aboutsummaryrefslogtreecommitdiffstats
path: root/utils/TableGen/CodeGenTarget.h
blob: 6b06b66c29bcb63fad91842687692e04a1829cd9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
//===- CodeGenTarget.h - Target Class Wrapper -------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines wrappers for the Target class and related global
// functionality.  This makes it easier to access the data and provides a single
// place that needs to check it for validity.  All of these classes throw
// exceptions on error conditions.
//
//===----------------------------------------------------------------------===//

#ifndef CODEGEN_TARGET_H
#define CODEGEN_TARGET_H

#include "CodeGenRegisters.h"
#include "CodeGenInstruction.h"
#include "Record.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>

namespace llvm {

struct CodeGenRegister;
class CodeGenTarget;

// SelectionDAG node properties.
//  SDNPMemOperand: indicates that a node touches memory and therefore must
//                  have an associated memory operand that describes the access.
enum SDNP {
  SDNPCommutative, 
  SDNPAssociative, 
  SDNPHasChain,
  SDNPOutFlag,
  SDNPInFlag,
  SDNPOptInFlag,
  SDNPMayLoad,
  SDNPMayStore,
  SDNPSideEffect,
  SDNPMemOperand,
  SDNPVariadic
};

/// getValueType - Return the MVT::SimpleValueType that the specified TableGen
/// record corresponds to.
MVT::SimpleValueType getValueType(Record *Rec);

std::string getName(MVT::SimpleValueType T);
std::string getEnumName(MVT::SimpleValueType T);

/// getQualifiedName - Return the name of the specified record, with a
/// namespace qualifier if the record contains one.
std::string getQualifiedName(const Record *R);
  
/// CodeGenTarget - This class corresponds to the Target class in the .td files.
///
class CodeGenTarget {
  Record *TargetRec;

  mutable DenseMap<const Record*, CodeGenInstruction*> Instructions;
  mutable std::vector<CodeGenRegister> Registers;
  mutable std::vector<Record*> SubRegIndices;
  mutable std::vector<CodeGenRegisterClass> RegisterClasses;
  mutable std::vector<MVT::SimpleValueType> LegalValueTypes;
  void ReadRegisters() const;
  void ReadSubRegIndices() const;
  void ReadRegisterClasses() const;
  void ReadInstructions() const;
  void ReadLegalValueTypes() const;
  
  mutable std::vector<const CodeGenInstruction*> InstrsByEnum;
public:
  CodeGenTarget();

  Record *getTargetRecord() const { return TargetRec; }
  const std::string &getName() const;

  /// getInstNamespace - Return the target-specific instruction namespace.
  ///
  std::string getInstNamespace() const;

  /// getInstructionSet - Return the InstructionSet object.
  ///
  Record *getInstructionSet() const;

  /// getAsmParser - Return the AssemblyParser definition for this target.
  ///
  Record *getAsmParser() const;

  /// getAsmWriter - Return the AssemblyWriter definition for this target.
  ///
  Record *getAsmWriter() const;

  const std::vector<CodeGenRegister> &getRegisters() const {
    if (Registers.empty()) ReadRegisters();
    return Registers;
  }

  const std::vector<Record*> &getSubRegIndices() const {
    if (SubRegIndices.empty()) ReadSubRegIndices();
    return SubRegIndices;
  }

  // Map a SubRegIndex Record to its number.
  unsigned getSubRegIndexNo(Record *idx) const {
    if (SubRegIndices.empty()) ReadSubRegIndices();
    std::vector<Record*>::const_iterator i =
      std::find(SubRegIndices.begin(), SubRegIndices.end(), idx);
    assert(i != SubRegIndices.end() && "Not a SubRegIndex");
    return (i - SubRegIndices.begin()) + 1;
  }

  const std::vector<CodeGenRegisterClass> &getRegisterClasses() const {
    if (RegisterClasses.empty()) ReadRegisterClasses();
    return RegisterClasses;
  }

  const CodeGenRegisterClass &getRegisterClass(Record *R) const {
    const std::vector<CodeGenRegisterClass> &RC = getRegisterClasses();
    for (unsigned i = 0, e = RC.size(); i != e; ++i)
      if (RC[i].TheDef == R)
        return RC[i];
    assert(0 && "Didn't find the register class");
    abort();
  }
  
  /// getRegisterClassForRegister - Find the register class that contains the
  /// specified physical register.  If the register is not in a register
  /// class, return null. If the register is in multiple classes, and the
  /// classes have a superset-subset relationship and the same set of
  /// types, return the superclass.  Otherwise return null.
  const CodeGenRegisterClass *getRegisterClassForRegister(Record *R) const {
    const std::vector<CodeGenRegisterClass> &RCs = getRegisterClasses();
    const CodeGenRegisterClass *FoundRC = 0;
    for (unsigned i = 0, e = RCs.size(); i != e; ++i) {
      const CodeGenRegisterClass &RC = RegisterClasses[i];
      for (unsigned ei = 0, ee = RC.Elements.size(); ei != ee; ++ei) {
        if (R != RC.Elements[ei])
          continue;

        // If a register's classes have different types, return null.
        if (FoundRC && RC.getValueTypes() != FoundRC->getValueTypes())
          return 0;

        // If this is the first class that contains the register,
        // make a note of it and go on to the next class.
        if (!FoundRC) {
          FoundRC = &RC;
          break;
        }

        std::vector<Record *> Elements(RC.Elements);
        std::vector<Record *> FoundElements(FoundRC->Elements);
        std::sort(Elements.begin(), Elements.end());
        std::sort(FoundElements.begin(), FoundElements.end());

        // Check to see if the previously found class that contains
        // the register is a subclass of the current class. If so,
        // prefer the superclass.
        if (std::includes(Elements.begin(), Elements.end(),
                          FoundElements.begin(), FoundElements.end())) {
          FoundRC = &RC;
          break;
        }

        // Check to see if the previously found class that contains
        // the register is a superclass of the current class. If so,
        // prefer the superclass.
        if (std::includes(FoundElements.begin(), FoundElements.end(),
                          Elements.begin(), Elements.end()))
          break;

        // Multiple classes, and neither is a superclass of the other.
        // Return null.
        return 0;
      }
    }
    return FoundRC;
  }

  /// getRegisterVTs - Find the union of all possible SimpleValueTypes for the
  /// specified physical register.
  std::vector<MVT::SimpleValueType> getRegisterVTs(Record *R) const;
  
  const std::vector<MVT::SimpleValueType> &getLegalValueTypes() const {
    if (LegalValueTypes.empty()) ReadLegalValueTypes();
    return LegalValueTypes;
  }
  
  /// isLegalValueType - Return true if the specified value type is natively
  /// supported by the target (i.e. there are registers that directly hold it).
  bool isLegalValueType(MVT::SimpleValueType VT) const {
    const std::vector<MVT::SimpleValueType> &LegalVTs = getLegalValueTypes();
    for (unsigned i = 0, e = LegalVTs.size(); i != e; ++i)
      if (LegalVTs[i] == VT) return true;
    return false;    
  }

private:
  DenseMap<const Record*, CodeGenInstruction*> &getInstructions() const {
    if (Instructions.empty()) ReadInstructions();
    return Instructions;
  }
public:
  
  CodeGenInstruction &getInstruction(const Record *InstRec) const {
    if (Instructions.empty()) ReadInstructions();
    DenseMap<const Record*, CodeGenInstruction*>::iterator I =
      Instructions.find(InstRec);
    assert(I != Instructions.end() && "Not an instruction");
    return *I->second;
  }

  /// getInstructionsByEnumValue - Return all of the instructions defined by the
  /// target, ordered by their enum value.
  const std::vector<const CodeGenInstruction*> &
  getInstructionsByEnumValue() const {
    if (InstrsByEnum.empty()) ComputeInstrsByEnum();
    return InstrsByEnum;
  }

  typedef std::vector<const CodeGenInstruction*>::const_iterator inst_iterator;
  inst_iterator inst_begin() const{return getInstructionsByEnumValue().begin();}
  inst_iterator inst_end() const { return getInstructionsByEnumValue().end(); }
  
  
  /// isLittleEndianEncoding - are instruction bit patterns defined as  [0..n]?
  ///
  bool isLittleEndianEncoding() const;
  
private:
  void ComputeInstrsByEnum() const;
};

/// ComplexPattern - ComplexPattern info, corresponding to the ComplexPattern
/// tablegen class in TargetSelectionDAG.td
class ComplexPattern {
  MVT::SimpleValueType Ty;
  unsigned NumOperands;
  std::string SelectFunc;
  std::vector<Record*> RootNodes;
  unsigned Properties; // Node properties
public:
  ComplexPattern() : NumOperands(0) {}
  ComplexPattern(Record *R);

  MVT::SimpleValueType getValueType() const { return Ty; }
  unsigned getNumOperands() const { return NumOperands; }
  const std::string &getSelectFunc() const { return SelectFunc; }
  const std::vector<Record*> &getRootNodes() const {
    return RootNodes;
  }
  bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); }
};

} // End llvm namespace

#endif