summaryrefslogtreecommitdiffstats
path: root/src/intel/vulkan/anv_batch_chain.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/intel/vulkan/anv_batch_chain.c')
-rw-r--r--src/intel/vulkan/anv_batch_chain.c387
1 files changed, 270 insertions, 117 deletions
diff --git a/src/intel/vulkan/anv_batch_chain.c b/src/intel/vulkan/anv_batch_chain.c
index dfa9abf..b49e173 100644
--- a/src/intel/vulkan/anv_batch_chain.c
+++ b/src/intel/vulkan/anv_batch_chain.c
@@ -32,6 +32,8 @@
#include "genxml/gen7_pack.h"
#include "genxml/gen8_pack.h"
+#include "util/debug.h"
+
/** \file anv_batch_chain.c
*
* This file contains functions related to anv_cmd_buffer as a data
@@ -297,8 +299,6 @@ anv_batch_bo_clone(struct anv_cmd_buffer *cmd_buffer,
bbo->length = other_bbo->length;
memcpy(bbo->bo.map, other_bbo->bo.map, other_bbo->length);
- bbo->last_ss_pool_bo_offset = other_bbo->last_ss_pool_bo_offset;
-
*bbo_out = bbo;
return VK_SUCCESS;
@@ -318,7 +318,6 @@ anv_batch_bo_start(struct anv_batch_bo *bbo, struct anv_batch *batch,
batch->next = batch->start = bbo->bo.map;
batch->end = bbo->bo.map + bbo->bo.size - batch_padding;
batch->relocs = &bbo->relocs;
- bbo->last_ss_pool_bo_offset = 0;
bbo->relocs.num_relocs = 0;
}
@@ -620,13 +619,10 @@ anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer)
&cmd_buffer->pool->alloc);
if (result != VK_SUCCESS)
goto fail_bt_blocks;
+ cmd_buffer->last_ss_pool_center = 0;
anv_cmd_buffer_new_binding_table_block(cmd_buffer);
- cmd_buffer->execbuf2.objects = NULL;
- cmd_buffer->execbuf2.bos = NULL;
- cmd_buffer->execbuf2.array_length = 0;
-
return VK_SUCCESS;
fail_bt_blocks:
@@ -658,9 +654,6 @@ anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer)
&cmd_buffer->batch_bos, link) {
anv_batch_bo_destroy(bbo, cmd_buffer);
}
-
- vk_free(&cmd_buffer->pool->alloc, cmd_buffer->execbuf2.objects);
- vk_free(&cmd_buffer->pool->alloc, cmd_buffer->execbuf2.bos);
}
void
@@ -688,6 +681,7 @@ anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer)
cmd_buffer->bt_next = 0;
cmd_buffer->surface_relocs.num_relocs = 0;
+ cmd_buffer->last_ss_pool_center = 0;
/* Reset the list of seen buffers */
cmd_buffer->seen_bbos.head = 0;
@@ -857,56 +851,83 @@ anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
&secondary->surface_relocs, 0);
}
+struct anv_execbuf {
+ struct drm_i915_gem_execbuffer2 execbuf;
+
+ struct drm_i915_gem_exec_object2 * objects;
+ uint32_t bo_count;
+ struct anv_bo ** bos;
+
+ /* Allocated length of the 'objects' and 'bos' arrays */
+ uint32_t array_length;
+};
+
+static void
+anv_execbuf_init(struct anv_execbuf *exec)
+{
+ memset(exec, 0, sizeof(*exec));
+}
+
+static void
+anv_execbuf_finish(struct anv_execbuf *exec,
+ const VkAllocationCallbacks *alloc)
+{
+ vk_free(alloc, exec->objects);
+ vk_free(alloc, exec->bos);
+}
+
static VkResult
-anv_cmd_buffer_add_bo(struct anv_cmd_buffer *cmd_buffer,
- struct anv_bo *bo,
- struct anv_reloc_list *relocs)
+anv_execbuf_add_bo(struct anv_execbuf *exec,
+ struct anv_bo *bo,
+ struct anv_reloc_list *relocs,
+ const VkAllocationCallbacks *alloc)
{
struct drm_i915_gem_exec_object2 *obj = NULL;
- if (bo->index < cmd_buffer->execbuf2.bo_count &&
- cmd_buffer->execbuf2.bos[bo->index] == bo)
- obj = &cmd_buffer->execbuf2.objects[bo->index];
+ if (bo->index < exec->bo_count && exec->bos[bo->index] == bo)
+ obj = &exec->objects[bo->index];
if (obj == NULL) {
/* We've never seen this one before. Add it to the list and assign
* an id that we can use later.
*/
- if (cmd_buffer->execbuf2.bo_count >= cmd_buffer->execbuf2.array_length) {
- uint32_t new_len = cmd_buffer->execbuf2.objects ?
- cmd_buffer->execbuf2.array_length * 2 : 64;
+ if (exec->bo_count >= exec->array_length) {
+ uint32_t new_len = exec->objects ? exec->array_length * 2 : 64;
struct drm_i915_gem_exec_object2 *new_objects =
- vk_alloc(&cmd_buffer->pool->alloc, new_len * sizeof(*new_objects),
- 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
+ vk_alloc(alloc, new_len * sizeof(*new_objects),
+ 8, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
if (new_objects == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
struct anv_bo **new_bos =
- vk_alloc(&cmd_buffer->pool->alloc, new_len * sizeof(*new_bos),
- 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
+ vk_alloc(alloc, new_len * sizeof(*new_bos),
+ 8, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
if (new_bos == NULL) {
- vk_free(&cmd_buffer->pool->alloc, new_objects);
+ vk_free(alloc, new_objects);
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
- if (cmd_buffer->execbuf2.objects) {
- memcpy(new_objects, cmd_buffer->execbuf2.objects,
- cmd_buffer->execbuf2.bo_count * sizeof(*new_objects));
- memcpy(new_bos, cmd_buffer->execbuf2.bos,
- cmd_buffer->execbuf2.bo_count * sizeof(*new_bos));
+ if (exec->objects) {
+ memcpy(new_objects, exec->objects,
+ exec->bo_count * sizeof(*new_objects));
+ memcpy(new_bos, exec->bos,
+ exec->bo_count * sizeof(*new_bos));
}
- cmd_buffer->execbuf2.objects = new_objects;
- cmd_buffer->execbuf2.bos = new_bos;
- cmd_buffer->execbuf2.array_length = new_len;
+ vk_free(alloc, exec->objects);
+ vk_free(alloc, exec->bos);
+
+ exec->objects = new_objects;
+ exec->bos = new_bos;
+ exec->array_length = new_len;
}
- assert(cmd_buffer->execbuf2.bo_count < cmd_buffer->execbuf2.array_length);
+ assert(exec->bo_count < exec->array_length);
- bo->index = cmd_buffer->execbuf2.bo_count++;
- obj = &cmd_buffer->execbuf2.objects[bo->index];
- cmd_buffer->execbuf2.bos[bo->index] = bo;
+ bo->index = exec->bo_count++;
+ obj = &exec->objects[bo->index];
+ exec->bos[bo->index] = bo;
obj->handle = bo->gem_handle;
obj->relocation_count = 0;
@@ -929,7 +950,7 @@ anv_cmd_buffer_add_bo(struct anv_cmd_buffer *cmd_buffer,
for (size_t i = 0; i < relocs->num_relocs; i++) {
/* A quick sanity check on relocations */
assert(relocs->relocs[i].offset < bo->size);
- anv_cmd_buffer_add_bo(cmd_buffer, relocs->reloc_bos[i], NULL);
+ anv_execbuf_add_bo(exec, relocs->reloc_bos[i], NULL, alloc);
}
}
@@ -940,82 +961,62 @@ static void
anv_cmd_buffer_process_relocs(struct anv_cmd_buffer *cmd_buffer,
struct anv_reloc_list *list)
{
- struct anv_bo *bo;
-
- /* If the kernel supports I915_EXEC_NO_RELOC, it will compare offset in
- * struct drm_i915_gem_exec_object2 against the bos current offset and if
- * all bos haven't moved it will skip relocation processing alltogether.
- * If I915_EXEC_NO_RELOC is not supported, the kernel ignores the incoming
- * value of offset so we can set it either way. For that to work we need
- * to make sure all relocs use the same presumed offset.
- */
-
- for (size_t i = 0; i < list->num_relocs; i++) {
- bo = list->reloc_bos[i];
- if (bo->offset != list->relocs[i].presumed_offset)
- cmd_buffer->execbuf2.need_reloc = true;
-
- list->relocs[i].target_handle = bo->index;
- }
-}
-
-static uint64_t
-read_reloc(const struct anv_device *device, const void *p)
-{
- if (device->info.gen >= 8)
- return *(uint64_t *)p;
- else
- return *(uint32_t *)p;
+ for (size_t i = 0; i < list->num_relocs; i++)
+ list->relocs[i].target_handle = list->reloc_bos[i]->index;
}
static void
-write_reloc(const struct anv_device *device, void *p, uint64_t v)
+write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
{
- if (device->info.gen >= 8)
- *(uint64_t *)p = v;
- else
+ unsigned reloc_size = 0;
+ if (device->info.gen >= 8) {
+ /* From the Broadwell PRM Vol. 2a, MI_LOAD_REGISTER_MEM::MemoryAddress:
+ *
+ * "This field specifies the address of the memory location where the
+ * register value specified in the DWord above will read from. The
+ * address specifies the DWord location of the data. Range =
+ * GraphicsVirtualAddress[63:2] for a DWord register GraphicsAddress
+ * [63:48] are ignored by the HW and assumed to be in correct
+ * canonical form [63:48] == [47]."
+ */
+ const int shift = 63 - 47;
+ reloc_size = sizeof(uint64_t);
+ *(uint64_t *)p = (((int64_t)v) << shift) >> shift;
+ } else {
+ reloc_size = sizeof(uint32_t);
*(uint32_t *)p = v;
+ }
+
+ if (flush && !device->info.has_llc)
+ anv_clflush_range(p, reloc_size);
}
static void
-adjust_relocations_from_block_pool(struct anv_block_pool *pool,
- struct anv_reloc_list *relocs)
+adjust_relocations_from_state_pool(struct anv_block_pool *pool,
+ struct anv_reloc_list *relocs,
+ uint32_t last_pool_center_bo_offset)
{
- for (size_t i = 0; i < relocs->num_relocs; i++) {
- /* In general, we don't know how stale the relocated value is. It
- * may have been used last time or it may not. Since we don't want
- * to stomp it while the GPU may be accessing it, we haven't updated
- * it anywhere else in the code. Instead, we just set the presumed
- * offset to what it is now based on the delta and the data in the
- * block pool. Then the kernel will update it for us if needed.
- */
- assert(relocs->relocs[i].offset < pool->state.end);
- const void *p = pool->map + relocs->relocs[i].offset;
-
- /* We're reading back the relocated value from potentially incoherent
- * memory here. However, any change to the value will be from the kernel
- * writing out relocations, which will keep the CPU cache up to date.
- */
- relocs->relocs[i].presumed_offset =
- read_reloc(pool->device, p) - relocs->relocs[i].delta;
+ assert(last_pool_center_bo_offset <= pool->center_bo_offset);
+ uint32_t delta = pool->center_bo_offset - last_pool_center_bo_offset;
+ for (size_t i = 0; i < relocs->num_relocs; i++) {
/* All of the relocations from this block pool to other BO's should
* have been emitted relative to the surface block pool center. We
* need to add the center offset to make them relative to the
* beginning of the actual GEM bo.
*/
- relocs->relocs[i].offset += pool->center_bo_offset;
+ relocs->relocs[i].offset += delta;
}
}
static void
-adjust_relocations_to_block_pool(struct anv_block_pool *pool,
+adjust_relocations_to_state_pool(struct anv_block_pool *pool,
struct anv_bo *from_bo,
struct anv_reloc_list *relocs,
- uint32_t *last_pool_center_bo_offset)
+ uint32_t last_pool_center_bo_offset)
{
- assert(*last_pool_center_bo_offset <= pool->center_bo_offset);
- uint32_t delta = pool->center_bo_offset - *last_pool_center_bo_offset;
+ assert(last_pool_center_bo_offset <= pool->center_bo_offset);
+ uint32_t delta = pool->center_bo_offset - last_pool_center_bo_offset;
/* When we initially emit relocations into a block pool, we don't
* actually know what the final center_bo_offset will be so we just emit
@@ -1040,37 +1041,147 @@ adjust_relocations_to_block_pool(struct anv_block_pool *pool,
assert(relocs->relocs[i].offset < from_bo->size);
write_reloc(pool->device, from_bo->map + relocs->relocs[i].offset,
relocs->relocs[i].presumed_offset +
- relocs->relocs[i].delta);
+ relocs->relocs[i].delta, false);
}
}
+}
- *last_pool_center_bo_offset = pool->center_bo_offset;
+static void
+anv_reloc_list_apply(struct anv_device *device,
+ struct anv_reloc_list *list,
+ struct anv_bo *bo,
+ bool always_relocate)
+{
+ for (size_t i = 0; i < list->num_relocs; i++) {
+ struct anv_bo *target_bo = list->reloc_bos[i];
+ if (list->relocs[i].presumed_offset == target_bo->offset &&
+ !always_relocate)
+ continue;
+
+ void *p = bo->map + list->relocs[i].offset;
+ write_reloc(device, p, target_bo->offset + list->relocs[i].delta, true);
+ list->relocs[i].presumed_offset = target_bo->offset;
+ }
}
-void
-anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer)
+/**
+ * This function applies the relocation for a command buffer and writes the
+ * actual addresses into the buffers as per what we were told by the kernel on
+ * the previous execbuf2 call. This should be safe to do because, for each
+ * relocated address, we have two cases:
+ *
+ * 1) The target BO is inactive (as seen by the kernel). In this case, it is
+ * not in use by the GPU so updating the address is 100% ok. It won't be
+ * in-use by the GPU (from our context) again until the next execbuf2
+ * happens. If the kernel decides to move it in the next execbuf2, it
+ * will have to do the relocations itself, but that's ok because it should
+ * have all of the information needed to do so.
+ *
+ * 2) The target BO is active (as seen by the kernel). In this case, it
+ * hasn't moved since the last execbuffer2 call because GTT shuffling
+ * *only* happens when the BO is idle. (From our perspective, it only
+ * happens inside the execbuffer2 ioctl, but the shuffling may be
+ * triggered by another ioctl, with full-ppgtt this is limited to only
+ * execbuffer2 ioctls on the same context, or memory pressure.) Since the
+ * target BO hasn't moved, our anv_bo::offset exactly matches the BO's GTT
+ * address and the relocated value we are writing into the BO will be the
+ * same as the value that is already there.
+ *
+ * There is also a possibility that the target BO is active but the exact
+ * RENDER_SURFACE_STATE object we are writing the relocation into isn't in
+ * use. In this case, the address currently in the RENDER_SURFACE_STATE
+ * may be stale but it's still safe to write the relocation because that
+ * particular RENDER_SURFACE_STATE object isn't in-use by the GPU and
+ * won't be until the next execbuf2 call.
+ *
+ * By doing relocations on the CPU, we can tell the kernel that it doesn't
+ * need to bother. We want to do this because the surface state buffer is
+ * used by every command buffer so, if the kernel does the relocations, it
+ * will always be busy and the kernel will always stall. This is also
+ * probably the fastest mechanism for doing relocations since the kernel would
+ * have to make a full copy of all the relocations lists.
+ */
+static bool
+relocate_cmd_buffer(struct anv_cmd_buffer *cmd_buffer,
+ struct anv_execbuf *exec)
+{
+ static int userspace_relocs = -1;
+ if (userspace_relocs < 0)
+ userspace_relocs = env_var_as_boolean("ANV_USERSPACE_RELOCS", true);
+ if (!userspace_relocs)
+ return false;
+
+ /* First, we have to check to see whether or not we can even do the
+ * relocation. New buffers which have never been submitted to the kernel
+ * don't have a valid offset so we need to let the kernel do relocations so
+ * that we can get offsets for them. On future execbuf2 calls, those
+ * buffers will have offsets and we will be able to skip relocating.
+ * Invalid offsets are indicated by anv_bo::offset == (uint64_t)-1.
+ */
+ for (uint32_t i = 0; i < exec->bo_count; i++) {
+ if (exec->bos[i]->offset == (uint64_t)-1)
+ return false;
+ }
+
+ /* Since surface states are shared between command buffers and we don't
+ * know what order they will be submitted to the kernel, we don't know
+ * what address is actually written in the surface state object at any
+ * given time. The only option is to always relocate them.
+ */
+ anv_reloc_list_apply(cmd_buffer->device, &cmd_buffer->surface_relocs,
+ &cmd_buffer->device->surface_state_block_pool.bo,
+ true /* always relocate surface states */);
+
+ /* Since we own all of the batch buffers, we know what values are stored
+ * in the relocated addresses and only have to update them if the offsets
+ * have changed.
+ */
+ struct anv_batch_bo **bbo;
+ u_vector_foreach(bbo, &cmd_buffer->seen_bbos) {
+ anv_reloc_list_apply(cmd_buffer->device,
+ &(*bbo)->relocs, &(*bbo)->bo, false);
+ }
+
+ for (uint32_t i = 0; i < exec->bo_count; i++)
+ exec->objects[i].offset = exec->bos[i]->offset;
+
+ return true;
+}
+
+VkResult
+anv_cmd_buffer_execbuf(struct anv_device *device,
+ struct anv_cmd_buffer *cmd_buffer)
{
struct anv_batch *batch = &cmd_buffer->batch;
struct anv_block_pool *ss_pool =
&cmd_buffer->device->surface_state_block_pool;
- cmd_buffer->execbuf2.bo_count = 0;
- cmd_buffer->execbuf2.need_reloc = false;
+ struct anv_execbuf execbuf;
+ anv_execbuf_init(&execbuf);
- adjust_relocations_from_block_pool(ss_pool, &cmd_buffer->surface_relocs);
- anv_cmd_buffer_add_bo(cmd_buffer, &ss_pool->bo, &cmd_buffer->surface_relocs);
+ adjust_relocations_from_state_pool(ss_pool, &cmd_buffer->surface_relocs,
+ cmd_buffer->last_ss_pool_center);
+ anv_execbuf_add_bo(&execbuf, &ss_pool->bo, &cmd_buffer->surface_relocs,
+ &cmd_buffer->pool->alloc);
/* First, we walk over all of the bos we've seen and add them and their
* relocations to the validate list.
*/
struct anv_batch_bo **bbo;
u_vector_foreach(bbo, &cmd_buffer->seen_bbos) {
- adjust_relocations_to_block_pool(ss_pool, &(*bbo)->bo, &(*bbo)->relocs,
- &(*bbo)->last_ss_pool_bo_offset);
+ adjust_relocations_to_state_pool(ss_pool, &(*bbo)->bo, &(*bbo)->relocs,
+ cmd_buffer->last_ss_pool_center);
- anv_cmd_buffer_add_bo(cmd_buffer, &(*bbo)->bo, &(*bbo)->relocs);
+ anv_execbuf_add_bo(&execbuf, &(*bbo)->bo, &(*bbo)->relocs,
+ &cmd_buffer->pool->alloc);
}
+ /* Now that we've adjusted all of the surface state relocations, we need to
+ * record the surface state pool center so future executions of the command
+ * buffer can adjust correctly.
+ */
+ cmd_buffer->last_ss_pool_center = ss_pool->center_bo_offset;
+
struct anv_batch_bo *first_batch_bo =
list_first_entry(&cmd_buffer->batch_bos, struct anv_batch_bo, link);
@@ -1079,20 +1190,19 @@ anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer)
* corresponding to the first batch_bo in the chain with the last
* element in the list.
*/
- if (first_batch_bo->bo.index != cmd_buffer->execbuf2.bo_count - 1) {
+ if (first_batch_bo->bo.index != execbuf.bo_count - 1) {
uint32_t idx = first_batch_bo->bo.index;
- uint32_t last_idx = cmd_buffer->execbuf2.bo_count - 1;
+ uint32_t last_idx = execbuf.bo_count - 1;
- struct drm_i915_gem_exec_object2 tmp_obj =
- cmd_buffer->execbuf2.objects[idx];
- assert(cmd_buffer->execbuf2.bos[idx] == &first_batch_bo->bo);
+ struct drm_i915_gem_exec_object2 tmp_obj = execbuf.objects[idx];
+ assert(execbuf.bos[idx] == &first_batch_bo->bo);
- cmd_buffer->execbuf2.objects[idx] = cmd_buffer->execbuf2.objects[last_idx];
- cmd_buffer->execbuf2.bos[idx] = cmd_buffer->execbuf2.bos[last_idx];
- cmd_buffer->execbuf2.bos[idx]->index = idx;
+ execbuf.objects[idx] = execbuf.objects[last_idx];
+ execbuf.bos[idx] = execbuf.bos[last_idx];
+ execbuf.bos[idx]->index = idx;
- cmd_buffer->execbuf2.objects[last_idx] = tmp_obj;
- cmd_buffer->execbuf2.bos[last_idx] = &first_batch_bo->bo;
+ execbuf.objects[last_idx] = tmp_obj;
+ execbuf.bos[last_idx] = &first_batch_bo->bo;
first_batch_bo->bo.index = last_idx;
}
@@ -1113,9 +1223,9 @@ anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer)
}
}
- cmd_buffer->execbuf2.execbuf = (struct drm_i915_gem_execbuffer2) {
- .buffers_ptr = (uintptr_t) cmd_buffer->execbuf2.objects,
- .buffer_count = cmd_buffer->execbuf2.bo_count,
+ execbuf.execbuf = (struct drm_i915_gem_execbuffer2) {
+ .buffers_ptr = (uintptr_t) execbuf.objects,
+ .buffer_count = execbuf.bo_count,
.batch_start_offset = 0,
.batch_len = batch->next - batch->start,
.cliprects_ptr = 0,
@@ -1128,6 +1238,49 @@ anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer)
.rsvd2 = 0,
};
- if (!cmd_buffer->execbuf2.need_reloc)
- cmd_buffer->execbuf2.execbuf.flags |= I915_EXEC_NO_RELOC;
+ if (relocate_cmd_buffer(cmd_buffer, &execbuf)) {
+ /* If we were able to successfully relocate everything, tell the kernel
+ * that it can skip doing relocations. The requirement for using
+ * NO_RELOC is:
+ *
+ * 1) The addresses written in the objects must match the corresponding
+ * reloc.presumed_offset which in turn must match the corresponding
+ * execobject.offset.
+ *
+ * 2) To avoid stalling, execobject.offset should match the current
+ * address of that object within the active context.
+ *
+ * In order to satisfy all of the invariants that make userspace
+ * relocations to be safe (see relocate_cmd_buffer()), we need to
+ * further ensure that the addresses we use match those used by the
+ * kernel for the most recent execbuf2.
+ *
+ * The kernel may still choose to do relocations anyway if something has
+ * moved in the GTT. In this case, the relocation list still needs to be
+ * valid. All relocations on the batch buffers are already valid and
+ * kept up-to-date. For surface state relocations, by applying the
+ * relocations in relocate_cmd_buffer, we ensured that the address in
+ * the RENDER_SURFACE_STATE matches presumed_offset, so it should be
+ * safe for the kernel to relocate them as needed.
+ */
+ execbuf.execbuf.flags |= I915_EXEC_NO_RELOC;
+ } else {
+ /* In the case where we fall back to doing kernel relocations, we need
+ * to ensure that the relocation list is valid. All relocations on the
+ * batch buffers are already valid and kept up-to-date. Since surface
+ * states are shared between command buffers and we don't know what
+ * order they will be submitted to the kernel, we don't know what
+ * address is actually written in the surface state object at any given
+ * time. The only option is to set a bogus presumed offset and let the
+ * kernel relocate them.
+ */
+ for (size_t i = 0; i < cmd_buffer->surface_relocs.num_relocs; i++)
+ cmd_buffer->surface_relocs.relocs[i].presumed_offset = -1;
+ }
+
+ VkResult result = anv_device_execbuf(device, &execbuf.execbuf, execbuf.bos);
+
+ anv_execbuf_finish(&execbuf, &cmd_buffer->pool->alloc);
+
+ return result;
}