aboutsummaryrefslogtreecommitdiffstats
path: root/utils/TableGen/DAGISelEmitter.cpp
blob: 355a438d84fd4d6e049121533a83d33b8a40644b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
//===- DAGISelEmitter.cpp - Generate an instruction selector --------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend emits a DAG instruction selector.
//
//===----------------------------------------------------------------------===//

#include "DAGISelEmitter.h"
#include "Record.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Debug.h"
#include <algorithm>
#include <deque>
#include <iostream>
using namespace llvm;

static cl::opt<bool>
GenDebug("gen-debug", cl::desc("Generate debug code"), cl::init(false));

//===----------------------------------------------------------------------===//
// DAGISelEmitter Helper methods
//

/// getNodeName - The top level Select_* functions have an "SDNode* N"
/// argument. When expanding the pattern-matching code, the intermediate
/// variables have type SDValue. This function provides a uniform way to
/// reference the underlying "SDNode *" for both cases.
static std::string getNodeName(const std::string &S) {
  if (S == "N") return S;
  return S + ".getNode()";
}

/// getNodeValue - Similar to getNodeName, except it provides a uniform
/// way to access the SDValue for both cases.
static std::string getValueName(const std::string &S) {
  if (S == "N") return "SDValue(N, 0)";
  return S;
}

/// NodeIsComplexPattern - return true if N is a leaf node and a subclass of
/// ComplexPattern.
static bool NodeIsComplexPattern(TreePatternNode *N) {
  return (N->isLeaf() &&
          dynamic_cast<DefInit*>(N->getLeafValue()) &&
          static_cast<DefInit*>(N->getLeafValue())->getDef()->
          isSubClassOf("ComplexPattern"));
}

/// NodeGetComplexPattern - return the pointer to the ComplexPattern if N
/// is a leaf node and a subclass of ComplexPattern, else it returns NULL.
static const ComplexPattern *NodeGetComplexPattern(TreePatternNode *N,
                                                   CodeGenDAGPatterns &CGP) {
  if (N->isLeaf() &&
      dynamic_cast<DefInit*>(N->getLeafValue()) &&
      static_cast<DefInit*>(N->getLeafValue())->getDef()->
      isSubClassOf("ComplexPattern")) {
    return &CGP.getComplexPattern(static_cast<DefInit*>(N->getLeafValue())
                                       ->getDef());
  }
  return NULL;
}

/// getPatternSize - Return the 'size' of this pattern.  We want to match large
/// patterns before small ones.  This is used to determine the size of a
/// pattern.
static unsigned getPatternSize(TreePatternNode *P, CodeGenDAGPatterns &CGP) {
  assert((EEVT::isExtIntegerInVTs(P->getExtTypes()) ||
          EEVT::isExtFloatingPointInVTs(P->getExtTypes()) ||
          P->getExtTypeNum(0) == MVT::isVoid ||
          P->getExtTypeNum(0) == MVT::Flag ||
          P->getExtTypeNum(0) == MVT::iPTR ||
          P->getExtTypeNum(0) == MVT::iPTRAny) && 
         "Not a valid pattern node to size!");
  unsigned Size = 3;  // The node itself.
  // If the root node is a ConstantSDNode, increases its size.
  // e.g. (set R32:$dst, 0).
  if (P->isLeaf() && dynamic_cast<IntInit*>(P->getLeafValue()))
    Size += 2;

  // FIXME: This is a hack to statically increase the priority of patterns
  // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD.
  // Later we can allow complexity / cost for each pattern to be (optionally)
  // specified. To get best possible pattern match we'll need to dynamically
  // calculate the complexity of all patterns a dag can potentially map to.
  const ComplexPattern *AM = NodeGetComplexPattern(P, CGP);
  if (AM)
    Size += AM->getNumOperands() * 3;

  // If this node has some predicate function that must match, it adds to the
  // complexity of this node.
  if (!P->getPredicateFns().empty())
    ++Size;
  
  // Count children in the count if they are also nodes.
  for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
    TreePatternNode *Child = P->getChild(i);
    if (!Child->isLeaf() && Child->getExtTypeNum(0) != MVT::Other)
      Size += getPatternSize(Child, CGP);
    else if (Child->isLeaf()) {
      if (dynamic_cast<IntInit*>(Child->getLeafValue())) 
        Size += 5;  // Matches a ConstantSDNode (+3) and a specific value (+2).
      else if (NodeIsComplexPattern(Child))
        Size += getPatternSize(Child, CGP);
      else if (!Child->getPredicateFns().empty())
        ++Size;
    }
  }
  
  return Size;
}

/// getResultPatternCost - Compute the number of instructions for this pattern.
/// This is a temporary hack.  We should really include the instruction
/// latencies in this calculation.
static unsigned getResultPatternCost(TreePatternNode *P,
                                     CodeGenDAGPatterns &CGP) {
  if (P->isLeaf()) return 0;
  
  unsigned Cost = 0;
  Record *Op = P->getOperator();
  if (Op->isSubClassOf("Instruction")) {
    Cost++;
    CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op->getName());
    if (II.usesCustomInserter)
      Cost += 10;
  }
  for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
    Cost += getResultPatternCost(P->getChild(i), CGP);
  return Cost;
}

/// getResultPatternCodeSize - Compute the code size of instructions for this
/// pattern.
static unsigned getResultPatternSize(TreePatternNode *P, 
                                     CodeGenDAGPatterns &CGP) {
  if (P->isLeaf()) return 0;

  unsigned Cost = 0;
  Record *Op = P->getOperator();
  if (Op->isSubClassOf("Instruction")) {
    Cost += Op->getValueAsInt("CodeSize");
  }
  for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
    Cost += getResultPatternSize(P->getChild(i), CGP);
  return Cost;
}

// PatternSortingPredicate - return true if we prefer to match LHS before RHS.
// In particular, we want to match maximal patterns first and lowest cost within
// a particular complexity first.
struct PatternSortingPredicate {
  PatternSortingPredicate(CodeGenDAGPatterns &cgp) : CGP(cgp) {}
  CodeGenDAGPatterns &CGP;

  typedef std::pair<unsigned, std::string> CodeLine;
  typedef std::vector<CodeLine> CodeList;
  typedef std::vector<std::pair<const PatternToMatch*, CodeList> > PatternList;

  bool operator()(const std::pair<const PatternToMatch*, CodeList> &LHSPair,
                  const std::pair<const PatternToMatch*, CodeList> &RHSPair) {
    const PatternToMatch *LHS = LHSPair.first;
    const PatternToMatch *RHS = RHSPair.first;

    unsigned LHSSize = getPatternSize(LHS->getSrcPattern(), CGP);
    unsigned RHSSize = getPatternSize(RHS->getSrcPattern(), CGP);
    LHSSize += LHS->getAddedComplexity();
    RHSSize += RHS->getAddedComplexity();
    if (LHSSize > RHSSize) return true;   // LHS -> bigger -> less cost
    if (LHSSize < RHSSize) return false;
    
    // If the patterns have equal complexity, compare generated instruction cost
    unsigned LHSCost = getResultPatternCost(LHS->getDstPattern(), CGP);
    unsigned RHSCost = getResultPatternCost(RHS->getDstPattern(), CGP);
    if (LHSCost < RHSCost) return true;
    if (LHSCost > RHSCost) return false;

    return getResultPatternSize(LHS->getDstPattern(), CGP) <
      getResultPatternSize(RHS->getDstPattern(), CGP);
  }
};

/// getRegisterValueType - Look up and return the ValueType of the specified
/// register. If the register is a member of multiple register classes which
/// have different associated types, return MVT::Other.
static MVT::SimpleValueType getRegisterValueType(Record *R, const CodeGenTarget &T) {
  bool FoundRC = false;
  MVT::SimpleValueType VT = MVT::Other;
  const std::vector<CodeGenRegisterClass> &RCs = T.getRegisterClasses();
  std::vector<CodeGenRegisterClass>::const_iterator RC;
  std::vector<Record*>::const_iterator Element;

  for (RC = RCs.begin() ; RC != RCs.end() ; RC++) {
    Element = find((*RC).Elements.begin(), (*RC).Elements.end(), R);
    if (Element != (*RC).Elements.end()) {
      if (!FoundRC) {
        FoundRC = true;
        VT = (*RC).getValueTypeNum(0);
      } else {
        // In multiple RC's
        if (VT != (*RC).getValueTypeNum(0)) {
          // Types of the RC's do not agree. Return MVT::Other. The
          // target is responsible for handling this.
          return MVT::Other;
        }
      }
    }
  }
  return VT;
}


/// RemoveAllTypes - A quick recursive walk over a pattern which removes all
/// type information from it.
static void RemoveAllTypes(TreePatternNode *N) {
  N->removeTypes();
  if (!N->isLeaf())
    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
      RemoveAllTypes(N->getChild(i));
}

/// NodeHasProperty - return true if TreePatternNode has the specified
/// property.
static bool NodeHasProperty(TreePatternNode *N, SDNP Property,
                            CodeGenDAGPatterns &CGP) {
  if (N->isLeaf()) {
    const ComplexPattern *CP = NodeGetComplexPattern(N, CGP);
    if (CP)
      return CP->hasProperty(Property);
    return false;
  }
  Record *Operator = N->getOperator();
  if (!Operator->isSubClassOf("SDNode")) return false;

  return CGP.getSDNodeInfo(Operator).hasProperty(Property);
}

static bool PatternHasProperty(TreePatternNode *N, SDNP Property,
                               CodeGenDAGPatterns &CGP) {
  if (NodeHasProperty(N, Property, CGP))
    return true;

  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
    TreePatternNode *Child = N->getChild(i);
    if (PatternHasProperty(Child, Property, CGP))
      return true;
  }

  return false;
}

static std::string getOpcodeName(Record *Op, CodeGenDAGPatterns &CGP) {
  return CGP.getSDNodeInfo(Op).getEnumName();
}

//===----------------------------------------------------------------------===//
// Node Transformation emitter implementation.
//
void DAGISelEmitter::EmitNodeTransforms(raw_ostream &OS) {
  // Walk the pattern fragments, adding them to a map, which sorts them by
  // name.
  typedef std::map<std::string, CodeGenDAGPatterns::NodeXForm> NXsByNameTy;
  NXsByNameTy NXsByName;

  for (CodeGenDAGPatterns::nx_iterator I = CGP.nx_begin(), E = CGP.nx_end();
       I != E; ++I)
    NXsByName.insert(std::make_pair(I->first->getName(), I->second));
  
  OS << "\n// Node transformations.\n";
  
  for (NXsByNameTy::iterator I = NXsByName.begin(), E = NXsByName.end();
       I != E; ++I) {
    Record *SDNode = I->second.first;
    std::string Code = I->second.second;
    
    if (Code.empty()) continue;  // Empty code?  Skip it.
    
    std::string ClassName = CGP.getSDNodeInfo(SDNode).getSDClassName();
    const char *C2 = ClassName == "SDNode" ? "N" : "inN";
    
    OS << "inline SDValue Transform_" << I->first << "(SDNode *" << C2
       << ") {\n";
    if (ClassName != "SDNode")
      OS << "  " << ClassName << " *N = cast<" << ClassName << ">(inN);\n";
    OS << Code << "\n}\n";
  }
}

//===----------------------------------------------------------------------===//
// Predicate emitter implementation.
//

void DAGISelEmitter::EmitPredicateFunctions(raw_ostream &OS) {
  OS << "\n// Predicate functions.\n";

  // Walk the pattern fragments, adding them to a map, which sorts them by
  // name.
  typedef std::map<std::string, std::pair<Record*, TreePattern*> > PFsByNameTy;
  PFsByNameTy PFsByName;

  for (CodeGenDAGPatterns::pf_iterator I = CGP.pf_begin(), E = CGP.pf_end();
       I != E; ++I)
    PFsByName.insert(std::make_pair(I->first->getName(), *I));

  
  for (PFsByNameTy::iterator I = PFsByName.begin(), E = PFsByName.end();
       I != E; ++I) {
    Record *PatFragRecord = I->second.first;// Record that derives from PatFrag.
    TreePattern *P = I->second.second;
    
    // If there is a code init for this fragment, emit the predicate code.
    std::string Code = PatFragRecord->getValueAsCode("Predicate");
    if (Code.empty()) continue;
    
    if (P->getOnlyTree()->isLeaf())
      OS << "inline bool Predicate_" << PatFragRecord->getName()
      << "(SDNode *N) {\n";
    else {
      std::string ClassName =
        CGP.getSDNodeInfo(P->getOnlyTree()->getOperator()).getSDClassName();
      const char *C2 = ClassName == "SDNode" ? "N" : "inN";
      
      OS << "inline bool Predicate_" << PatFragRecord->getName()
         << "(SDNode *" << C2 << ") {\n";
      if (ClassName != "SDNode")
        OS << "  " << ClassName << " *N = cast<" << ClassName << ">(inN);\n";
    }
    OS << Code << "\n}\n";
  }
  
  OS << "\n\n";
}


//===----------------------------------------------------------------------===//
// PatternCodeEmitter implementation.
//
class PatternCodeEmitter {
private:
  CodeGenDAGPatterns &CGP;

  // Predicates.
  std::string PredicateCheck;
  // Pattern cost.
  unsigned Cost;
  // Instruction selector pattern.
  TreePatternNode *Pattern;
  // Matched instruction.
  TreePatternNode *Instruction;
  
  // Node to name mapping
  std::map<std::string, std::string> VariableMap;
  // Node to operator mapping
  std::map<std::string, Record*> OperatorMap;
  // Name of the folded node which produces a flag.
  std::pair<std::string, unsigned> FoldedFlag;
  // Names of all the folded nodes which produce chains.
  std::vector<std::pair<std::string, unsigned> > FoldedChains;
  // Original input chain(s).
  std::vector<std::pair<std::string, std::string> > OrigChains;
  std::set<std::string> Duplicates;

  /// LSI - Load/Store information.
  /// Save loads/stores matched by a pattern, and generate a MemOperandSDNode
  /// for each memory access. This facilitates the use of AliasAnalysis in
  /// the backend.
  std::vector<std::string> LSI;

  /// GeneratedCode - This is the buffer that we emit code to.  The first int
  /// indicates whether this is an exit predicate (something that should be
  /// tested, and if true, the match fails) [when 1], or normal code to emit
  /// [when 0], or initialization code to emit [when 2].
  std::vector<std::pair<unsigned, std::string> > &GeneratedCode;
  /// GeneratedDecl - This is the set of all SDValue declarations needed for
  /// the set of patterns for each top-level opcode.
  std::set<std::string> &GeneratedDecl;
  /// TargetOpcodes - The target specific opcodes used by the resulting
  /// instructions.
  std::vector<std::string> &TargetOpcodes;
  std::vector<std::string> &TargetVTs;
  /// OutputIsVariadic - Records whether the instruction output pattern uses
  /// variable_ops.  This requires that the Emit function be passed an
  /// additional argument to indicate where the input varargs operands
  /// begin.
  bool &OutputIsVariadic;
  /// NumInputRootOps - Records the number of operands the root node of the
  /// input pattern has.  This information is used in the generated code to
  /// pass to Emit functions when variable_ops processing is needed.
  unsigned &NumInputRootOps;

  std::string ChainName;
  unsigned TmpNo;
  unsigned OpcNo;
  unsigned VTNo;
  
  void emitCheck(const std::string &S) {
    if (!S.empty())
      GeneratedCode.push_back(std::make_pair(1, S));
  }
  void emitCode(const std::string &S) {
    if (!S.empty())
      GeneratedCode.push_back(std::make_pair(0, S));
  }
  void emitInit(const std::string &S) {
    if (!S.empty())
      GeneratedCode.push_back(std::make_pair(2, S));
  }
  void emitDecl(const std::string &S) {
    assert(!S.empty() && "Invalid declaration");
    GeneratedDecl.insert(S);
  }
  void emitOpcode(const std::string &Opc) {
    TargetOpcodes.push_back(Opc);
    OpcNo++;
  }
  void emitVT(const std::string &VT) {
    TargetVTs.push_back(VT);
    VTNo++;
  }
public:
  PatternCodeEmitter(CodeGenDAGPatterns &cgp, std::string predcheck,
                     TreePatternNode *pattern, TreePatternNode *instr,
                     std::vector<std::pair<unsigned, std::string> > &gc,
                     std::set<std::string> &gd,
                     std::vector<std::string> &to,
                     std::vector<std::string> &tv,
                     bool &oiv,
                     unsigned &niro)
  : CGP(cgp), PredicateCheck(predcheck), Pattern(pattern), Instruction(instr),
    GeneratedCode(gc), GeneratedDecl(gd),
    TargetOpcodes(to), TargetVTs(tv),
    OutputIsVariadic(oiv), NumInputRootOps(niro),
    TmpNo(0), OpcNo(0), VTNo(0) {}

  /// EmitMatchCode - Emit a matcher for N, going to the label for PatternNo
  /// if the match fails. At this point, we already know that the opcode for N
  /// matches, and the SDNode for the result has the RootName specified name.
  void EmitMatchCode(TreePatternNode *N, TreePatternNode *P,
                     const std::string &RootName, const std::string &ChainSuffix,
                     bool &FoundChain);

  void EmitChildMatchCode(TreePatternNode *Child, TreePatternNode *Parent,
                          const std::string &RootName, 
                          const std::string &ChainSuffix, bool &FoundChain);

  /// EmitResultCode - Emit the action for a pattern.  Now that it has matched
  /// we actually have to build a DAG!
  std::vector<std::string>
  EmitResultCode(TreePatternNode *N, std::vector<Record*> DstRegs,
                 bool InFlagDecled, bool ResNodeDecled,
                 bool LikeLeaf = false, bool isRoot = false);

  /// InsertOneTypeCheck - Insert a type-check for an unresolved type in 'Pat'
  /// and add it to the tree. 'Pat' and 'Other' are isomorphic trees except that 
  /// 'Pat' may be missing types.  If we find an unresolved type to add a check
  /// for, this returns true otherwise false if Pat has all types.
  bool InsertOneTypeCheck(TreePatternNode *Pat, TreePatternNode *Other,
                          const std::string &Prefix, bool isRoot = false) {
    // Did we find one?
    if (Pat->getExtTypes() != Other->getExtTypes()) {
      // Move a type over from 'other' to 'pat'.
      Pat->setTypes(Other->getExtTypes());
      // The top level node type is checked outside of the select function.
      if (!isRoot)
        emitCheck(Prefix + ".getValueType() == " +
                  getName(Pat->getTypeNum(0)));
      return true;
    }
  
    unsigned OpNo =
      (unsigned) NodeHasProperty(Pat, SDNPHasChain, CGP);
    for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i, ++OpNo)
      if (InsertOneTypeCheck(Pat->getChild(i), Other->getChild(i),
                             Prefix + utostr(OpNo)))
        return true;
    return false;
  }

private:
  /// EmitInFlagSelectCode - Emit the flag operands for the DAG that is
  /// being built.
  void EmitInFlagSelectCode(TreePatternNode *N, const std::string &RootName,
                            bool &ChainEmitted, bool &InFlagDecled,
                            bool &ResNodeDecled, bool isRoot = false) {
    const CodeGenTarget &T = CGP.getTargetInfo();
    unsigned OpNo =
      (unsigned) NodeHasProperty(N, SDNPHasChain, CGP);
    bool HasInFlag = NodeHasProperty(N, SDNPInFlag, CGP);
    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
      TreePatternNode *Child = N->getChild(i);
      if (!Child->isLeaf()) {
        EmitInFlagSelectCode(Child, RootName + utostr(OpNo), ChainEmitted,
                             InFlagDecled, ResNodeDecled);
      } else {
        if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
          if (!Child->getName().empty()) {
            std::string Name = RootName + utostr(OpNo);
            if (Duplicates.find(Name) != Duplicates.end())
              // A duplicate! Do not emit a copy for this node.
              continue;
          }

          Record *RR = DI->getDef();
          if (RR->isSubClassOf("Register")) {
            MVT::SimpleValueType RVT = getRegisterValueType(RR, T);
            if (RVT == MVT::Flag) {
              if (!InFlagDecled) {
                emitCode("SDValue InFlag = " +
                         getValueName(RootName + utostr(OpNo)) + ";");
                InFlagDecled = true;
              } else
                emitCode("InFlag = " +
                         getValueName(RootName + utostr(OpNo)) + ";");
            } else {
              if (!ChainEmitted) {
                emitCode("SDValue Chain = CurDAG->getEntryNode();");
                ChainName = "Chain";
                ChainEmitted = true;
              }
              if (!InFlagDecled) {
                emitCode("SDValue InFlag(0, 0);");
                InFlagDecled = true;
              }
              std::string Decl = (!ResNodeDecled) ? "SDNode *" : "";
              emitCode(Decl + "ResNode = CurDAG->getCopyToReg(" + ChainName +
                       ", " + getNodeName(RootName) + "->getDebugLoc()" +
                       ", " + getQualifiedName(RR) +
                       ", " +  getValueName(RootName + utostr(OpNo)) +
                       ", InFlag).getNode();");
              ResNodeDecled = true;
              emitCode(ChainName + " = SDValue(ResNode, 0);");
              emitCode("InFlag = SDValue(ResNode, 1);");
            }
          }
        }
      }
    }

    if (HasInFlag) {
      if (!InFlagDecled) {
        emitCode("SDValue InFlag = " + getNodeName(RootName) +
               "->getOperand(" + utostr(OpNo) + ");");
        InFlagDecled = true;
      } else
        emitCode("InFlag = " + getNodeName(RootName) +
               "->getOperand(" + utostr(OpNo) + ");");
    }
  }
};


/// EmitMatchCode - Emit a matcher for N, going to the label for PatternNo
/// if the match fails. At this point, we already know that the opcode for N
/// matches, and the SDNode for the result has the RootName specified name.
void PatternCodeEmitter::EmitMatchCode(TreePatternNode *N, TreePatternNode *P,
                                       const std::string &RootName,
                                       const std::string &ChainSuffix,
                                       bool &FoundChain) {
  
  // Save loads/stores matched by a pattern.
  if (!N->isLeaf() && N->getName().empty()) {
    if (NodeHasProperty(N, SDNPMemOperand, CGP))
      LSI.push_back(getNodeName(RootName));
  }
  
  bool isRoot = (P == NULL);
  // Emit instruction predicates. Each predicate is just a string for now.
  if (isRoot) {
    // Record input varargs info.
    NumInputRootOps = N->getNumChildren();
    emitCheck(PredicateCheck);
  }
  
  if (N->isLeaf()) {
    if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
      emitCheck("cast<ConstantSDNode>(" + getNodeName(RootName) +
                ")->getSExtValue() == INT64_C(" +
                itostr(II->getValue()) + ")");
      return;
    } else if (!NodeIsComplexPattern(N)) {
      assert(0 && "Cannot match this as a leaf value!");
      abort();
    }
  }
  
  // If this node has a name associated with it, capture it in VariableMap. If
  // we already saw this in the pattern, emit code to verify dagness.
  if (!N->getName().empty()) {
    std::string &VarMapEntry = VariableMap[N->getName()];
    if (VarMapEntry.empty()) {
      VarMapEntry = RootName;
    } else {
      // If we get here, this is a second reference to a specific name.  Since
      // we already have checked that the first reference is valid, we don't
      // have to recursively match it, just check that it's the same as the
      // previously named thing.
      emitCheck(VarMapEntry + " == " + RootName);
      return;
    }
    
    if (!N->isLeaf())
      OperatorMap[N->getName()] = N->getOperator();
  }
  
  
  // Emit code to load the child nodes and match their contents recursively.
  unsigned OpNo = 0;
  bool NodeHasChain = NodeHasProperty   (N, SDNPHasChain, CGP);
  bool HasChain     = PatternHasProperty(N, SDNPHasChain, CGP);
  bool EmittedUseCheck = false;
  if (HasChain) {
    if (NodeHasChain)
      OpNo = 1;
    if (!isRoot) {
      // Multiple uses of actual result?
      emitCheck(getValueName(RootName) + ".hasOneUse()");
      EmittedUseCheck = true;
      if (NodeHasChain) {
        // If the immediate use can somehow reach this node through another
        // path, then can't fold it either or it will create a cycle.
        // e.g. In the following diagram, XX can reach ld through YY. If
        // ld is folded into XX, then YY is both a predecessor and a successor
        // of XX.
        //
        //         [ld]
        //         ^  ^
        //         |  |
        //        /   \---
        //      /        [YY]
        //      |         ^
        //     [XX]-------|
        bool NeedCheck = P != Pattern;
        if (!NeedCheck) {
          const SDNodeInfo &PInfo = CGP.getSDNodeInfo(P->getOperator());
          NeedCheck =
          P->getOperator() == CGP.get_intrinsic_void_sdnode() ||
          P->getOperator() == CGP.get_intrinsic_w_chain_sdnode() ||
          P->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() ||
          PInfo.getNumOperands() > 1 ||
          PInfo.hasProperty(SDNPHasChain) ||
          PInfo.hasProperty(SDNPInFlag) ||
          PInfo.hasProperty(SDNPOptInFlag);
        }
        
        if (NeedCheck) {
          std::string ParentName(RootName.begin(), RootName.end()-1);
          emitCheck("IsLegalAndProfitableToFold(" + getNodeName(RootName) +
                    ", " + getNodeName(ParentName) + ", N)");
        }
      }
    }
    
    if (NodeHasChain) {
      if (FoundChain) {
        emitCheck("(" + ChainName + ".getNode() == " +
                  getNodeName(RootName) + " || "
                  "IsChainCompatible(" + ChainName + ".getNode(), " +
                  getNodeName(RootName) + "))");
        OrigChains.push_back(std::make_pair(ChainName,
                                            getValueName(RootName)));
      } else
        FoundChain = true;
      ChainName = "Chain" + ChainSuffix;
      emitInit("SDValue " + ChainName + " = " + getNodeName(RootName) +
               "->getOperand(0);");
    }
  }
  
  // Don't fold any node which reads or writes a flag and has multiple uses.
  // FIXME: We really need to separate the concepts of flag and "glue". Those
  // real flag results, e.g. X86CMP output, can have multiple uses.
  // FIXME: If the optional incoming flag does not exist. Then it is ok to
  // fold it.
  if (!isRoot &&
      (PatternHasProperty(N, SDNPInFlag, CGP) ||
       PatternHasProperty(N, SDNPOptInFlag, CGP) ||
       PatternHasProperty(N, SDNPOutFlag, CGP))) {
        if (!EmittedUseCheck) {
          // Multiple uses of actual result?
          emitCheck(getValueName(RootName) + ".hasOneUse()");
        }
      }
  
  // If there are node predicates for this, emit the calls.
  for (unsigned i = 0, e = N->getPredicateFns().size(); i != e; ++i)
    emitCheck(N->getPredicateFns()[i] + "(" + getNodeName(RootName) + ")");
  
  // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
  // a constant without a predicate fn that has more that one bit set, handle
  // this as a special case.  This is usually for targets that have special
  // handling of certain large constants (e.g. alpha with it's 8/16/32-bit
  // handling stuff).  Using these instructions is often far more efficient
  // than materializing the constant.  Unfortunately, both the instcombiner
  // and the dag combiner can often infer that bits are dead, and thus drop
  // them from the mask in the dag.  For example, it might turn 'AND X, 255'
  // into 'AND X, 254' if it knows the low bit is set.  Emit code that checks
  // to handle this.
  if (!N->isLeaf() && 
      (N->getOperator()->getName() == "and" || 
       N->getOperator()->getName() == "or") &&
      N->getChild(1)->isLeaf() &&
      N->getChild(1)->getPredicateFns().empty()) {
    if (IntInit *II = dynamic_cast<IntInit*>(N->getChild(1)->getLeafValue())) {
      if (!isPowerOf2_32(II->getValue())) {  // Don't bother with single bits.
        emitInit("SDValue " + RootName + "0" + " = " +
                 getNodeName(RootName) + "->getOperand(" + utostr(0) + ");");
        emitInit("SDValue " + RootName + "1" + " = " +
                 getNodeName(RootName) + "->getOperand(" + utostr(1) + ");");
        
        unsigned NTmp = TmpNo++;
        emitCode("ConstantSDNode *Tmp" + utostr(NTmp) +
                 " = dyn_cast<ConstantSDNode>(" +
                 getNodeName(RootName + "1") + ");");
        emitCheck("Tmp" + utostr(NTmp));
        const char *MaskPredicate = N->getOperator()->getName() == "or"
        ? "CheckOrMask(" : "CheckAndMask(";
        emitCheck(MaskPredicate + getValueName(RootName + "0") +
                  ", Tmp" + utostr(NTmp) +
                  ", INT64_C(" + itostr(II->getValue()) + "))");
        
        EmitChildMatchCode(N->getChild(0), N, RootName + utostr(0),
                           ChainSuffix + utostr(0), FoundChain);
        return;
      }
    }
  }
  
  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
    emitInit("SDValue " + getValueName(RootName + utostr(OpNo)) + " = " +
             getNodeName(RootName) + "->getOperand(" + utostr(OpNo) + ");");
    
    EmitChildMatchCode(N->getChild(i), N, RootName + utostr(OpNo),
                       ChainSuffix + utostr(OpNo), FoundChain);
  }
  
  // Handle cases when root is a complex pattern.
  const ComplexPattern *CP;
  if (isRoot && N->isLeaf() && (CP = NodeGetComplexPattern(N, CGP))) {
    std::string Fn = CP->getSelectFunc();
    unsigned NumOps = CP->getNumOperands();
    for (unsigned i = 0; i < NumOps; ++i) {
      emitDecl("CPTmp" + RootName + "_" + utostr(i));
      emitCode("SDValue CPTmp" + RootName + "_" + utostr(i) + ";");
    }
    if (CP->hasProperty(SDNPHasChain)) {
      emitDecl("CPInChain");
      emitDecl("Chain" + ChainSuffix);
      emitCode("SDValue CPInChain;");
      emitCode("SDValue Chain" + ChainSuffix + ";");
    }
    
    std::string Code = Fn + "(" +
    getNodeName(RootName) + ", " +
    getValueName(RootName);
    for (unsigned i = 0; i < NumOps; i++)
      Code += ", CPTmp" + RootName + "_" + utostr(i);
    if (CP->hasProperty(SDNPHasChain)) {
      ChainName = "Chain" + ChainSuffix;
      Code += ", CPInChain, Chain" + ChainSuffix;
    }
    emitCheck(Code + ")");
  }
}

void PatternCodeEmitter::EmitChildMatchCode(TreePatternNode *Child,
                                            TreePatternNode *Parent,
                                            const std::string &RootName, 
                                            const std::string &ChainSuffix,
                                            bool &FoundChain) {
  if (!Child->isLeaf()) {
    // If it's not a leaf, recursively match.
    const SDNodeInfo &CInfo = CGP.getSDNodeInfo(Child->getOperator());
    emitCheck(getNodeName(RootName) + "->getOpcode() == " +
              CInfo.getEnumName());
    EmitMatchCode(Child, Parent, RootName, ChainSuffix, FoundChain);
    bool HasChain = false;
    if (NodeHasProperty(Child, SDNPHasChain, CGP)) {
      HasChain = true;
      FoldedChains.push_back(std::make_pair(getValueName(RootName),
                                            CInfo.getNumResults()));
    }
    if (NodeHasProperty(Child, SDNPOutFlag, CGP)) {
      assert(FoldedFlag.first == "" && FoldedFlag.second == 0 &&
             "Pattern folded multiple nodes which produce flags?");
      FoldedFlag = std::make_pair(getValueName(RootName),
                                  CInfo.getNumResults() + (unsigned)HasChain);
    }
  } else {
    // If this child has a name associated with it, capture it in VarMap. If
    // we already saw this in the pattern, emit code to verify dagness.
    if (!Child->getName().empty()) {
      std::string &VarMapEntry = VariableMap[Child->getName()];
      if (VarMapEntry.empty()) {
        VarMapEntry = getValueName(RootName);
      } else {
        // If we get here, this is a second reference to a specific name.
        // Since we already have checked that the first reference is valid,
        // we don't have to recursively match it, just check that it's the
        // same as the previously named thing.
        emitCheck(VarMapEntry + " == " + getValueName(RootName));
        Duplicates.insert(getValueName(RootName));
        return;
      }
    }
    
    // Handle leaves of various types.
    if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
      Record *LeafRec = DI->getDef();
      if (LeafRec->isSubClassOf("RegisterClass") || 
          LeafRec->isSubClassOf("PointerLikeRegClass")) {
        // Handle register references.  Nothing to do here.
      } else if (LeafRec->isSubClassOf("Register")) {
        // Handle register references.
      } else if (LeafRec->isSubClassOf("ComplexPattern")) {
        // Handle complex pattern.
        const ComplexPattern *CP = NodeGetComplexPattern(Child, CGP);
        std::string Fn = CP->getSelectFunc();
        unsigned NumOps = CP->getNumOperands();
        for (unsigned i = 0; i < NumOps; ++i) {
          emitDecl("CPTmp" + RootName + "_" + utostr(i));
          emitCode("SDValue CPTmp" + RootName + "_" + utostr(i) + ";");
        }
        if (CP->hasProperty(SDNPHasChain)) {
          const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Parent->getOperator());
          FoldedChains.push_back(std::make_pair("CPInChain",
                                                PInfo.getNumResults()));
          ChainName = "Chain" + ChainSuffix;
          emitDecl("CPInChain");
          emitDecl(ChainName);
          emitCode("SDValue CPInChain;");
          emitCode("SDValue " + ChainName + ";");
        }
        
        std::string Code = Fn + "(N, ";
        if (CP->hasProperty(SDNPHasChain)) {
          std::string ParentName(RootName.begin(), RootName.end()-1);
          Code += getValueName(ParentName) + ", ";
        }
        Code += getValueName(RootName);
        for (unsigned i = 0; i < NumOps; i++)
          Code += ", CPTmp" + RootName + "_" + utostr(i);
        if (CP->hasProperty(SDNPHasChain))
          Code += ", CPInChain, Chain" + ChainSuffix;
        emitCheck(Code + ")");
      } else if (LeafRec->getName() == "srcvalue") {
        // Place holder for SRCVALUE nodes. Nothing to do here.
      } else if (LeafRec->isSubClassOf("ValueType")) {
        // Make sure this is the specified value type.
        emitCheck("cast<VTSDNode>(" + getNodeName(RootName) +
                  ")->getVT() == MVT::" + LeafRec->getName());
      } else if (LeafRec->isSubClassOf("CondCode")) {
        // Make sure this is the specified cond code.
        emitCheck("cast<CondCodeSDNode>(" + getNodeName(RootName) +
                  ")->get() == ISD::" + LeafRec->getName());
      } else {
#ifndef NDEBUG
        Child->dump();
        errs() << " ";
#endif
        assert(0 && "Unknown leaf type!");
      }
      
      // If there are node predicates for this, emit the calls.
      for (unsigned i = 0, e = Child->getPredicateFns().size(); i != e; ++i)
        emitCheck(Child->getPredicateFns()[i] + "(" + getNodeName(RootName) +
                  ")");
    } else if (IntInit *II =
               dynamic_cast<IntInit*>(Child->getLeafValue())) {
      unsigned NTmp = TmpNo++;
      emitCode("ConstantSDNode *Tmp"+ utostr(NTmp) +
               " = dyn_cast<ConstantSDNode>("+
               getNodeName(RootName) + ");");
      emitCheck("Tmp" + utostr(NTmp));
      unsigned CTmp = TmpNo++;
      emitCode("int64_t CN"+ utostr(CTmp) +
               " = Tmp" + utostr(NTmp) + "->getSExtValue();");
      emitCheck("CN" + utostr(CTmp) + " == "
                "INT64_C(" +itostr(II->getValue()) + ")");
    } else {
#ifndef NDEBUG
      Child->dump();
#endif
      assert(0 && "Unknown leaf type!");
    }
  }
}

/// EmitResultCode - Emit the action for a pattern.  Now that it has matched
/// we actually have to build a DAG!
std::vector<std::string>
PatternCodeEmitter::EmitResultCode(TreePatternNode *N, 
                                   std::vector<Record*> DstRegs,
                                   bool InFlagDecled, bool ResNodeDecled,
                                   bool LikeLeaf, bool isRoot) {
  // List of arguments of getMachineNode() or SelectNodeTo().
  std::vector<std::string> NodeOps;
  // This is something selected from the pattern we matched.
  if (!N->getName().empty()) {
    const std::string &VarName = N->getName();
    std::string Val = VariableMap[VarName];
    bool ModifiedVal = false;
    if (Val.empty()) {
      errs() << "Variable '" << VarName << " referenced but not defined "
      << "and not caught earlier!\n";
      abort();
    }
    if (Val[0] == 'T' && Val[1] == 'm' && Val[2] == 'p') {
      // Already selected this operand, just return the tmpval.
      NodeOps.push_back(getValueName(Val));
      return NodeOps;
    }
    
    const ComplexPattern *CP;
    unsigned ResNo = TmpNo++;
    if (!N->isLeaf() && N->getOperator()->getName() == "imm") {
      assert(N->getExtTypes().size() == 1 && "Multiple types not handled!");
      std::string CastType;
      std::string TmpVar =  "Tmp" + utostr(ResNo);
      switch (N->getTypeNum(0)) {
        default:
          errs() << "Cannot handle " << getEnumName(N->getTypeNum(0))
          << " type as an immediate constant. Aborting\n";
          abort();
        case MVT::i1:  CastType = "bool"; break;
        case MVT::i8:  CastType = "unsigned char"; break;
        case MVT::i16: CastType = "unsigned short"; break;
        case MVT::i32: CastType = "unsigned"; break;
        case MVT::i64: CastType = "uint64_t"; break;
      }
      emitCode("SDValue " + TmpVar + 
               " = CurDAG->getTargetConstant(((" + CastType +
               ") cast<ConstantSDNode>(" + Val + ")->getZExtValue()), " +
               getEnumName(N->getTypeNum(0)) + ");");
      // Add Tmp<ResNo> to VariableMap, so that we don't multiply select this
      // value if used multiple times by this pattern result.
      Val = TmpVar;
      ModifiedVal = true;
      NodeOps.push_back(getValueName(Val));
    } else if (!N->isLeaf() && N->getOperator()->getName() == "fpimm") {
      assert(N->getExtTypes().size() == 1 && "Multiple types not handled!");
      std::string TmpVar =  "Tmp" + utostr(ResNo);
      emitCode("SDValue " + TmpVar + 
               " = CurDAG->getTargetConstantFP(*cast<ConstantFPSDNode>(" + 
               Val + ")->getConstantFPValue(), cast<ConstantFPSDNode>(" +
               Val + ")->getValueType(0));");
      // Add Tmp<ResNo> to VariableMap, so that we don't multiply select this
      // value if used multiple times by this pattern result.
      Val = TmpVar;
      ModifiedVal = true;
      NodeOps.push_back(getValueName(Val));
    } else if (!N->isLeaf() && N->getOperator()->getName() == "texternalsym"){
      Record *Op = OperatorMap[N->getName()];
      // Transform ExternalSymbol to TargetExternalSymbol
      if (Op && Op->getName() == "externalsym") {
        std::string TmpVar = "Tmp"+utostr(ResNo);
        emitCode("SDValue " + TmpVar + " = CurDAG->getTarget"
                 "ExternalSymbol(cast<ExternalSymbolSDNode>(" +
                 Val + ")->getSymbol(), " +
                 getEnumName(N->getTypeNum(0)) + ");");
        // Add Tmp<ResNo> to VariableMap, so that we don't multiply select
        // this value if used multiple times by this pattern result.
        Val = TmpVar;
        ModifiedVal = true;
      }
      NodeOps.push_back(getValueName(Val));
    } else if (!N->isLeaf() && (N->getOperator()->getName() == "tglobaladdr"
                                || N->getOperator()->getName() == "tglobaltlsaddr")) {
      Record *Op = OperatorMap[N->getName()];
      // Transform GlobalAddress to TargetGlobalAddress
      if (Op && (Op->getName() == "globaladdr" ||
                 Op->getName() == "globaltlsaddr")) {
        std::string TmpVar = "Tmp" + utostr(ResNo);
        emitCode("SDValue " + TmpVar + " = CurDAG->getTarget"
                 "GlobalAddress(cast<GlobalAddressSDNode>(" + Val +
                 ")->getGlobal(), " + getEnumName(N->getTypeNum(0)) +
                 ");");
        // Add Tmp<ResNo> to VariableMap, so that we don't multiply select
        // this value if used multiple times by this pattern result.
        Val = TmpVar;
        ModifiedVal = true;
      }
      NodeOps.push_back(getValueName(Val));
    } else if (!N->isLeaf()
               && (N->getOperator()->getName() == "texternalsym"
                   || N->getOperator()->getName() == "tconstpool")) {
                 // Do not rewrite the variable name, since we don't generate a new
                 // temporary.
                 NodeOps.push_back(getValueName(Val));
               } else if (N->isLeaf() && (CP = NodeGetComplexPattern(N, CGP))) {
                 for (unsigned i = 0; i < CP->getNumOperands(); ++i) {
                   NodeOps.push_back(getValueName("CPTmp" + Val + "_" + utostr(i)));
                 }
               } else {
                 // This node, probably wrapped in a SDNodeXForm, behaves like a leaf
                 // node even if it isn't one. Don't select it.
                 if (!LikeLeaf) {
                   if (isRoot && N->isLeaf()) {
                     emitCode("ReplaceUses(SDValue(N, 0), " + Val + ");");
                     emitCode("return NULL;");
                   }
                 }
                 NodeOps.push_back(getValueName(Val));
               }
    
    if (ModifiedVal) {
      VariableMap[VarName] = Val;
    }
    return NodeOps;
  }
  if (N->isLeaf()) {
    // If this is an explicit register reference, handle it.
    if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) {
      unsigned ResNo = TmpNo++;
      if (DI->getDef()->isSubClassOf("Register")) {
        emitCode("SDValue Tmp" + utostr(ResNo) + " = CurDAG->getRegister(" +
                 getQualifiedName(DI->getDef()) + ", " +
                 getEnumName(N->getTypeNum(0)) + ");");
        NodeOps.push_back(getValueName("Tmp" + utostr(ResNo)));
        return NodeOps;
      } else if (DI->getDef()->getName() == "zero_reg") {
        emitCode("SDValue Tmp" + utostr(ResNo) +
                 " = CurDAG->getRegister(0, " +
                 getEnumName(N->getTypeNum(0)) + ");");
        NodeOps.push_back(getValueName("Tmp" + utostr(ResNo)));
        return NodeOps;
      } else if (DI->getDef()->isSubClassOf("RegisterClass")) {
        // Handle a reference to a register class. This is used
        // in COPY_TO_SUBREG instructions.
        emitCode("SDValue Tmp" + utostr(ResNo) +
                 " = CurDAG->getTargetConstant(" +
                 getQualifiedName(DI->getDef()) + "RegClassID, " +
                 "MVT::i32);");
        NodeOps.push_back(getValueName("Tmp" + utostr(ResNo)));
        return NodeOps;
      }
    } else if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
      unsigned ResNo = TmpNo++;
      assert(N->getExtTypes().size() == 1 && "Multiple types not handled!");
      emitCode("SDValue Tmp" + utostr(ResNo) + 
               " = CurDAG->getTargetConstant(0x" + 
               utohexstr((uint64_t) II->getValue()) +
               "ULL, " + getEnumName(N->getTypeNum(0)) + ");");
      NodeOps.push_back(getValueName("Tmp" + utostr(ResNo)));
      return NodeOps;
    }
    
#ifndef NDEBUG
    N->dump();
#endif
    assert(0 && "Unknown leaf type!");
    return NodeOps;
  }
  
  Record *Op = N->getOperator();
  if (Op->isSubClassOf("Instruction")) {
    const CodeGenTarget &CGT = CGP.getTargetInfo();
    CodeGenInstruction &II = CGT.getInstruction(Op->getName());
    const DAGInstruction &Inst = CGP.getInstruction(Op);
    const TreePattern *InstPat = Inst.getPattern();
    // FIXME: Assume actual pattern comes before "implicit".
    TreePatternNode *InstPatNode =
    isRoot ? (InstPat ? InstPat->getTree(0) : Pattern)
    : (InstPat ? InstPat->getTree(0) : NULL);
    if (InstPatNode && !InstPatNode->isLeaf() &&
        InstPatNode->getOperator()->getName() == "set") {
      InstPatNode = InstPatNode->getChild(InstPatNode->getNumChildren()-1);
    }
    bool IsVariadic = isRoot && II.isVariadic;
    // FIXME: fix how we deal with physical register operands.
    bool HasImpInputs  = isRoot && Inst.getNumImpOperands() > 0;
    bool HasImpResults = isRoot && DstRegs.size() > 0;
    bool NodeHasOptInFlag = isRoot &&
    PatternHasProperty(Pattern, SDNPOptInFlag, CGP);
    bool NodeHasInFlag  = isRoot &&
    PatternHasProperty(Pattern, SDNPInFlag, CGP);
    bool NodeHasOutFlag = isRoot &&
    PatternHasProperty(Pattern, SDNPOutFlag, CGP);
    bool NodeHasChain = InstPatNode &&
    PatternHasProperty(InstPatNode, SDNPHasChain, CGP);
    bool InputHasChain = isRoot &&
    NodeHasProperty(Pattern, SDNPHasChain, CGP);
    unsigned NumResults = Inst.getNumResults();    
    unsigned NumDstRegs = HasImpResults ? DstRegs.size() : 0;
    
    // Record output varargs info.
    OutputIsVariadic = IsVariadic;
    
    if (NodeHasOptInFlag) {
      emitCode("bool HasInFlag = "
               "(N->getOperand(N->getNumOperands()-1).getValueType() == "
               "MVT::Flag);");
    }
    if (IsVariadic)
      emitCode("SmallVector<SDValue, 8> Ops" + utostr(OpcNo) + ";");
    
    // How many results is this pattern expected to produce?
    unsigned NumPatResults = 0;
    for (unsigned i = 0, e = Pattern->getExtTypes().size(); i != e; i++) {
      MVT::SimpleValueType VT = Pattern->getTypeNum(i);
      if (VT != MVT::isVoid && VT != MVT::Flag)
        NumPatResults++;
    }
    
    if (OrigChains.size() > 0) {
      // The original input chain is being ignored. If it is not just
      // pointing to the op that's being folded, we should create a
      // TokenFactor with it and the chain of the folded op as the new chain.
      // We could potentially be doing multiple levels of folding, in that
      // case, the TokenFactor can have more operands.
      emitCode("SmallVector<SDValue, 8> InChains;");
      for (unsigned i = 0, e = OrigChains.size(); i < e; ++i) {
        emitCode("if (" + OrigChains[i].first + ".getNode() != " +
                 OrigChains[i].second + ".getNode()) {");
        emitCode("  InChains.push_back(" + OrigChains[i].first + ");");
        emitCode("}");
      }
      emitCode("InChains.push_back(" + ChainName + ");");
      emitCode(ChainName + " = CurDAG->getNode(ISD::TokenFactor, "
               "N->getDebugLoc(), MVT::Other, "
               "&InChains[0], InChains.size());");
      if (GenDebug) {
        emitCode("CurDAG->setSubgraphColor(" + ChainName +".getNode(), \"yellow\");");
        emitCode("CurDAG->setSubgraphColor(" + ChainName +".getNode(), \"black\");");
      }
    }
    
    // Loop over all of the operands of the instruction pattern, emitting code
    // to fill them all in.  The node 'N' usually has number children equal to
    // the number of input operands of the instruction.  However, in cases
    // where there are predicate operands for an instruction, we need to fill
    // in the 'execute always' values.  Match up the node operands to the
    // instruction operands to do this.
    std::vector<std::string> AllOps;
    for (unsigned ChildNo = 0, InstOpNo = NumResults;
         InstOpNo != II.OperandList.size(); ++InstOpNo) {
      std::vector<std::string> Ops;
      
      // Determine what to emit for this operand.
      Record *OperandNode = II.OperandList[InstOpNo].Rec;
      if ((OperandNode->isSubClassOf("PredicateOperand") ||
           OperandNode->isSubClassOf("OptionalDefOperand")) &&
          !CGP.getDefaultOperand(OperandNode).DefaultOps.empty()) {
        // This is a predicate or optional def operand; emit the
        // 'default ops' operands.
        const DAGDefaultOperand &DefaultOp =
        CGP.getDefaultOperand(II.OperandList[InstOpNo].Rec);
        for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i) {
          Ops = EmitResultCode(DefaultOp.DefaultOps[i], DstRegs,
                               InFlagDecled, ResNodeDecled);
          AllOps.insert(AllOps.end(), Ops.begin(), Ops.end());
        }
      } else {
        // Otherwise this is a normal operand or a predicate operand without
        // 'execute always'; emit it.
        Ops = EmitResultCode(N->getChild(ChildNo), DstRegs,
                             InFlagDecled, ResNodeDecled);
        AllOps.insert(AllOps.end(), Ops.begin(), Ops.end());
        ++ChildNo;
      }
    }
    
    // Emit all the chain and CopyToReg stuff.
    bool ChainEmitted = NodeHasChain;
    if (NodeHasInFlag || HasImpInputs)
      EmitInFlagSelectCode(Pattern, "N", ChainEmitted,
                           InFlagDecled, ResNodeDecled, true);
    if (NodeHasOptInFlag || NodeHasInFlag || HasImpInputs) {
      if (!InFlagDecled) {
        emitCode("SDValue InFlag(0, 0);");
        InFlagDecled = true;
      }
      if (NodeHasOptInFlag) {
        emitCode("if (HasInFlag) {");
        emitCode("  InFlag = N->getOperand(N->getNumOperands()-1);");
        emitCode("}");
      }
    }
    
    unsigned ResNo = TmpNo++;
    
    unsigned OpsNo = OpcNo;
    std::string CodePrefix;
    bool ChainAssignmentNeeded = NodeHasChain && !isRoot;
    std::deque<std::string> After;
    std::string NodeName;
    if (!isRoot) {
      NodeName = "Tmp" + utostr(ResNo);
      CodePrefix = "SDValue " + NodeName + "(";
    } else {
      NodeName = "ResNode";
      if (!ResNodeDecled) {
        CodePrefix = "SDNode *" + NodeName + " = ";
        ResNodeDecled = true;
      } else
        CodePrefix = NodeName + " = ";
    }
    
    std::string Code = "Opc" + utostr(OpcNo);
    
    if (!isRoot || (InputHasChain && !NodeHasChain))
      // For call to "getMachineNode()".
      Code += ", N->getDebugLoc()";
    
    emitOpcode(II.Namespace + "::" + II.TheDef->getName());
    
    // Output order: results, chain, flags
    // Result types.
    if (NumResults > 0 && N->getTypeNum(0) != MVT::isVoid) {
      Code += ", VT" + utostr(VTNo);
      emitVT(getEnumName(N->getTypeNum(0)));
    }
    // Add types for implicit results in physical registers, scheduler will
    // care of adding copyfromreg nodes.
    for (unsigned i = 0; i < NumDstRegs; i++) {
      Record *RR = DstRegs[i];
      if (RR->isSubClassOf("Register")) {
        MVT::SimpleValueType RVT = getRegisterValueType(RR, CGT);
        Code += ", " + getEnumName(RVT);
      }
    }
    if (NodeHasChain)
      Code += ", MVT::Other";
    if (NodeHasOutFlag)
      Code += ", MVT::Flag";
    
    // Inputs.
    if (IsVariadic) {
      for (unsigned i = 0, e = AllOps.size(); i != e; ++i)
        emitCode("Ops" + utostr(OpsNo) + ".push_back(" + AllOps[i] + ");");
      AllOps.clear();
      
      // Figure out whether any operands at the end of the op list are not
      // part of the variable section.
      std::string EndAdjust;
      if (NodeHasInFlag || HasImpInputs)
        EndAdjust = "-1";  // Always has one flag.
      else if (NodeHasOptInFlag)
        EndAdjust = "-(HasInFlag?1:0)"; // May have a flag.
      
      emitCode("for (unsigned i = NumInputRootOps + " + utostr(NodeHasChain) +
               ", e = N->getNumOperands()" + EndAdjust + "; i != e; ++i) {");
      
      emitCode("  Ops" + utostr(OpsNo) + ".push_back(N->getOperand(i));");
      emitCode("}");
    }
    
    // Populate MemRefs with entries for each memory accesses covered by 
    // this pattern.
    if (isRoot && !LSI.empty()) {
      std::string MemRefs = "MemRefs" + utostr(OpsNo);
      emitCode("MachineSDNode::mmo_iterator " + MemRefs + " = "
               "MF->allocateMemRefsArray(" + utostr(LSI.size()) + ");");
      for (unsigned i = 0, e = LSI.size(); i != e; ++i)
        emitCode(MemRefs + "[" + utostr(i) + "] = "
                 "cast<MemSDNode>(" + LSI[i] + ")->getMemOperand();");
      After.push_back("cast<MachineSDNode>(ResNode)->setMemRefs(" +
                      MemRefs + ", " + MemRefs + " + " + utostr(LSI.size()) +
                      ");");
    }
    
    if (NodeHasChain) {
      if (IsVariadic)
        emitCode("Ops" + utostr(OpsNo) + ".push_back(" + ChainName + ");");
      else
        AllOps.push_back(ChainName);
    }
    
    if (IsVariadic) {
      if (NodeHasInFlag || HasImpInputs)
        emitCode("Ops" + utostr(OpsNo) + ".push_back(InFlag);");
      else if (NodeHasOptInFlag) {
        emitCode("if (HasInFlag)");
        emitCode("  Ops" + utostr(OpsNo) + ".push_back(InFlag);");
      }
      Code += ", &Ops" + utostr(OpsNo) + "[0], Ops" + utostr(OpsNo) +
      ".size()";
    } else if (NodeHasInFlag || NodeHasOptInFlag || HasImpInputs)
      AllOps.push_back("InFlag");
    
    unsigned NumOps = AllOps.size();
    if (NumOps) {
      if (!NodeHasOptInFlag && NumOps < 4) {
        for (unsigned i = 0; i != NumOps; ++i)
          Code += ", " + AllOps[i];
      } else {
        std::string OpsCode = "SDValue Ops" + utostr(OpsNo) + "[] = { ";
        for (unsigned i = 0; i != NumOps; ++i) {
          OpsCode += AllOps[i];
          if (i != NumOps-1)
            OpsCode += ", ";
        }
        emitCode(OpsCode + " };");
        Code += ", Ops" + utostr(OpsNo) + ", ";
        if (NodeHasOptInFlag) {
          Code += "HasInFlag ? ";
          Code += utostr(NumOps) + " : " + utostr(NumOps-1);
        } else
          Code += utostr(NumOps);
      }
    }
    
    if (!isRoot)
      Code += "), 0";
    
    std::vector<std::string> ReplaceFroms;
    std::vector<std::string> ReplaceTos;
    if (!isRoot) {
      NodeOps.push_back("Tmp" + utostr(ResNo));
    } else {
      
      if (NodeHasOutFlag) {
        if (!InFlagDecled) {
          After.push_back("SDValue InFlag(ResNode, " + 
                          utostr(NumResults+NumDstRegs+(unsigned)NodeHasChain) +
                          ");");
          InFlagDecled = true;
        } else
          After.push_back("InFlag = SDValue(ResNode, " + 
                          utostr(NumResults+NumDstRegs+(unsigned)NodeHasChain) +
                          ");");
      }
      
      for (unsigned j = 0, e = FoldedChains.size(); j < e; j++) {
        ReplaceFroms.push_back("SDValue(" +
                               FoldedChains[j].first + ".getNode(), " +
                               utostr(FoldedChains[j].second) +
                               ")");
        ReplaceTos.push_back("SDValue(ResNode, " +
                             utostr(NumResults+NumDstRegs) + ")");
      }
      
      if (NodeHasOutFlag) {
        if (FoldedFlag.first != "") {
          ReplaceFroms.push_back("SDValue(" + FoldedFlag.first + ".getNode(), " +
                                 utostr(FoldedFlag.second) + ")");
          ReplaceTos.push_back("InFlag");
        } else {
          assert(NodeHasProperty(Pattern, SDNPOutFlag, CGP));
          ReplaceFroms.push_back("SDValue(N, " +
                                 utostr(NumPatResults + (unsigned)InputHasChain)
                                 + ")");
          ReplaceTos.push_back("InFlag");
        }
      }
      
      if (!ReplaceFroms.empty() && InputHasChain) {
        ReplaceFroms.push_back("SDValue(N, " +
                               utostr(NumPatResults) + ")");
        ReplaceTos.push_back("SDValue(" + ChainName + ".getNode(), " +
                             ChainName + ".getResNo()" + ")");
        ChainAssignmentNeeded |= NodeHasChain;
      }
      
      // User does not expect the instruction would produce a chain!
      if ((!InputHasChain && NodeHasChain) && NodeHasOutFlag) {
        ;
      } else if (InputHasChain && !NodeHasChain) {
        // One of the inner node produces a chain.
        assert(!NodeHasOutFlag && "Node has flag but not chain!");
        ReplaceFroms.push_back("SDValue(N, " +
                               utostr(NumPatResults) + ")");
        ReplaceTos.push_back(ChainName);
      }
    }
    
    if (ChainAssignmentNeeded) {
      // Remember which op produces the chain.
      std::string ChainAssign;
      if (!isRoot)
        ChainAssign = ChainName + " = SDValue(" + NodeName +
        ".getNode(), " + utostr(NumResults+NumDstRegs) + ");";
      else
        ChainAssign = ChainName + " = SDValue(" + NodeName +
        ", " + utostr(NumResults+NumDstRegs) + ");";
      
      After.push_front(ChainAssign);
    }
    
    if (ReplaceFroms.size() == 1) {
      After.push_back("ReplaceUses(" + ReplaceFroms[0] + ", " +
                      ReplaceTos[0] + ");");
    } else if (!ReplaceFroms.empty()) {
      After.push_back("const SDValue Froms[] = {");
      for (unsigned i = 0, e = ReplaceFroms.size(); i != e; ++i)
        After.push_back("  " + ReplaceFroms[i] + (i + 1 != e ? "," : ""));
      After.push_back("};");
      After.push_back("const SDValue Tos[] = {");
      for (unsigned i = 0, e = ReplaceFroms.size(); i != e; ++i)
        After.push_back("  " + ReplaceTos[i] + (i + 1 != e ? "," : ""));
      After.push_back("};");
      After.push_back("ReplaceUses(Froms, Tos, " +
                      itostr(ReplaceFroms.size()) + ");");
    }
    
    // We prefer to use SelectNodeTo since it avoids allocation when
    // possible and it avoids CSE map recalculation for the node's
    // users, however it's tricky to use in a non-root context.
    //
    // We also don't use SelectNodeTo if the pattern replacement is being
    // used to jettison a chain result, since morphing the node in place
    // would leave users of the chain dangling.
    //
    if (!isRoot || (InputHasChain && !NodeHasChain)) {
      Code = "CurDAG->getMachineNode(" + Code;
    } else {
      Code = "CurDAG->SelectNodeTo(N, " + Code;
    }
    if (isRoot) {
      if (After.empty())
        CodePrefix = "return ";
      else
        After.push_back("return ResNode;");
    }
    
    emitCode(CodePrefix + Code + ");");
    
    if (GenDebug) {
      if (!isRoot) {
        emitCode("CurDAG->setSubgraphColor(" +
                 NodeName +".getNode(), \"yellow\");");
        emitCode("CurDAG->setSubgraphColor(" +
                 NodeName +".getNode(), \"black\");");
      } else {
        emitCode("CurDAG->setSubgraphColor(" + NodeName +", \"yellow\");");
        emitCode("CurDAG->setSubgraphColor(" + NodeName +", \"black\");");
      }
    }
    
    for (unsigned i = 0, e = After.size(); i != e; ++i)
      emitCode(After[i]);
    
    return NodeOps;
  }
  if (Op->isSubClassOf("SDNodeXForm")) {
    assert(N->getNumChildren() == 1 && "node xform should have one child!");
    // PatLeaf node - the operand may or may not be a leaf node. But it should
    // behave like one.
    std::vector<std::string> Ops =
    EmitResultCode(N->getChild(0), DstRegs, InFlagDecled,
                   ResNodeDecled, true);
    unsigned ResNo = TmpNo++;
    emitCode("SDValue Tmp" + utostr(ResNo) + " = Transform_" + Op->getName()
             + "(" + Ops.back() + ".getNode());");
    NodeOps.push_back("Tmp" + utostr(ResNo));
    if (isRoot)
      emitCode("return Tmp" + utostr(ResNo) + ".getNode();");
    return NodeOps;
  }
  
  N->dump();
  errs() << "\n";
  throw std::string("Unknown node in result pattern!");
}


/// EmitCodeForPattern - Given a pattern to match, emit code to the specified
/// stream to match the pattern, and generate the code for the match if it
/// succeeds.  Returns true if the pattern is not guaranteed to match.
void DAGISelEmitter::GenerateCodeForPattern(const PatternToMatch &Pattern,
                  std::vector<std::pair<unsigned, std::string> > &GeneratedCode,
                                           std::set<std::string> &GeneratedDecl,
                                        std::vector<std::string> &TargetOpcodes,
                                            std::vector<std::string> &TargetVTs,
                                            bool &OutputIsVariadic,
                                            unsigned &NumInputRootOps) {
  OutputIsVariadic = false;
  NumInputRootOps = 0;

  PatternCodeEmitter Emitter(CGP, Pattern.getPredicateCheck(),
                             Pattern.getSrcPattern(), Pattern.getDstPattern(),
                             GeneratedCode, GeneratedDecl,
                             TargetOpcodes, TargetVTs,
                             OutputIsVariadic, NumInputRootOps);

  // Emit the matcher, capturing named arguments in VariableMap.
  bool FoundChain = false;
  Emitter.EmitMatchCode(Pattern.getSrcPattern(), NULL, "N", "", FoundChain);

  // TP - Get *SOME* tree pattern, we don't care which.  It is only used for
  // diagnostics, which we know are impossible at this point.
  TreePattern &TP = *CGP.pf_begin()->second;
  
  // At this point, we know that we structurally match the pattern, but the
  // types of the nodes may not match.  Figure out the fewest number of type 
  // comparisons we need to emit.  For example, if there is only one integer
  // type supported by a target, there should be no type comparisons at all for
  // integer patterns!
  //
  // To figure out the fewest number of type checks needed, clone the pattern,
  // remove the types, then perform type inference on the pattern as a whole.
  // If there are unresolved types, emit an explicit check for those types,
  // apply the type to the tree, then rerun type inference.  Iterate until all
  // types are resolved.
  //
  TreePatternNode *Pat = Pattern.getSrcPattern()->clone();
  RemoveAllTypes(Pat);
  
  do {
    // Resolve/propagate as many types as possible.
    try {
      bool MadeChange = true;
      while (MadeChange)
        MadeChange = Pat->ApplyTypeConstraints(TP,
                                               true/*Ignore reg constraints*/);
    } catch (...) {
      assert(0 && "Error: could not find consistent types for something we"
             " already decided was ok!");
      abort();
    }

    // Insert a check for an unresolved type and add it to the tree.  If we find
    // an unresolved type to add a check for, this returns true and we iterate,
    // otherwise we are done.
  } while (Emitter.InsertOneTypeCheck(Pat, Pattern.getSrcPattern(), "N", true));

  Emitter.EmitResultCode(Pattern.getDstPattern(), Pattern.getDstRegs(),
                         false, false, false, true);
  delete Pat;
}

/// EraseCodeLine - Erase one code line from all of the patterns.  If removing
/// a line causes any of them to be empty, remove them and return true when
/// done.
static bool EraseCodeLine(std::vector<std::pair<const PatternToMatch*, 
                          std::vector<std::pair<unsigned, std::string> > > >
                          &Patterns) {
  bool ErasedPatterns = false;
  for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
    Patterns[i].second.pop_back();
    if (Patterns[i].second.empty()) {
      Patterns.erase(Patterns.begin()+i);
      --i; --e;
      ErasedPatterns = true;
    }
  }
  return ErasedPatterns;
}

/// EmitPatterns - Emit code for at least one pattern, but try to group common
/// code together between the patterns.
void DAGISelEmitter::EmitPatterns(std::vector<std::pair<const PatternToMatch*, 
                              std::vector<std::pair<unsigned, std::string> > > >
                                  &Patterns, unsigned Indent,
                                  raw_ostream &OS) {
  typedef std::pair<unsigned, std::string> CodeLine;
  typedef std::vector<CodeLine> CodeList;
  typedef std::vector<std::pair<const PatternToMatch*, CodeList> > PatternList;
  
  if (Patterns.empty()) return;
  
  // Figure out how many patterns share the next code line.  Explicitly copy
  // FirstCodeLine so that we don't invalidate a reference when changing
  // Patterns.
  const CodeLine FirstCodeLine = Patterns.back().second.back();
  unsigned LastMatch = Patterns.size()-1;
  while (LastMatch != 0 && Patterns[LastMatch-1].second.back() == FirstCodeLine)
    --LastMatch;
  
  // If not all patterns share this line, split the list into two pieces.  The
  // first chunk will use this line, the second chunk won't.
  if (LastMatch != 0) {
    PatternList Shared(Patterns.begin()+LastMatch, Patterns.end());
    PatternList Other(Patterns.begin(), Patterns.begin()+LastMatch);
    
    // FIXME: Emit braces?
    if (Shared.size() == 1) {
      const PatternToMatch &Pattern = *Shared.back().first;
      OS << "\n" << std::string(Indent, ' ') << "// Pattern: ";
      Pattern.getSrcPattern()->print(OS);
      OS << "\n" << std::string(Indent, ' ') << "// Emits: ";
      Pattern.getDstPattern()->print(OS);
      OS << "\n";
      unsigned AddedComplexity = Pattern.getAddedComplexity();
      OS << std::string(Indent, ' ') << "// Pattern complexity = "
         << getPatternSize(Pattern.getSrcPattern(), CGP) + AddedComplexity
         << "  cost = "
         << getResultPatternCost(Pattern.getDstPattern(), CGP)
         << "  size = "
         << getResultPatternSize(Pattern.getDstPattern(), CGP) << "\n";
    }
    if (FirstCodeLine.first != 1) {
      OS << std::string(Indent, ' ') << "{\n";
      Indent += 2;
    }
    EmitPatterns(Shared, Indent, OS);
    if (FirstCodeLine.first != 1) {
      Indent -= 2;
      OS << std::string(Indent, ' ') << "}\n";
    }
    
    if (Other.size() == 1) {
      const PatternToMatch &Pattern = *Other.back().first;
      OS << "\n" << std::string(Indent, ' ') << "// Pattern: ";
      Pattern.getSrcPattern()->print(OS);
      OS << "\n" << std::string(Indent, ' ') << "// Emits: ";
      Pattern.getDstPattern()->print(OS);
      OS << "\n";
      unsigned AddedComplexity = Pattern.getAddedComplexity();
      OS << std::string(Indent, ' ') << "// Pattern complexity = "
         << getPatternSize(Pattern.getSrcPattern(), CGP) + AddedComplexity
         << "  cost = "
         << getResultPatternCost(Pattern.getDstPattern(), CGP)
         << "  size = "
         << getResultPatternSize(Pattern.getDstPattern(), CGP) << "\n";
    }
    EmitPatterns(Other, Indent, OS);
    return;
  }
  
  // Remove this code from all of the patterns that share it.
  bool ErasedPatterns = EraseCodeLine(Patterns);
  
  bool isPredicate = FirstCodeLine.first == 1;
  
  // Otherwise, every pattern in the list has this line.  Emit it.
  if (!isPredicate) {
    // Normal code.
    OS << std::string(Indent, ' ') << FirstCodeLine.second << "\n";
  } else {
    OS << std::string(Indent, ' ') << "if (" << FirstCodeLine.second;
    
    // If the next code line is another predicate, and if all of the pattern
    // in this group share the same next line, emit it inline now.  Do this
    // until we run out of common predicates.
    while (!ErasedPatterns && Patterns.back().second.back().first == 1) {
      // Check that all of the patterns in Patterns end with the same predicate.
      bool AllEndWithSamePredicate = true;
      for (unsigned i = 0, e = Patterns.size(); i != e; ++i)
        if (Patterns[i].second.back() != Patterns.back().second.back()) {
          AllEndWithSamePredicate = false;
          break;
        }
      // If all of the predicates aren't the same, we can't share them.
      if (!AllEndWithSamePredicate) break;
      
      // Otherwise we can.  Emit it shared now.
      OS << " &&\n" << std::string(Indent+4, ' ')
         << Patterns.back().second.back().second;
      ErasedPatterns = EraseCodeLine(Patterns);
    }
    
    OS << ") {\n";
    Indent += 2;
  }
  
  EmitPatterns(Patterns, Indent, OS);
  
  if (isPredicate)
    OS << std::string(Indent-2, ' ') << "}\n";
}

static std::string getLegalCName(std::string OpName) {
  std::string::size_type pos = OpName.find("::");
  if (pos != std::string::npos)
    OpName.replace(pos, 2, "_");
  return OpName;
}

void DAGISelEmitter::EmitInstructionSelector(raw_ostream &OS) {
  const CodeGenTarget &Target = CGP.getTargetInfo();
  
  // Get the namespace to insert instructions into.
  std::string InstNS = Target.getInstNamespace();
  if (!InstNS.empty()) InstNS += "::";
  
  // Group the patterns by their top-level opcodes.
  std::map<std::string, std::vector<const PatternToMatch*> > PatternsByOpcode;
  // All unique target node emission functions.
  std::map<std::string, unsigned> EmitFunctions;
  for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(),
       E = CGP.ptm_end(); I != E; ++I) {
    const PatternToMatch &Pattern = *I;
    
    TreePatternNode *Node = Pattern.getSrcPattern();
    if (!Node->isLeaf()) {
      PatternsByOpcode[getOpcodeName(Node->getOperator(), CGP)].
        push_back(&Pattern);
    } else {
      const ComplexPattern *CP;
      if (dynamic_cast<IntInit*>(Node->getLeafValue())) {
        PatternsByOpcode[getOpcodeName(CGP.getSDNodeNamed("imm"), CGP)].
          push_back(&Pattern);
      } else if ((CP = NodeGetComplexPattern(Node, CGP))) {
        std::vector<Record*> OpNodes = CP->getRootNodes();
        for (unsigned j = 0, e = OpNodes.size(); j != e; j++) {
          PatternsByOpcode[getOpcodeName(OpNodes[j], CGP)]
            .insert(PatternsByOpcode[getOpcodeName(OpNodes[j], CGP)].begin(),
                    &Pattern);
        }
      } else {
        errs() << "Unrecognized opcode '";
        Node->dump();
        errs() << "' on tree pattern '";
        errs() << Pattern.getDstPattern()->getOperator()->getName() << "'!\n";
        exit(1);
      }
    }
  }

  // For each opcode, there might be multiple select functions, one per
  // ValueType of the node (or its first operand if it doesn't produce a
  // non-chain result.
  std::map<std::string, std::vector<std::string> > OpcodeVTMap;

  // Emit one Select_* method for each top-level opcode.  We do this instead of
  // emitting one giant switch statement to support compilers where this will
  // result in the recursive functions taking less stack space.
  for (std::map<std::string, std::vector<const PatternToMatch*> >::iterator
         PBOI = PatternsByOpcode.begin(), E = PatternsByOpcode.end();
       PBOI != E; ++PBOI) {
    const std::string &OpName = PBOI->first;
    std::vector<const PatternToMatch*> &PatternsOfOp = PBOI->second;
    assert(!PatternsOfOp.empty() && "No patterns but map has entry?");

    // Split them into groups by type.
    std::map<MVT::SimpleValueType,
             std::vector<const PatternToMatch*> > PatternsByType;
    for (unsigned i = 0, e = PatternsOfOp.size(); i != e; ++i) {
      const PatternToMatch *Pat = PatternsOfOp[i];
      TreePatternNode *SrcPat = Pat->getSrcPattern();
      PatternsByType[SrcPat->getTypeNum(0)].push_back(Pat);
    }

    for (std::map<MVT::SimpleValueType,
                  std::vector<const PatternToMatch*> >::iterator
           II = PatternsByType.begin(), EE = PatternsByType.end(); II != EE;
         ++II) {
      MVT::SimpleValueType OpVT = II->first;
      std::vector<const PatternToMatch*> &Patterns = II->second;
      typedef std::pair<unsigned, std::string> CodeLine;
      typedef std::vector<CodeLine> CodeList;
      typedef CodeList::iterator CodeListI;
    
      std::vector<std::pair<const PatternToMatch*, CodeList> > CodeForPatterns;
      std::vector<std::vector<std::string> > PatternOpcodes;
      std::vector<std::vector<std::string> > PatternVTs;
      std::vector<std::set<std::string> > PatternDecls;
      std::vector<bool> OutputIsVariadicFlags;
      std::vector<unsigned> NumInputRootOpsCounts;
      for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
        CodeList GeneratedCode;
        std::set<std::string> GeneratedDecl;
        std::vector<std::string> TargetOpcodes;
        std::vector<std::string> TargetVTs;
        bool OutputIsVariadic;
        unsigned NumInputRootOps;
        GenerateCodeForPattern(*Patterns[i], GeneratedCode, GeneratedDecl,
                               TargetOpcodes, TargetVTs,
                               OutputIsVariadic, NumInputRootOps);
        CodeForPatterns.push_back(std::make_pair(Patterns[i], GeneratedCode));
        PatternDecls.push_back(GeneratedDecl);
        PatternOpcodes.push_back(TargetOpcodes);
        PatternVTs.push_back(TargetVTs);
        OutputIsVariadicFlags.push_back(OutputIsVariadic);
        NumInputRootOpsCounts.push_back(NumInputRootOps);
      }
    
      // Factor target node emission code (emitted by EmitResultCode) into
      // separate functions. Uniquing and share them among all instruction
      // selection routines.
      for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) {
        CodeList &GeneratedCode = CodeForPatterns[i].second;
        std::vector<std::string> &TargetOpcodes = PatternOpcodes[i];
        std::vector<std::string> &TargetVTs = PatternVTs[i];
        std::set<std::string> Decls = PatternDecls[i];
        bool OutputIsVariadic = OutputIsVariadicFlags[i];
        unsigned NumInputRootOps = NumInputRootOpsCounts[i];
        std::vector<std::string> AddedInits;
        int CodeSize = (int)GeneratedCode.size();
        int LastPred = -1;
        for (int j = CodeSize-1; j >= 0; --j) {
          if (LastPred == -1 && GeneratedCode[j].first == 1)
            LastPred = j;
          else if (LastPred != -1 && GeneratedCode[j].first == 2)
            AddedInits.push_back(GeneratedCode[j].second);
        }

        std::string CalleeCode = "(SDNode *N";
        std::string CallerCode = "(N";
        for (unsigned j = 0, e = TargetOpcodes.size(); j != e; ++j) {
          CalleeCode += ", unsigned Opc" + utostr(j);
          CallerCode += ", " + TargetOpcodes[j];
        }
        for (unsigned j = 0, e = TargetVTs.size(); j != e; ++j) {
          CalleeCode += ", MVT::SimpleValueType VT" + utostr(j);
          CallerCode += ", " + TargetVTs[j];
        }
        for (std::set<std::string>::iterator
               I = Decls.begin(), E = Decls.end(); I != E; ++I) {
          std::string Name = *I;
          CalleeCode += ", SDValue &" + Name;
          CallerCode += ", " + Name;
        }

        if (OutputIsVariadic) {
          CalleeCode += ", unsigned NumInputRootOps";
          CallerCode += ", " + utostr(NumInputRootOps);
        }

        CallerCode += ");";
        CalleeCode += ") {\n";

        for (std::vector<std::string>::const_reverse_iterator
               I = AddedInits.rbegin(), E = AddedInits.rend(); I != E; ++I)
          CalleeCode += "  " + *I + "\n";

        for (int j = LastPred+1; j < CodeSize; ++j)
          CalleeCode += "  " + GeneratedCode[j].second + "\n";
        for (int j = LastPred+1; j < CodeSize; ++j)
          GeneratedCode.pop_back();
        CalleeCode += "}\n";

        // Uniquing the emission routines.
        unsigned EmitFuncNum;
        std::map<std::string, unsigned>::iterator EFI =
          EmitFunctions.find(CalleeCode);
        if (EFI != EmitFunctions.end()) {
          EmitFuncNum = EFI->second;
        } else {
          EmitFuncNum = EmitFunctions.size();
          EmitFunctions.insert(std::make_pair(CalleeCode, EmitFuncNum));
          // Prevent emission routines from being inlined to reduce selection
          // routines stack frame sizes.
          OS << "DISABLE_INLINE ";
          OS << "SDNode *Emit_" << utostr(EmitFuncNum) << CalleeCode;
        }

        // Replace the emission code within selection routines with calls to the
        // emission functions.
        if (GenDebug)
          GeneratedCode.push_back(std::make_pair(0, "CurDAG->setSubgraphColor(N, \"red\");"));
        CallerCode = "SDNode *Result = Emit_" + utostr(EmitFuncNum) + CallerCode;
        GeneratedCode.push_back(std::make_pair(3, CallerCode));
        if (GenDebug) {
          GeneratedCode.push_back(std::make_pair(0, "if(Result) {"));
          GeneratedCode.push_back(std::make_pair(0, "  CurDAG->setSubgraphColor(Result, \"yellow\");"));
          GeneratedCode.push_back(std::make_pair(0, "  CurDAG->setSubgraphColor(Result, \"black\");"));
          GeneratedCode.push_back(std::make_pair(0, "}"));
          //GeneratedCode.push_back(std::make_pair(0, "CurDAG->setSubgraphColor(N, \"black\");"));
        }
        GeneratedCode.push_back(std::make_pair(0, "return Result;"));
      }

      // Print function.
      std::string OpVTStr;
      if (OpVT == MVT::iPTR) {
        OpVTStr = "_iPTR";
      } else if (OpVT == MVT::iPTRAny) {
        OpVTStr = "_iPTRAny";
      } else if (OpVT == MVT::isVoid) {
        // Nodes with a void result actually have a first result type of either
        // Other (a chain) or Flag.  Since there is no one-to-one mapping from
        // void to this case, we handle it specially here.
      } else {
        OpVTStr = "_" + getEnumName(OpVT).substr(5);  // Skip 'MVT::'
      }
      std::map<std::string, std::vector<std::string> >::iterator OpVTI =
        OpcodeVTMap.find(OpName);
      if (OpVTI == OpcodeVTMap.end()) {
        std::vector<std::string> VTSet;
        VTSet.push_back(OpVTStr);
        OpcodeVTMap.insert(std::make_pair(OpName, VTSet));
      } else
        OpVTI->second.push_back(OpVTStr);

      // We want to emit all of the matching code now.  However, we want to emit
      // the matches in order of minimal cost.  Sort the patterns so the least
      // cost one is at the start.
      std::stable_sort(CodeForPatterns.begin(), CodeForPatterns.end(),
                       PatternSortingPredicate(CGP));

      // Scan the code to see if all of the patterns are reachable and if it is
      // possible that the last one might not match.
      bool mightNotMatch = true;
      for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) {
        CodeList &GeneratedCode = CodeForPatterns[i].second;
        mightNotMatch = false;

        for (unsigned j = 0, e = GeneratedCode.size(); j != e; ++j) {
          if (GeneratedCode[j].first == 1) { // predicate.
            mightNotMatch = true;
            break;
          }
        }
      
        // If this pattern definitely matches, and if it isn't the last one, the
        // patterns after it CANNOT ever match.  Error out.
        if (mightNotMatch == false && i != CodeForPatterns.size()-1) {
          errs() << "Pattern '";
          CodeForPatterns[i].first->getSrcPattern()->print(errs());
          errs() << "' is impossible to select!\n";
          exit(1);
        }
      }

      // Loop through and reverse all of the CodeList vectors, as we will be
      // accessing them from their logical front, but accessing the end of a
      // vector is more efficient.
      for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) {
        CodeList &GeneratedCode = CodeForPatterns[i].second;
        std::reverse(GeneratedCode.begin(), GeneratedCode.end());
      }
    
      // Next, reverse the list of patterns itself for the same reason.
      std::reverse(CodeForPatterns.begin(), CodeForPatterns.end());
    
      OS << "SDNode *Select_" << getLegalCName(OpName)
         << OpVTStr << "(SDNode *N) {\n";

      // Emit all of the patterns now, grouped together to share code.
      EmitPatterns(CodeForPatterns, 2, OS);
    
      // If the last pattern has predicates (which could fail) emit code to
      // catch the case where nothing handles a pattern.
      if (mightNotMatch) {
        OS << "\n";
        if (OpName != "ISD::INTRINSIC_W_CHAIN" &&
            OpName != "ISD::INTRINSIC_WO_CHAIN" &&
            OpName != "ISD::INTRINSIC_VOID")
          OS << "  CannotYetSelect(N);\n";
        else
          OS << "  CannotYetSelectIntrinsic(N);\n";

        OS << "  return NULL;\n";
      }
      OS << "}\n\n";
    }
  }
  
  OS << "// The main instruction selector code.\n"
     << "SDNode *SelectCode(SDNode *N) {\n"
     << "  MVT::SimpleValueType NVT = N->getValueType(0).getSimpleVT().SimpleTy;\n"
     << "  switch (N->getOpcode()) {\n"
     << "  default:\n"
     << "    assert(!N->isMachineOpcode() && \"Node already selected!\");\n"
     << "    break;\n"
     << "  case ISD::EntryToken:       // These nodes remain the same.\n"
     << "  case ISD::BasicBlock:\n"
     << "  case ISD::Register:\n"
     << "  case ISD::HANDLENODE:\n"
     << "  case ISD::TargetConstant:\n"
     << "  case ISD::TargetConstantFP:\n"
     << "  case ISD::TargetConstantPool:\n"
     << "  case ISD::TargetFrameIndex:\n"
     << "  case ISD::TargetExternalSymbol:\n"
     << "  case ISD::TargetBlockAddress:\n"
     << "  case ISD::TargetJumpTable:\n"
     << "  case ISD::TargetGlobalTLSAddress:\n"
     << "  case ISD::TargetGlobalAddress:\n"
     << "  case ISD::TokenFactor:\n"
     << "  case ISD::CopyFromReg:\n"
     << "  case ISD::CopyToReg: {\n"
     << "    return NULL;\n"
     << "  }\n"
     << "  case ISD::AssertSext:\n"
     << "  case ISD::AssertZext: {\n"
     << "    ReplaceUses(SDValue(N, 0), N->getOperand(0));\n"
     << "    return NULL;\n"
     << "  }\n"
     << "  case ISD::INLINEASM: return Select_INLINEASM(N);\n"
     << "  case ISD::EH_LABEL: return Select_EH_LABEL(N);\n"
     << "  case ISD::UNDEF: return Select_UNDEF(N);\n";

  // Loop over all of the case statements, emiting a call to each method we
  // emitted above.
  for (std::map<std::string, std::vector<const PatternToMatch*> >::iterator
         PBOI = PatternsByOpcode.begin(), E = PatternsByOpcode.end();
       PBOI != E; ++PBOI) {
    const std::string &OpName = PBOI->first;
    // Potentially multiple versions of select for this opcode. One for each
    // ValueType of the node (or its first true operand if it doesn't produce a
    // result.
    std::map<std::string, std::vector<std::string> >::iterator OpVTI =
      OpcodeVTMap.find(OpName);
    std::vector<std::string> &OpVTs = OpVTI->second;
    OS << "  case " << OpName << ": {\n";
    // If we have only one variant and it's the default, elide the
    // switch.  Marginally faster, and makes MSVC happier.
    if (OpVTs.size()==1 && OpVTs[0].empty()) {
      OS << "    return Select_" << getLegalCName(OpName) << "(N);\n";
      OS << "    break;\n";
      OS << "  }\n";
      continue;
    }
    // Keep track of whether we see a pattern that has an iPtr result.
    bool HasPtrPattern = false;
    bool HasDefaultPattern = false;
      
    OS << "    switch (NVT) {\n";
    for (unsigned i = 0, e = OpVTs.size(); i < e; ++i) {
      std::string &VTStr = OpVTs[i];
      if (VTStr.empty()) {
        HasDefaultPattern = true;
        continue;
      }

      // If this is a match on iPTR: don't emit it directly, we need special
      // code.
      if (VTStr == "_iPTR") {
        HasPtrPattern = true;
        continue;
      }
      OS << "    case MVT::" << VTStr.substr(1) << ":\n"
         << "      return Select_" << getLegalCName(OpName)
         << VTStr << "(N);\n";
    }
    OS << "    default:\n";
      
    // If there is an iPTR result version of this pattern, emit it here.
    if (HasPtrPattern) {
      OS << "      if (TLI.getPointerTy() == NVT)\n";
      OS << "        return Select_" << getLegalCName(OpName) <<"_iPTR(N);\n";
    }
    if (HasDefaultPattern) {
      OS << "      return Select_" << getLegalCName(OpName) << "(N);\n";
    }
    OS << "      break;\n";
    OS << "    }\n";
    OS << "    break;\n";
    OS << "  }\n";
  }

  OS << "  } // end of big switch.\n\n"
     << "  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&\n"
     << "      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&\n"
     << "      N->getOpcode() != ISD::INTRINSIC_VOID) {\n"
     << "    CannotYetSelect(N);\n"
     << "  } else {\n"
     << "    CannotYetSelectIntrinsic(N);\n"
     << "  }\n"
     << "  return NULL;\n"
     << "}\n\n";
}

void DAGISelEmitter::run(raw_ostream &OS) {
  EmitSourceFileHeader("DAG Instruction Selector for the " +
                       CGP.getTargetInfo().getName() + " target", OS);
  
  OS << "// *** NOTE: This file is #included into the middle of the target\n"
     << "// *** instruction selector class.  These functions are really "
     << "methods.\n\n";

  OS << "// Include standard, target-independent definitions and methods used\n"
     << "// by the instruction selector.\n";
  OS << "#include \"llvm/CodeGen/DAGISelHeader.h\"\n\n";
  
  EmitNodeTransforms(OS);
  EmitPredicateFunctions(OS);
  
  DEBUG(errs() << "\n\nALL PATTERNS TO MATCH:\n\n");
  for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(), E = CGP.ptm_end();
       I != E; ++I) {
    DEBUG(errs() << "PATTERN: ";   I->getSrcPattern()->dump());
    DEBUG(errs() << "\nRESULT:  "; I->getDstPattern()->dump());
    DEBUG(errs() << "\n");
  }
  
  // At this point, we have full information about the 'Patterns' we need to
  // parse, both implicitly from instructions as well as from explicit pattern
  // definitions.  Emit the resultant instruction selector.
  EmitInstructionSelector(OS);  
  
}