != 0; }

  // Type accessors.
  unsigned getNumTypes() const { return Types.size(); }
  MVT::SimpleValueType getType(unsigned ResNo) const {
    return Types[ResNo].getConcrete();
  }
  const SmallVectorImpl<EEVT::TypeSet> &getExtTypes() const { return Types; }
  const EEVT::TypeSet &getExtType(unsigned ResNo) const { return Types[ResNo]; }
  EEVT::TypeSet &getExtType(unsigned ResNo) { return Types[ResNo]; }
  void setType(unsigned ResNo, const EEVT::TypeSet &T) { Types[ResNo] = T; }

  bool hasTypeSet(unsigned ResNo) const {
    return Types[ResNo].isConcrete();
  }
  bool isTypeCompletelyUnknown(unsigned ResNo) const {
    return Types[ResNo].isCompletelyUnknown();
  }
  bool isTypeDynamicallyResolved(unsigned ResNo) const {
    return Types[ResNo].isDynamicallyResolved();
  }

  Init *getLeafValue() const { assert(isLeaf()); return Val; }
  Record *getOperator() const { assert(!isLeaf()); return Operator; }

  unsigned getNumChildren() const { return Children.size(); }
  TreePatternNode *getChild(unsigned N) const { return Children[N]; }
  void setChild(unsigned i, TreePatternNode *N) {
    Children[i] = N;
  }

  /// hasChild - Return true if N is any of our children.
  bool hasChild(const TreePatternNode *N) const {
    for (unsigned i = 0, e = Children.size(); i != e; ++i)
      if (Children[i] == N) return true;
    return false;
  }

  bool hasAnyPredicate() const { return !PredicateFns.empty(); }
  
  const std::vector<TreePredicateFn> &getPredicateFns() const {
    return PredicateFns;
  }
  void clearPredicateFns() { PredicateFns.clear(); }
  void setPredicateFns(const std::vector<TreePredicateFn> &Fns) {
    assert(PredicateFns.empty() && "Overwriting non-empty predicate list!");
    PredicateFns = Fns;
  }
  void addPredicateFn(const TreePredicateFn &Fn) {
    assert(!Fn.isAlwaysTrue() && "Empty predicate string!");
    if (std::find(PredicateFns.begin(), PredicateFns.end(), Fn) ==
          PredicateFns.end())
      PredicateFns.push_back(Fn);
  }

  Record *getTransformFn() const { return TransformFn; }
  void setTransformFn(Record *Fn) { TransformFn = Fn; }

  /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
  /// CodeGenIntrinsic information for it, otherwise return a null pointer.
  const CodeGenIntrinsic *getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const;

  /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
  /// return the ComplexPattern information, otherwise return null.
  const ComplexPattern *
  getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const;

  /// NodeHasProperty - Return true if this node has the specified property.
  bool NodeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;

  /// TreeHasProperty - Return true if any node in this tree has the specified
  /// property.
  bool TreeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;

  /// isCommutativeIntrinsic - Return true if the node is an intrinsic which is
  /// marked isCommutative.
  bool isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const;

  void print(raw_ostream &OS) const;
  void dump() const;

public:   // Higher level manipulation routines.

  /// clone - Return a new copy of this tree.
  ///
  TreePatternNode *clone() const;

  /// RemoveAllTypes - Recursively strip all the types of this tree.
  void RemoveAllTypes();

  /// isIsomorphicTo - Return true if this node is recursively isomorphic to
  /// the specified node.  For this comparison, all of the state of the node
  /// is considered, except for the assigned name.  Nodes with differing names
  /// that are otherwise identical are considered isomorphic.
  bool isIsomorphicTo(const TreePatternNode *N,
                      const MultipleUseVarSet &DepVars) const;

  /// SubstituteFormalArguments - Replace the formal arguments in this tree
  /// with actual values specified by ArgMap.
  void SubstituteFormalArguments(std::map<std::string,
                                          TreePatternNode*> &ArgMap);

  /// InlinePatternFragments - If this pattern refers to any pattern
  /// fragments, inline them into place, giving us a pattern without any
  /// PatFrag references.
  TreePatternNode *InlinePatternFragments(TreePattern &TP);

  /// ApplyTypeConstraints - Apply all of the type constraints relevant to
  /// this node and its children in the tree.  This returns true if it makes a
  /// change, false otherwise.  If a type contradiction is found, throw an
  /// exception.
  bool ApplyTypeConstraints(TreePattern &TP, bool NotRegisters);

  /// UpdateNodeType - Set the node type of N to VT if VT contains
  /// information.  If N already contains a conflicting type, then throw an
  /// exception.  This returns true if any information was updated.
  ///
  bool UpdateNodeType(unsigned ResNo, const EEVT::TypeSet &InTy,
                      TreePattern &TP) {
    return Types[ResNo].MergeInTypeInfo(InTy, TP);
  }

  bool UpdateNodeType(unsigned ResNo, MVT::SimpleValueType InTy,
                      TreePattern &TP) {
    return Types[ResNo].MergeInTypeInfo(EEVT::TypeSet(InTy, TP), TP);
  }

  /// ContainsUnresolvedType - Return true if this tree contains any
  /// unresolved types.
  bool ContainsUnresolvedType() const {
    for (unsigned i = 0, e = Types.size(); i != e; ++i)
      if (!Types[i].isConcrete()) return true;

    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
      if (getChild(i)->ContainsUnresolvedType()) return true;
    return false;
  }

  /// canPatternMatch - If it is impossible for this pattern to match on this
  /// target, fill in Reason and return false.  Otherwise, return true.
  bool canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP);
};

inline raw_ostream &operator<<(raw_ostream &OS, const TreePatternNode &TPN) {
  TPN.print(OS);
  return OS;
}


/// TreePattern - Represent a pattern, used for instructions, pattern
/// fragments, etc.
///
class TreePattern {
  /// Trees - The list of pattern trees which corresponds to this pattern.
  /// Note that PatFrag's only have a single tree.
  ///
  std::vector<TreePatternNode*> Trees;

  /// NamedNodes - This is all of the nodes that have names in the trees in this
  /// pattern.
  StringMap<SmallVector<TreePatternNode*,1> > NamedNodes;

  /// TheRecord - The actual TableGen record corresponding to this pattern.
  ///
  Record *TheRecord;

  /// Args - This is a list of all of the arguments to this pattern (for
  /// PatFrag patterns), which are the 'node' markers in this pattern.
  std::vector<std::string> Args;

  /// CDP - the top-level object coordinating this madness.
  ///
  CodeGenDAGPatterns &CDP;

  /// isInputPattern - True if this is an input pattern, something to match.
  /// False if this is an output pattern, something to emit.
  bool isInputPattern;
public:

  /// TreePattern constructor - Parse the specified DagInits into the
  /// current record.
  TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
              CodeGenDAGPatterns &ise);
  TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
              CodeGenDAGPatterns &ise);
  TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
              CodeGenDAGPatterns &ise);

  /// getTrees - Return the tree patterns which corresponds to this pattern.
  ///
  const std::vector<TreePatternNode*> &getTrees() const { return Trees; }
  unsigned getNumTrees() const { return Trees.size(); }
  TreePatternNode *getTree(unsigned i) const { return Trees[i]; }
  TreePatternNode *getOnlyTree() const {
    assert(Trees.size() == 1 && "Doesn't have exactly one pattern!");
    return Trees[0];
  }

  const StringMap<SmallVector<TreePatternNode*,1> > &getNamedNodesMap() {
    if (NamedNodes.empty())
      ComputeNamedNodes();
    return NamedNodes;
  }

  /// getRecord - Return the actual TableGen record corresponding to this
  /// pattern.
  ///
  Record *getRecord() const { return TheRecord; }

  unsigned getNumArgs() const { return Args.size(); }
  const std::string &getArgName(unsigned i) const {
    assert(i < Args.size() && "Argument reference out of range!");
    return Args[i];
  }
  std::vector<std::string> &getArgList() { return Args; }

  CodeGenDAGPatterns &getDAGPatterns() const { return CDP; }

  /// InlinePatternFragments - If this pattern refers to any pattern
  /// fragments, inline them into place, giving us a pattern without any
  /// PatFrag references.
  void InlinePatternFragments() {
    for (unsigned i = 0, e = Trees.size(); i != e; ++i)
      Trees[i] = Trees[i]->InlinePatternFragments(*this);
  }

  /// InferAllTypes - Infer/propagate as many types throughout the expression
  /// patterns as possible.  Return true if all types are inferred, false
  /// otherwise.  Throw an exception if a type contradiction is found.
  bool InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> >
                          *NamedTypes=0);

  /// error - Throw an exception, prefixing it with information about this
  /// pattern.
  void error(const std::string &Msg) const;

  void print(raw_ostream &OS) const;
  void dump() const;

private:
  TreePatternNode *ParseTreePattern(Init *DI, StringRef OpName);
  void ComputeNamedNodes();
  void ComputeNamedNodes(TreePatternNode *N);
};

/// DAGDefaultOperand - One of these is created for each PredicateOperand
/// or OptionalDefOperand that has a set ExecuteAlways / DefaultOps field.
struct DAGDefaultOperand {
  std::vector<TreePatternNode*> DefaultOps;
};

class DAGInstruction {
  TreePattern *Pattern;
  std::vector<Record*> Results;
  std::vector<Record*> Operands;
  std::vector<Record*> ImpResults;
  TreePatternNode *ResultPattern;
public:
  DAGInstruction(TreePattern *TP,
                 const std::vector<Record*> &results,
                 const std::vector<Record*> &operands,
                 const std::vector<Record*> &impresults)
    : Pattern(TP), Results(results), Operands(operands),
      ImpResults(impresults), ResultPattern(0) {}

  const TreePattern *getPattern() const { return Pattern; }
  unsigned getNumResults() const { return Results.size(); }
  unsigned getNumOperands() const { return Operands.size(); }
  unsigned getNumImpResults() const { return ImpResults.size(); }
  const std::vector<Record*>& getImpResults() const { return ImpResults; }

  void setResultPattern(TreePatternNode *R) { ResultPattern = R; }

  Record *getResult(unsigned RN) const {
    assert(RN < Results.size());
    return Results[RN];
  }

  Record *getOperand(unsigned ON) const {
    assert(ON < Operands.size());
    return Operands[ON];
  }

  Record *getImpResult(unsigned RN) const {
    assert(RN < ImpResults.size());
    return ImpResults[RN];
  }

  TreePatternNode *getResultPattern() const { return ResultPattern; }
};

/// PatternToMatch - Used by CodeGenDAGPatterns to keep tab of patterns
/// processed to produce isel.
class PatternToMatch {
public:
  PatternToMatch(Record *srcrecord, ListInit *preds,
                 TreePatternNode *src, TreePatternNode *dst,
                 const std::vector<Record*> &dstregs,
                 unsigned complexity, unsigned uid)
    : SrcRecord(srcrecord), Predicates(preds), SrcPattern(src), DstPattern(dst),
      Dstregs(dstregs), AddedComplexity(complexity), ID(uid) {}

  Record          *SrcRecord;   // Originating Record for the pattern.
  ListInit        *Predicates;  // Top level predicate conditions to match.
  TreePatternNode *SrcPattern;  // Source pattern to match.
  TreePatternNode *DstPattern;  // Resulting pattern.
  std::vector<Record*> Dstregs; // Physical register defs being matched.
  unsigned         AddedComplexity; // Add to matching pattern complexity.
  unsigned         ID;          // Unique ID for the record.

  Record          *getSrcRecord()  const { return SrcRecord; }
  ListInit        *getPredicates() const { return Predicates; }
  TreePatternNode *getSrcPattern() const { return SrcPattern; }
  TreePatternNode *getDstPattern() const { return DstPattern; }
  const std::vector<Record*> &getDstRegs() const { return Dstregs; }
  unsigned         getAddedComplexity() const { return AddedComplexity; }

  std::string getPredicateCheck() const;

  /// Compute the complexity metric for the input pattern.  This roughly
  /// corresponds to the number of nodes that are covered.
  unsigned getPatternComplexity(const CodeGenDAGPatterns &CGP) const;
};

// Deterministic comparison of Record*.
struct RecordPtrCmp {
  bool operator()(const Record *LHS, const Record *RHS) const;
};

class CodeGenDAGPatterns {
  RecordKeeper &Records;
  CodeGenTarget Target;
  std::vector<CodeGenIntrinsic> Intrinsics;
  std::vector<CodeGenIntrinsic> TgtIntrinsics;

  std::map<Record*, SDNodeInfo, RecordPtrCmp> SDNodes;
  std::map<Record*, std::pair<Record*, std::string>, RecordPtrCmp> SDNodeXForms;
  std::map<Record*, ComplexPattern, RecordPtrCmp> ComplexPatterns;
  std::map<Record*, TreePattern*, RecordPtrCmp> PatternFragments;
  std::map<Record*, DAGDefaultOperand, RecordPtrCmp> DefaultOperands;
  std::map<Record*, DAGInstruction, RecordPtrCmp> Instructions;

  // Specific SDNode definitions:
  Record *intrinsic_void_sdnode;
  Record *intrinsic_w_chain_sdnode, *intrinsic_wo_chain_sdnode;

  /// PatternsToMatch - All of the things we are matching on the DAG.  The first
  /// value is the pattern to match, the second pattern is the result to
  /// emit.
  std::vector<PatternToMatch> PatternsToMatch;
public:
  CodeGenDAGPatterns(RecordKeeper &R);
  ~CodeGenDAGPatterns();

  CodeGenTarget &getTargetInfo() { return Target; }
  const CodeGenTarget &getTargetInfo() const { return Target; }

  Record *getSDNodeNamed(const std::string &Name) const;

  const SDNodeInfo &getSDNodeInfo(Record *R) const {
    assert(SDNodes.count(R) && "Unknown node!");
    return SDNodes.find(R)->second;
  }

  // Node transformation lookups.
  typedef std::pair<Record*, std::string> NodeXForm;
  const NodeXForm &getSDNodeTransform(Record *R) const {
    assert(SDNodeXForms.count(R) && "Invalid transform!");
    return SDNodeXForms.find(R)->second;
  }

  typedef std::map<Record*, NodeXForm, RecordPtrCmp>::const_iterator
          nx_iterator;
  nx_iterator nx_begin() const { return SDNodeXForms.begin(); }
  nx_iterator nx_end() const { return SDNodeXForms.end(); }


  const ComplexPattern &getComplexPattern(Record *R) const {
    assert(ComplexPatterns.count(R) && "Unknown addressing mode!");
    return ComplexPatterns.find(R)->second;
  }

  const CodeGenIntrinsic &getIntrinsic(Record *R) const {
    for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
      if (Intrinsics[i].TheDef == R) return Intrinsics[i];
    for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i)
      if (TgtIntrinsics[i].TheDef == R) return TgtIntrinsics[i];
    assert(0 && "Unknown intrinsic!");
    abort();
  }

  const CodeGenIntrinsic &getIntrinsicInfo(unsigned IID) const {
    if (IID-1 < Intrinsics.size())
      return Intrinsics[IID-1];
    if (IID-Intrinsics.size()-1 < TgtIntrinsics.size())
      return TgtIntrinsics[IID-Intrinsics.size()-1];
    assert(0 && "Bad intrinsic ID!");
    abort();
  }

  unsigned getIntrinsicID(Record *R) const {
    for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
      if (Intrinsics[i].TheDef == R) return i;
    for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i)
      if (TgtIntrinsics[i].TheDef == R) return i + Intrinsics.size();
    assert(0 && "Unknown intrinsic!");
    abort();
  }

  const DAGDefaultOperand &getDefaultOperand(Record *R) const {
    assert(DefaultOperands.count(R) &&"Isn't an analyzed default operand!");
    return DefaultOperands.find(R)->second;
  }

  // Pattern Fragment information.
  TreePattern *getPatternFragment(Record *R) const {
    assert(PatternFragments.count(R) && "Invalid pattern fragment request!");
    return PatternFragments.find(R)->second;
  }
  TreePattern *getPatternFragmentIfRead(Record *R) const {
    if (!PatternFragments.count(R)) return 0;
    return PatternFragments.find(R)->second;
  }

  typedef std::map<Record*, TreePattern*, RecordPtrCmp>::const_iterator
          pf_iterator;
  pf_iterator pf_begin() const { return PatternFragments.begin(); }
  pf_iterator pf_end() const { return PatternFragments.end(); }

  // Patterns to match information.
  typedef std::vector<PatternToMatch>::const_iterator ptm_iterator;
  ptm_iterator ptm_begin() const { return PatternsToMatch.begin(); }
  ptm_iterator ptm_end() const { return PatternsToMatch.end(); }



  const DAGInstruction &getInstruction(Record *R) const {
    assert(Instructions.count(R) && "Unknown instruction!");
    return Instructions.find(R)->second;
  }

  Record *get_intrinsic_void_sdnode() const {
    return intrinsic_void_sdnode;
  }
  Record *get_intrinsic_w_chain_sdnode() const {
    return intrinsic_w_chain_sdnode;
  }
  Record *get_intrinsic_wo_chain_sdnode() const {
    return intrinsic_wo_chain_sdnode;
  }

  bool hasTargetIntrinsics() { return !TgtIntrinsics.empty(); }

private:
  void ParseNodeInfo();
  void ParseNodeTransforms();
  void ParseComplexPatterns();
  void ParsePatternFragments();
  void ParseDefaultOperands();
  void ParseInstructions();
  void ParsePatterns();
  void InferInstructionFlags();
  void GenerateVariants();

  void AddPatternToMatch(const TreePattern *Pattern, const PatternToMatch &PTM);
  void FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
                                   std::map<std::string,
                                   TreePatternNode*> &InstInputs,
                                   std::map<std::string,
                                   TreePatternNode*> &InstResults,
                                   std::vector<Record*> &InstImpResults);
};
} // end namespace llvm

#endif