aboutsummaryrefslogtreecommitdiffstats
path: root/utils/TableGen/DAGISelEmitter.cpp
blob: 8a73404dad95ca9a0fedd3be422aedff35aeed41 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
//===- DAGISelEmitter.cpp - Generate an instruction selector --------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend emits a DAG instruction selector.
//
//===----------------------------------------------------------------------===//

#include "DAGISelEmitter.h"
#include "DAGISelMatcher.h"
#include "Record.h"
#include "llvm/Support/Debug.h"
using namespace llvm;

//===----------------------------------------------------------------------===//
// DAGISelEmitter Helper methods
//

/// getResultPatternCost - Compute the number of instructions for this pattern.
/// This is a temporary hack.  We should really include the instruction
/// latencies in this calculation.
static unsigned getResultPatternCost(TreePatternNode *P,
                                     CodeGenDAGPatterns &CGP) {
  if (P->isLeaf()) return 0;
  
  unsigned Cost = 0;
  Record *Op = P->getOperator();
  if (Op->isSubClassOf("Instruction")) {
    Cost++;
    CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op);
    if (II.usesCustomInserter)
      Cost += 10;
  }
  for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
    Cost += getResultPatternCost(P->getChild(i), CGP);
  return Cost;
}

/// getResultPatternCodeSize - Compute the code size of instructions for this
/// pattern.
static unsigned getResultPatternSize(TreePatternNode *P, 
                                     CodeGenDAGPatterns &CGP) {
  if (P->isLeaf()) return 0;

  unsigned Cost = 0;
  Record *Op = P->getOperator();
  if (Op->isSubClassOf("Instruction")) {
    Cost += Op->getValueAsInt("CodeSize");
  }
  for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
    Cost += getResultPatternSize(P->getChild(i), CGP);
  return Cost;
}

namespace {
// PatternSortingPredicate - return true if we prefer to match LHS before RHS.
// In particular, we want to match maximal patterns first and lowest cost within
// a particular complexity first.
struct PatternSortingPredicate {
  PatternSortingPredicate(CodeGenDAGPatterns &cgp) : CGP(cgp) {}
  CodeGenDAGPatterns &CGP;
  
  bool operator()(const PatternToMatch *LHS, const PatternToMatch *RHS) {
    const TreePatternNode *LHSSrc = LHS->getSrcPattern();
    const TreePatternNode *RHSSrc = RHS->getSrcPattern();
    
    if (LHSSrc->getNumTypes() != 0 && RHSSrc->getNumTypes() != 0 &&
        LHSSrc->getType(0) != RHSSrc->getType(0)) {
      MVT::SimpleValueType V1 = LHSSrc->getType(0), V2 = RHSSrc->getType(0);
      if (MVT(V1).isVector() != MVT(V2).isVector())
        return MVT(V2).isVector();
      
      if (MVT(V1).isFloatingPoint() != MVT(V2).isFloatingPoint())
        return MVT(V2).isFloatingPoint();
    }
    
    // Otherwise, if the patterns might both match, sort based on complexity,
    // which means that we prefer to match patterns that cover more nodes in the
    // input over nodes that cover fewer.
    unsigned LHSSize = LHS->getPatternComplexity(CGP);
    unsigned RHSSize = RHS->getPatternComplexity(CGP);
    if (LHSSize > RHSSize) return true;   // LHS -> bigger -> less cost
    if (LHSSize < RHSSize) return false;
    
    // If the patterns have equal complexity, compare generated instruction cost
    unsigned LHSCost = getResultPatternCost(LHS->getDstPattern(), CGP);
    unsigned RHSCost = getResultPatternCost(RHS->getDstPattern(), CGP);
    if (LHSCost < RHSCost) return true;
    if (LHSCost > RHSCost) return false;
    
    unsigned LHSPatSize = getResultPatternSize(LHS->getDstPattern(), CGP);
    unsigned RHSPatSize = getResultPatternSize(RHS->getDstPattern(), CGP);
    if (LHSPatSize < RHSPatSize) return true;
    if (LHSPatSize > RHSPatSize) return false;
    
    // Sort based on the UID of the pattern, giving us a deterministic ordering
    // if all other sorting conditions fail.
    assert(LHS == RHS || LHS->ID != RHS->ID);
    return LHS->ID < RHS->ID;
  }
};
}


void DAGISelEmitter::run(raw_ostream &OS) {
  EmitSourceFileHeader("DAG Instruction Selector for the " +
                       CGP.getTargetInfo().getName() + " target", OS);
  
  OS << "// *** NOTE: This file is #included into the middle of the target\n"
     << "// *** instruction selector class.  These functions are really "
     << "methods.\n\n";

  DEBUG(errs() << "\n\nALL PATTERNS TO MATCH:\n\n";
        for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(),
             E = CGP.ptm_end(); I != E; ++I) {
          errs() << "PATTERN: ";   I->getSrcPattern()->dump();
          errs() << "\nRESULT:  "; I->getDstPattern()->dump();
          errs() << "\n";
        });

  // Add all the patterns to a temporary list so we can sort them.
  std::vector<const PatternToMatch*> Patterns;
  for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(), E = CGP.ptm_end();
       I != E; ++I)
    Patterns.push_back(&*I);

  // We want to process the matches in order of minimal cost.  Sort the patterns
  // so the least cost one is at the start.
  std::sort(Patterns.begin(), Patterns.end(), PatternSortingPredicate(CGP));
  
  
  // Convert each variant of each pattern into a Matcher.
  std::vector<Matcher*> PatternMatchers;
  for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
    for (unsigned Variant = 0; ; ++Variant) {
      if (Matcher *M = ConvertPatternToMatcher(*Patterns[i], Variant, CGP))
        PatternMatchers.push_back(M);
      else
        break;
    }
  }
          
  Matcher *TheMatcher = new ScopeMatcher(&PatternMatchers[0],
                                         PatternMatchers.size());

  TheMatcher = OptimizeMatcher(TheMatcher, CGP);
  //Matcher->dump();
  EmitMatcherTable(TheMatcher, CGP, OS);
  delete TheMatcher;
}