aboutsummaryrefslogtreecommitdiffstats
path: root/utils/TableGen/SetTheory.cpp
blob: ade182557678da15d336a33f99b21a340098a4cb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
//===- SetTheory.cpp - Generate ordered sets from DAG expressions ---------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the SetTheory class that computes ordered sets of
// Records from DAG expressions.
//
//===----------------------------------------------------------------------===//

#include "SetTheory.h"
#include "Record.h"
#include "llvm/Support/Format.h"

using namespace llvm;

// Define the standard operators.
namespace {

typedef SetTheory::RecSet RecSet;
typedef SetTheory::RecVec RecVec;

// (add a, b, ...) Evaluate and union all arguments.
struct AddOp : public SetTheory::Operator {
  void apply(SetTheory &ST, DagInit *Expr, RecSet &Elts) {
    ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts);
  }
};

// (sub Add, Sub, ...) Set difference.
struct SubOp : public SetTheory::Operator {
  void apply(SetTheory &ST, DagInit *Expr, RecSet &Elts) {
    if (Expr->arg_size() < 2)
      throw "Set difference needs at least two arguments: " +
        Expr->getAsString();
    RecSet Add, Sub;
    ST.evaluate(*Expr->arg_begin(), Add);
    ST.evaluate(Expr->arg_begin() + 1, Expr->arg_end(), Sub);
    for (RecSet::iterator I = Add.begin(), E = Add.end(); I != E; ++I)
      if (!Sub.count(*I))
        Elts.insert(*I);
  }
};

// (and S1, S2) Set intersection.
struct AndOp : public SetTheory::Operator {
  void apply(SetTheory &ST, DagInit *Expr, RecSet &Elts) {
    if (Expr->arg_size() != 2)
      throw "Set intersection requires two arguments: " + Expr->getAsString();
    RecSet S1, S2;
    ST.evaluate(Expr->arg_begin()[0], S1);
    ST.evaluate(Expr->arg_begin()[1], S2);
    for (RecSet::iterator I = S1.begin(), E = S1.end(); I != E; ++I)
      if (S2.count(*I))
        Elts.insert(*I);
  }
};

// SetIntBinOp - Abstract base class for (Op S, N) operators.
struct SetIntBinOp : public SetTheory::Operator {
  virtual void apply2(SetTheory &ST, DagInit *Expr,
                     RecSet &Set, int64_t N,
                     RecSet &Elts) =0;

  void apply(SetTheory &ST, DagInit *Expr, RecSet &Elts) {
    if (Expr->arg_size() != 2)
      throw "Operator requires (Op Set, Int) arguments: " + Expr->getAsString();
    RecSet Set;
    ST.evaluate(Expr->arg_begin()[0], Set);
    IntInit *II = dynamic_cast<IntInit*>(Expr->arg_begin()[1]);
    if (!II)
      throw "Second argument must be an integer: " + Expr->getAsString();
    apply2(ST, Expr, Set, II->getValue(), Elts);
  }
};

// (shl S, N) Shift left, remove the first N elements.
struct ShlOp : public SetIntBinOp {
  void apply2(SetTheory &ST, DagInit *Expr,
             RecSet &Set, int64_t N,
             RecSet &Elts) {
    if (N < 0)
      throw "Positive shift required: " + Expr->getAsString();
    if (unsigned(N) < Set.size())
      Elts.insert(Set.begin() + N, Set.end());
  }
};

// (trunc S, N) Truncate after the first N elements.
struct TruncOp : public SetIntBinOp {
  void apply2(SetTheory &ST, DagInit *Expr,
             RecSet &Set, int64_t N,
             RecSet &Elts) {
    if (N < 0)
      throw "Positive length required: " + Expr->getAsString();
    if (unsigned(N) > Set.size())
      N = Set.size();
    Elts.insert(Set.begin(), Set.begin() + N);
  }
};

// Left/right rotation.
struct RotOp : public SetIntBinOp {
  const bool Reverse;

  RotOp(bool Rev) : Reverse(Rev) {}

  void apply2(SetTheory &ST, DagInit *Expr,
             RecSet &Set, int64_t N,
             RecSet &Elts) {
    if (Reverse)
      N = -N;
    // N > 0 -> rotate left, N < 0 -> rotate right.
    if (Set.empty())
      return;
    if (N < 0)
      N = Set.size() - (-N % Set.size());
    else
      N %= Set.size();
    Elts.insert(Set.begin() + N, Set.end());
    Elts.insert(Set.begin(), Set.begin() + N);
  }
};

// (decimate S, N) Pick every N'th element of S.
struct DecimateOp : public SetIntBinOp {
  void apply2(SetTheory &ST, DagInit *Expr,
             RecSet &Set, int64_t N,
             RecSet &Elts) {
    if (N <= 0)
      throw "Positive stride required: " + Expr->getAsString();
    for (unsigned I = 0; I < Set.size(); I += N)
      Elts.insert(Set[I]);
  }
};

// (sequence "Format", From, To) Generate a sequence of records by name.
struct SequenceOp : public SetTheory::Operator {
  void apply(SetTheory &ST, DagInit *Expr, RecSet &Elts) {
    if (Expr->arg_size() != 3)
      throw "Bad args to (sequence \"Format\", From, To): " +
        Expr->getAsString();
    std::string Format;
    if (StringInit *SI = dynamic_cast<StringInit*>(Expr->arg_begin()[0]))
      Format = SI->getValue();
    else
      throw "Format must be a string: " + Expr->getAsString();

    int64_t From, To;
    if (IntInit *II = dynamic_cast<IntInit*>(Expr->arg_begin()[1]))
      From = II->getValue();
    else
      throw "From must be an integer: " + Expr->getAsString();
    if (IntInit *II = dynamic_cast<IntInit*>(Expr->arg_begin()[2]))
      To = II->getValue();
    else
      throw "From must be an integer: " + Expr->getAsString();

    RecordKeeper &Records =
      dynamic_cast<DefInit&>(*Expr->getOperator()).getDef()->getRecords();

    int Step = From <= To ? 1 : -1;
    for (To += Step; From != To; From += Step) {
      std::string Name;
      raw_string_ostream OS(Name);
      OS << format(Format.c_str(), From);
      Record *Rec = Records.getDef(OS.str());
      if (!Rec)
        throw "No def named '" + Name + "': " + Expr->getAsString();
      // Try to reevaluate Rec in case it is a set.
      if (const RecVec *Result = ST.expand(Rec))
        Elts.insert(Result->begin(), Result->end());
      else
        Elts.insert(Rec);
    }
  }
};

// Expand a Def into a set by evaluating one of its fields.
struct FieldExpander : public SetTheory::Expander {
  StringRef FieldName;

  FieldExpander(StringRef fn) : FieldName(fn) {}

  void expand(SetTheory &ST, Record *Def, RecSet &Elts) {
    ST.evaluate(Def->getValueInit(FieldName), Elts);
  }
};
} // end anonymous namespace

SetTheory::SetTheory() {
  addOperator("add", new AddOp);
  addOperator("sub", new SubOp);
  addOperator("and", new AndOp);
  addOperator("shl", new ShlOp);
  addOperator("trunc", new TruncOp);
  addOperator("rotl", new RotOp(false));
  addOperator("rotr", new RotOp(true));
  addOperator("decimate", new DecimateOp);
  addOperator("sequence", new SequenceOp);
}

void SetTheory::addOperator(StringRef Name, Operator *Op) {
  Operators[Name] = Op;
}

void SetTheory::addExpander(StringRef ClassName, Expander *E) {
  Expanders[ClassName] = E;
}

void SetTheory::addFieldExpander(StringRef ClassName, StringRef FieldName) {
  addExpander(ClassName, new FieldExpander(FieldName));
}

void SetTheory::evaluate(Init *Expr, RecSet &Elts) {
  // A def in a list can be a just an element, or it may expand.
  if (DefInit *Def = dynamic_cast<DefInit*>(Expr)) {
    if (const RecVec *Result = expand(Def->getDef()))
      return Elts.insert(Result->begin(), Result->end());
    Elts.insert(Def->getDef());
    return;
  }

  // Lists simply expand.
  if (ListInit *LI = dynamic_cast<ListInit*>(Expr))
    return evaluate(LI->begin(), LI->end(), Elts);

  // Anything else must be a DAG.
  DagInit *DagExpr = dynamic_cast<DagInit*>(Expr);
  if (!DagExpr)
    throw "Invalid set element: " + Expr->getAsString();
  DefInit *OpInit = dynamic_cast<DefInit*>(DagExpr->getOperator());
  if (!OpInit)
    throw "Bad set expression: " + Expr->getAsString();
  Operator *Op = Operators.lookup(OpInit->getDef()->getName());
  if (!Op)
    throw "Unknown set operator: " + Expr->getAsString();
  Op->apply(*this, DagExpr, Elts);
}

const RecVec *SetTheory::expand(Record *Set) {
  // Check existing entries for Set and return early.
  ExpandMap::iterator I = Expansions.find(Set);
  if (I != Expansions.end())
    return &I->second;

  // This is the first time we see Set. Find a suitable expander.
  try {
    const std::vector<Record*> &SC = Set->getSuperClasses();
    for (unsigned i = 0, e = SC.size(); i != e; ++i)
      if (Expander *Exp = Expanders.lookup(SC[i]->getName())) {
        // This breaks recursive definitions.
        RecVec &EltVec = Expansions[Set];
        RecSet Elts;
        Exp->expand(*this, Set, Elts);
        EltVec.assign(Elts.begin(), Elts.end());
        return &EltVec;
      }
  } catch (const std::string &Error) {
    throw TGError(Set->getLoc(), Error);
  }

  // Set is not expandable.
  return 0;
}