diff options
Diffstat (limited to 'src/mesa/shader/slang/slang_library_noise.c')
-rw-r--r-- | src/mesa/shader/slang/slang_library_noise.c | 1002 |
1 files changed, 501 insertions, 501 deletions
diff --git a/src/mesa/shader/slang/slang_library_noise.c b/src/mesa/shader/slang/slang_library_noise.c index d0081c5..b30bb30 100644 --- a/src/mesa/shader/slang/slang_library_noise.c +++ b/src/mesa/shader/slang/slang_library_noise.c @@ -1,501 +1,501 @@ -/*
- * Mesa 3-D graphics library
- * Version: 6.5
- *
- * Copyright (C) 2006 Brian Paul All Rights Reserved.
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and associated documentation files (the "Software"),
- * to deal in the Software without restriction, including without limitation
- * the rights to use, copy, modify, merge, publish, distribute, sublicense,
- * and/or sell copies of the Software, and to permit persons to whom the
- * Software is furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included
- * in all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
- * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
- * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
- * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
- * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
- */
-
-/*
- * SimplexNoise1234
- * Copyright © 2003-2005, Stefan Gustavson
- *
- * Contact: stegu@itn.liu.se
- */
-
-/** \file
- \brief C implementation of Perlin Simplex Noise over 1,2,3, and 4 dimensions.
- \author Stefan Gustavson (stegu@itn.liu.se)
-*/
-
-/*
- * This implementation is "Simplex Noise" as presented by
- * Ken Perlin at a relatively obscure and not often cited course
- * session "Real-Time Shading" at Siggraph 2001 (before real
- * time shading actually took on), under the title "hardware noise".
- * The 3D function is numerically equivalent to his Java reference
- * code available in the PDF course notes, although I re-implemented
- * it from scratch to get more readable code. The 1D, 2D and 4D cases
- * were implemented from scratch by me from Ken Perlin's text.
- *
- * This file has no dependencies on any other file, not even its own
- * header file. The header file is made for use by external code only.
- */
-
-
-#include "imports.h"
-#include "slang_library_noise.h"
-
-#define FASTFLOOR(x) ( ((x)>0) ? ((int)x) : (((int)x)-1) )
-
-/*
- * ---------------------------------------------------------------------
- * Static data
- */
-
-/*
- * Permutation table. This is just a random jumble of all numbers 0-255,
- * repeated twice to avoid wrapping the index at 255 for each lookup.
- * This needs to be exactly the same for all instances on all platforms,
- * so it's easiest to just keep it as static explicit data.
- * This also removes the need for any initialisation of this class.
- *
- * Note that making this an int[] instead of a char[] might make the
- * code run faster on platforms with a high penalty for unaligned single
- * byte addressing. Intel x86 is generally single-byte-friendly, but
- * some other CPUs are faster with 4-aligned reads.
- * However, a char[] is smaller, which avoids cache trashing, and that
- * is probably the most important aspect on most architectures.
- * This array is accessed a *lot* by the noise functions.
- * A vector-valued noise over 3D accesses it 96 times, and a
- * float-valued 4D noise 64 times. We want this to fit in the cache!
- */
-unsigned char perm[512] = {151,160,137,91,90,15,
- 131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
- 190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
- 88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
- 77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
- 102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
- 135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
- 5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
- 223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
- 129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
- 251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
- 49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
- 138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180,
- 151,160,137,91,90,15,
- 131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
- 190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
- 88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
- 77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
- 102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
- 135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
- 5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
- 223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
- 129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
- 251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
- 49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
- 138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180
-};
-
-/*
- * ---------------------------------------------------------------------
- */
-
-/*
- * Helper functions to compute gradients-dot-residualvectors (1D to 4D)
- * Note that these generate gradients of more than unit length. To make
- * a close match with the value range of classic Perlin noise, the final
- * noise values need to be rescaled to fit nicely within [-1,1].
- * (The simplex noise functions as such also have different scaling.)
- * Note also that these noise functions are the most practical and useful
- * signed version of Perlin noise. To return values according to the
- * RenderMan specification from the SL noise() and pnoise() functions,
- * the noise values need to be scaled and offset to [0,1], like this:
- * float SLnoise = (SimplexNoise1234::noise(x,y,z) + 1.0) * 0.5;
- */
-
-static float grad1( int hash, float x ) {
- int h = hash & 15;
- float grad = 1.0f + (h & 7); /* Gradient value 1.0, 2.0, ..., 8.0 */
- if (h&8) grad = -grad; /* Set a random sign for the gradient */
- return ( grad * x ); /* Multiply the gradient with the distance */
-}
-
-static float grad2( int hash, float x, float y ) {
- int h = hash & 7; /* Convert low 3 bits of hash code */
- float u = h<4 ? x : y; /* into 8 simple gradient directions, */
- float v = h<4 ? y : x; /* and compute the dot product with (x,y). */
- return ((h&1)? -u : u) + ((h&2)? -2.0f*v : 2.0f*v);
-}
-
-static float grad3( int hash, float x, float y , float z ) {
- int h = hash & 15; /* Convert low 4 bits of hash code into 12 simple */
- float u = h<8 ? x : y; /* gradient directions, and compute dot product. */
- float v = h<4 ? y : h==12||h==14 ? x : z; /* Fix repeats at h = 12 to 15 */
- return ((h&1)? -u : u) + ((h&2)? -v : v);
-}
-
-static float grad4( int hash, float x, float y, float z, float t ) {
- int h = hash & 31; /* Convert low 5 bits of hash code into 32 simple */
- float u = h<24 ? x : y; /* gradient directions, and compute dot product. */
- float v = h<16 ? y : z;
- float w = h<8 ? z : t;
- return ((h&1)? -u : u) + ((h&2)? -v : v) + ((h&4)? -w : w);
-}
-
- /* A lookup table to traverse the simplex around a given point in 4D. */
- /* Details can be found where this table is used, in the 4D noise method. */
- /* TODO: This should not be required, backport it from Bill's GLSL code! */
- static unsigned char simplex[64][4] = {
- {0,1,2,3},{0,1,3,2},{0,0,0,0},{0,2,3,1},{0,0,0,0},{0,0,0,0},{0,0,0,0},{1,2,3,0},
- {0,2,1,3},{0,0,0,0},{0,3,1,2},{0,3,2,1},{0,0,0,0},{0,0,0,0},{0,0,0,0},{1,3,2,0},
- {0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},
- {1,2,0,3},{0,0,0,0},{1,3,0,2},{0,0,0,0},{0,0,0,0},{0,0,0,0},{2,3,0,1},{2,3,1,0},
- {1,0,2,3},{1,0,3,2},{0,0,0,0},{0,0,0,0},{0,0,0,0},{2,0,3,1},{0,0,0,0},{2,1,3,0},
- {0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},
- {2,0,1,3},{0,0,0,0},{0,0,0,0},{0,0,0,0},{3,0,1,2},{3,0,2,1},{0,0,0,0},{3,1,2,0},
- {2,1,0,3},{0,0,0,0},{0,0,0,0},{0,0,0,0},{3,1,0,2},{0,0,0,0},{3,2,0,1},{3,2,1,0}};
-
-/* 1D simplex noise */
-GLfloat _slang_library_noise1 (GLfloat x)
-{
- int i0 = FASTFLOOR(x);
- int i1 = i0 + 1;
- float x0 = x - i0;
- float x1 = x0 - 1.0f;
- float t1 = 1.0f - x1*x1;
- float n0, n1;
-
- float t0 = 1.0f - x0*x0;
-/* if(t0 < 0.0f) t0 = 0.0f; // this never happens for the 1D case */
- t0 *= t0;
- n0 = t0 * t0 * grad1(perm[i0 & 0xff], x0);
-
-/* if(t1 < 0.0f) t1 = 0.0f; // this never happens for the 1D case */
- t1 *= t1;
- n1 = t1 * t1 * grad1(perm[i1 & 0xff], x1);
- /* The maximum value of this noise is 8*(3/4)^4 = 2.53125 */
- /* A factor of 0.395 would scale to fit exactly within [-1,1], but */
- /* we want to match PRMan's 1D noise, so we scale it down some more. */
- return 0.25f * (n0 + n1);
-}
-
-/* 2D simplex noise */
-GLfloat _slang_library_noise2 (GLfloat x, GLfloat y)
-{
-#define F2 0.366025403f /* F2 = 0.5*(sqrt(3.0)-1.0) */
-#define G2 0.211324865f /* G2 = (3.0-Math.sqrt(3.0))/6.0 */
-
- float n0, n1, n2; /* Noise contributions from the three corners */
-
- /* Skew the input space to determine which simplex cell we're in */
- float s = (x+y)*F2; /* Hairy factor for 2D */
- float xs = x + s;
- float ys = y + s;
- int i = FASTFLOOR(xs);
- int j = FASTFLOOR(ys);
-
- float t = (float)(i+j)*G2;
- float X0 = i-t; /* Unskew the cell origin back to (x,y) space */
- float Y0 = j-t;
- float x0 = x-X0; /* The x,y distances from the cell origin */
- float y0 = y-Y0;
-
- float x1, y1, x2, y2;
- int ii, jj;
- float t0, t1, t2;
-
- /* For the 2D case, the simplex shape is an equilateral triangle. */
- /* Determine which simplex we are in. */
- int i1, j1; /* Offsets for second (middle) corner of simplex in (i,j) coords */
- if(x0>y0) {i1=1; j1=0;} /* lower triangle, XY order: (0,0)->(1,0)->(1,1) */
- else {i1=0; j1=1;} /* upper triangle, YX order: (0,0)->(0,1)->(1,1) */
-
- /* A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and */
- /* a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where */
- /* c = (3-sqrt(3))/6 */
-
- x1 = x0 - i1 + G2; /* Offsets for middle corner in (x,y) unskewed coords */
- y1 = y0 - j1 + G2;
- x2 = x0 - 1.0f + 2.0f * G2; /* Offsets for last corner in (x,y) unskewed coords */
- y2 = y0 - 1.0f + 2.0f * G2;
-
- /* Wrap the integer indices at 256, to avoid indexing perm[] out of bounds */
- ii = i % 256;
- jj = j % 256;
-
- /* Calculate the contribution from the three corners */
- t0 = 0.5f - x0*x0-y0*y0;
- if(t0 < 0.0f) n0 = 0.0f;
- else {
- t0 *= t0;
- n0 = t0 * t0 * grad2(perm[ii+perm[jj]], x0, y0);
- }
-
- t1 = 0.5f - x1*x1-y1*y1;
- if(t1 < 0.0f) n1 = 0.0f;
- else {
- t1 *= t1;
- n1 = t1 * t1 * grad2(perm[ii+i1+perm[jj+j1]], x1, y1);
- }
-
- t2 = 0.5f - x2*x2-y2*y2;
- if(t2 < 0.0f) n2 = 0.0f;
- else {
- t2 *= t2;
- n2 = t2 * t2 * grad2(perm[ii+1+perm[jj+1]], x2, y2);
- }
-
- /* Add contributions from each corner to get the final noise value. */
- /* The result is scaled to return values in the interval [-1,1]. */
- return 40.0f * (n0 + n1 + n2); /* TODO: The scale factor is preliminary! */
-}
-
-/* 3D simplex noise */
-GLfloat _slang_library_noise3 (GLfloat x, GLfloat y, GLfloat z)
-{
-/* Simple skewing factors for the 3D case */
-#define F3 0.333333333f
-#define G3 0.166666667f
-
- float n0, n1, n2, n3; /* Noise contributions from the four corners */
-
- /* Skew the input space to determine which simplex cell we're in */
- float s = (x+y+z)*F3; /* Very nice and simple skew factor for 3D */
- float xs = x+s;
- float ys = y+s;
- float zs = z+s;
- int i = FASTFLOOR(xs);
- int j = FASTFLOOR(ys);
- int k = FASTFLOOR(zs);
-
- float t = (float)(i+j+k)*G3;
- float X0 = i-t; /* Unskew the cell origin back to (x,y,z) space */
- float Y0 = j-t;
- float Z0 = k-t;
- float x0 = x-X0; /* The x,y,z distances from the cell origin */
- float y0 = y-Y0;
- float z0 = z-Z0;
-
- float x1, y1, z1, x2, y2, z2, x3, y3, z3;
- int ii, jj, kk;
- float t0, t1, t2, t3;
-
- /* For the 3D case, the simplex shape is a slightly irregular tetrahedron. */
- /* Determine which simplex we are in. */
- int i1, j1, k1; /* Offsets for second corner of simplex in (i,j,k) coords */
- int i2, j2, k2; /* Offsets for third corner of simplex in (i,j,k) coords */
-
-/* This code would benefit from a backport from the GLSL version! */
- if(x0>=y0) {
- if(y0>=z0)
- { i1=1; j1=0; k1=0; i2=1; j2=1; k2=0; } /* X Y Z order */
- else if(x0>=z0) { i1=1; j1=0; k1=0; i2=1; j2=0; k2=1; } /* X Z Y order */
- else { i1=0; j1=0; k1=1; i2=1; j2=0; k2=1; } /* Z X Y order */
- }
- else { /* x0<y0 */
- if(y0<z0) { i1=0; j1=0; k1=1; i2=0; j2=1; k2=1; } /* Z Y X order */
- else if(x0<z0) { i1=0; j1=1; k1=0; i2=0; j2=1; k2=1; } /* Y Z X order */
- else { i1=0; j1=1; k1=0; i2=1; j2=1; k2=0; } /* Y X Z order */
- }
-
- /* A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z), */
- /* a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and */
- /* a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where */
- /* c = 1/6. */
-
- x1 = x0 - i1 + G3; /* Offsets for second corner in (x,y,z) coords */
- y1 = y0 - j1 + G3;
- z1 = z0 - k1 + G3;
- x2 = x0 - i2 + 2.0f*G3; /* Offsets for third corner in (x,y,z) coords */
- y2 = y0 - j2 + 2.0f*G3;
- z2 = z0 - k2 + 2.0f*G3;
- x3 = x0 - 1.0f + 3.0f*G3; /* Offsets for last corner in (x,y,z) coords */
- y3 = y0 - 1.0f + 3.0f*G3;
- z3 = z0 - 1.0f + 3.0f*G3;
-
- /* Wrap the integer indices at 256, to avoid indexing perm[] out of bounds */
- ii = i % 256;
- jj = j % 256;
- kk = k % 256;
-
- /* Calculate the contribution from the four corners */
- t0 = 0.6f - x0*x0 - y0*y0 - z0*z0;
- if(t0 < 0.0f) n0 = 0.0f;
- else {
- t0 *= t0;
- n0 = t0 * t0 * grad3(perm[ii+perm[jj+perm[kk]]], x0, y0, z0);
- }
-
- t1 = 0.6f - x1*x1 - y1*y1 - z1*z1;
- if(t1 < 0.0f) n1 = 0.0f;
- else {
- t1 *= t1;
- n1 = t1 * t1 * grad3(perm[ii+i1+perm[jj+j1+perm[kk+k1]]], x1, y1, z1);
- }
-
- t2 = 0.6f - x2*x2 - y2*y2 - z2*z2;
- if(t2 < 0.0f) n2 = 0.0f;
- else {
- t2 *= t2;
- n2 = t2 * t2 * grad3(perm[ii+i2+perm[jj+j2+perm[kk+k2]]], x2, y2, z2);
- }
-
- t3 = 0.6f - x3*x3 - y3*y3 - z3*z3;
- if(t3<0.0f) n3 = 0.0f;
- else {
- t3 *= t3;
- n3 = t3 * t3 * grad3(perm[ii+1+perm[jj+1+perm[kk+1]]], x3, y3, z3);
- }
-
- /* Add contributions from each corner to get the final noise value. */
- /* The result is scaled to stay just inside [-1,1] */
- return 32.0f * (n0 + n1 + n2 + n3); /* TODO: The scale factor is preliminary! */
-}
-
-/* 4D simplex noise */
-GLfloat _slang_library_noise4 (GLfloat x, GLfloat y, GLfloat z, GLfloat w)
-{
- /* The skewing and unskewing factors are hairy again for the 4D case */
-#define F4 0.309016994f /* F4 = (Math.sqrt(5.0)-1.0)/4.0 */
-#define G4 0.138196601f /* G4 = (5.0-Math.sqrt(5.0))/20.0 */
-
- float n0, n1, n2, n3, n4; /* Noise contributions from the five corners */
-
- /* Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in */
- float s = (x + y + z + w) * F4; /* Factor for 4D skewing */
- float xs = x + s;
- float ys = y + s;
- float zs = z + s;
- float ws = w + s;
- int i = FASTFLOOR(xs);
- int j = FASTFLOOR(ys);
- int k = FASTFLOOR(zs);
- int l = FASTFLOOR(ws);
-
- float t = (i + j + k + l) * G4; /* Factor for 4D unskewing */
- float X0 = i - t; /* Unskew the cell origin back to (x,y,z,w) space */
- float Y0 = j - t;
- float Z0 = k - t;
- float W0 = l - t;
-
- float x0 = x - X0; /* The x,y,z,w distances from the cell origin */
- float y0 = y - Y0;
- float z0 = z - Z0;
- float w0 = w - W0;
-
- /* For the 4D case, the simplex is a 4D shape I won't even try to describe. */
- /* To find out which of the 24 possible simplices we're in, we need to */
- /* determine the magnitude ordering of x0, y0, z0 and w0. */
- /* The method below is a good way of finding the ordering of x,y,z,w and */
- /* then find the correct traversal order for the simplex we’re in. */
- /* First, six pair-wise comparisons are performed between each possible pair */
- /* of the four coordinates, and the results are used to add up binary bits */
- /* for an integer index. */
- int c1 = (x0 > y0) ? 32 : 0;
- int c2 = (x0 > z0) ? 16 : 0;
- int c3 = (y0 > z0) ? 8 : 0;
- int c4 = (x0 > w0) ? 4 : 0;
- int c5 = (y0 > w0) ? 2 : 0;
- int c6 = (z0 > w0) ? 1 : 0;
- int c = c1 + c2 + c3 + c4 + c5 + c6;
-
- int i1, j1, k1, l1; /* The integer offsets for the second simplex corner */
- int i2, j2, k2, l2; /* The integer offsets for the third simplex corner */
- int i3, j3, k3, l3; /* The integer offsets for the fourth simplex corner */
-
- float x1, y1, z1, w1, x2, y2, z2, w2, x3, y3, z3, w3, x4, y4, z4, w4;
- int ii, jj, kk, ll;
- float t0, t1, t2, t3, t4;
-
- /* simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order. */
- /* Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w */
- /* impossible. Only the 24 indices which have non-zero entries make any sense. */
- /* We use a thresholding to set the coordinates in turn from the largest magnitude. */
- /* The number 3 in the "simplex" array is at the position of the largest coordinate. */
- i1 = simplex[c][0]>=3 ? 1 : 0;
- j1 = simplex[c][1]>=3 ? 1 : 0;
- k1 = simplex[c][2]>=3 ? 1 : 0;
- l1 = simplex[c][3]>=3 ? 1 : 0;
- /* The number 2 in the "simplex" array is at the second largest coordinate. */
- i2 = simplex[c][0]>=2 ? 1 : 0;
- j2 = simplex[c][1]>=2 ? 1 : 0;
- k2 = simplex[c][2]>=2 ? 1 : 0;
- l2 = simplex[c][3]>=2 ? 1 : 0;
- /* The number 1 in the "simplex" array is at the second smallest coordinate. */
- i3 = simplex[c][0]>=1 ? 1 : 0;
- j3 = simplex[c][1]>=1 ? 1 : 0;
- k3 = simplex[c][2]>=1 ? 1 : 0;
- l3 = simplex[c][3]>=1 ? 1 : 0;
- /* The fifth corner has all coordinate offsets = 1, so no need to look that up. */
-
- x1 = x0 - i1 + G4; /* Offsets for second corner in (x,y,z,w) coords */
- y1 = y0 - j1 + G4;
- z1 = z0 - k1 + G4;
- w1 = w0 - l1 + G4;
- x2 = x0 - i2 + 2.0f*G4; /* Offsets for third corner in (x,y,z,w) coords */
- y2 = y0 - j2 + 2.0f*G4;
- z2 = z0 - k2 + 2.0f*G4;
- w2 = w0 - l2 + 2.0f*G4;
- x3 = x0 - i3 + 3.0f*G4; /* Offsets for fourth corner in (x,y,z,w) coords */
- y3 = y0 - j3 + 3.0f*G4;
- z3 = z0 - k3 + 3.0f*G4;
- w3 = w0 - l3 + 3.0f*G4;
- x4 = x0 - 1.0f + 4.0f*G4; /* Offsets for last corner in (x,y,z,w) coords */
- y4 = y0 - 1.0f + 4.0f*G4;
- z4 = z0 - 1.0f + 4.0f*G4;
- w4 = w0 - 1.0f + 4.0f*G4;
-
- /* Wrap the integer indices at 256, to avoid indexing perm[] out of bounds */
- ii = i % 256;
- jj = j % 256;
- kk = k % 256;
- ll = l % 256;
-
- /* Calculate the contribution from the five corners */
- t0 = 0.6f - x0*x0 - y0*y0 - z0*z0 - w0*w0;
- if(t0 < 0.0f) n0 = 0.0f;
- else {
- t0 *= t0;
- n0 = t0 * t0 * grad4(perm[ii+perm[jj+perm[kk+perm[ll]]]], x0, y0, z0, w0);
- }
-
- t1 = 0.6f - x1*x1 - y1*y1 - z1*z1 - w1*w1;
- if(t1 < 0.0f) n1 = 0.0f;
- else {
- t1 *= t1;
- n1 = t1 * t1 * grad4(perm[ii+i1+perm[jj+j1+perm[kk+k1+perm[ll+l1]]]], x1, y1, z1, w1);
- }
-
- t2 = 0.6f - x2*x2 - y2*y2 - z2*z2 - w2*w2;
- if(t2 < 0.0f) n2 = 0.0f;
- else {
- t2 *= t2;
- n2 = t2 * t2 * grad4(perm[ii+i2+perm[jj+j2+perm[kk+k2+perm[ll+l2]]]], x2, y2, z2, w2);
- }
-
- t3 = 0.6f - x3*x3 - y3*y3 - z3*z3 - w3*w3;
- if(t3 < 0.0f) n3 = 0.0f;
- else {
- t3 *= t3;
- n3 = t3 * t3 * grad4(perm[ii+i3+perm[jj+j3+perm[kk+k3+perm[ll+l3]]]], x3, y3, z3, w3);
- }
-
- t4 = 0.6f - x4*x4 - y4*y4 - z4*z4 - w4*w4;
- if(t4 < 0.0f) n4 = 0.0f;
- else {
- t4 *= t4;
- n4 = t4 * t4 * grad4(perm[ii+1+perm[jj+1+perm[kk+1+perm[ll+1]]]], x4, y4, z4, w4);
- }
-
- /* Sum up and scale the result to cover the range [-1,1] */
- return 27.0f * (n0 + n1 + n2 + n3 + n4); /* TODO: The scale factor is preliminary! */
-}
-
+/* + * Mesa 3-D graphics library + * Version: 6.5 + * + * Copyright (C) 2006 Brian Paul All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + +/* + * SimplexNoise1234 + * Copyright © 2003-2005, Stefan Gustavson + * + * Contact: stegu@itn.liu.se + */ + +/** \file + \brief C implementation of Perlin Simplex Noise over 1,2,3, and 4 dimensions. + \author Stefan Gustavson (stegu@itn.liu.se) +*/ + +/* + * This implementation is "Simplex Noise" as presented by + * Ken Perlin at a relatively obscure and not often cited course + * session "Real-Time Shading" at Siggraph 2001 (before real + * time shading actually took on), under the title "hardware noise". + * The 3D function is numerically equivalent to his Java reference + * code available in the PDF course notes, although I re-implemented + * it from scratch to get more readable code. The 1D, 2D and 4D cases + * were implemented from scratch by me from Ken Perlin's text. + * + * This file has no dependencies on any other file, not even its own + * header file. The header file is made for use by external code only. + */ + + +#include "imports.h" +#include "slang_library_noise.h" + +#define FASTFLOOR(x) ( ((x)>0) ? ((int)x) : (((int)x)-1) ) + +/* + * --------------------------------------------------------------------- + * Static data + */ + +/* + * Permutation table. This is just a random jumble of all numbers 0-255, + * repeated twice to avoid wrapping the index at 255 for each lookup. + * This needs to be exactly the same for all instances on all platforms, + * so it's easiest to just keep it as static explicit data. + * This also removes the need for any initialisation of this class. + * + * Note that making this an int[] instead of a char[] might make the + * code run faster on platforms with a high penalty for unaligned single + * byte addressing. Intel x86 is generally single-byte-friendly, but + * some other CPUs are faster with 4-aligned reads. + * However, a char[] is smaller, which avoids cache trashing, and that + * is probably the most important aspect on most architectures. + * This array is accessed a *lot* by the noise functions. + * A vector-valued noise over 3D accesses it 96 times, and a + * float-valued 4D noise 64 times. We want this to fit in the cache! + */ +unsigned char perm[512] = {151,160,137,91,90,15, + 131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23, + 190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33, + 88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166, + 77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244, + 102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196, + 135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123, + 5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42, + 223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9, + 129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228, + 251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107, + 49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254, + 138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180, + 151,160,137,91,90,15, + 131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23, + 190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33, + 88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166, + 77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244, + 102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196, + 135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123, + 5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42, + 223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9, + 129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228, + 251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107, + 49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254, + 138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180 +}; + +/* + * --------------------------------------------------------------------- + */ + +/* + * Helper functions to compute gradients-dot-residualvectors (1D to 4D) + * Note that these generate gradients of more than unit length. To make + * a close match with the value range of classic Perlin noise, the final + * noise values need to be rescaled to fit nicely within [-1,1]. + * (The simplex noise functions as such also have different scaling.) + * Note also that these noise functions are the most practical and useful + * signed version of Perlin noise. To return values according to the + * RenderMan specification from the SL noise() and pnoise() functions, + * the noise values need to be scaled and offset to [0,1], like this: + * float SLnoise = (SimplexNoise1234::noise(x,y,z) + 1.0) * 0.5; + */ + +static float grad1( int hash, float x ) { + int h = hash & 15; + float grad = 1.0f + (h & 7); /* Gradient value 1.0, 2.0, ..., 8.0 */ + if (h&8) grad = -grad; /* Set a random sign for the gradient */ + return ( grad * x ); /* Multiply the gradient with the distance */ +} + +static float grad2( int hash, float x, float y ) { + int h = hash & 7; /* Convert low 3 bits of hash code */ + float u = h<4 ? x : y; /* into 8 simple gradient directions, */ + float v = h<4 ? y : x; /* and compute the dot product with (x,y). */ + return ((h&1)? -u : u) + ((h&2)? -2.0f*v : 2.0f*v); +} + +static float grad3( int hash, float x, float y , float z ) { + int h = hash & 15; /* Convert low 4 bits of hash code into 12 simple */ + float u = h<8 ? x : y; /* gradient directions, and compute dot product. */ + float v = h<4 ? y : h==12||h==14 ? x : z; /* Fix repeats at h = 12 to 15 */ + return ((h&1)? -u : u) + ((h&2)? -v : v); +} + +static float grad4( int hash, float x, float y, float z, float t ) { + int h = hash & 31; /* Convert low 5 bits of hash code into 32 simple */ + float u = h<24 ? x : y; /* gradient directions, and compute dot product. */ + float v = h<16 ? y : z; + float w = h<8 ? z : t; + return ((h&1)? -u : u) + ((h&2)? -v : v) + ((h&4)? -w : w); +} + + /* A lookup table to traverse the simplex around a given point in 4D. */ + /* Details can be found where this table is used, in the 4D noise method. */ + /* TODO: This should not be required, backport it from Bill's GLSL code! */ + static unsigned char simplex[64][4] = { + {0,1,2,3},{0,1,3,2},{0,0,0,0},{0,2,3,1},{0,0,0,0},{0,0,0,0},{0,0,0,0},{1,2,3,0}, + {0,2,1,3},{0,0,0,0},{0,3,1,2},{0,3,2,1},{0,0,0,0},{0,0,0,0},{0,0,0,0},{1,3,2,0}, + {0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}, + {1,2,0,3},{0,0,0,0},{1,3,0,2},{0,0,0,0},{0,0,0,0},{0,0,0,0},{2,3,0,1},{2,3,1,0}, + {1,0,2,3},{1,0,3,2},{0,0,0,0},{0,0,0,0},{0,0,0,0},{2,0,3,1},{0,0,0,0},{2,1,3,0}, + {0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}, + {2,0,1,3},{0,0,0,0},{0,0,0,0},{0,0,0,0},{3,0,1,2},{3,0,2,1},{0,0,0,0},{3,1,2,0}, + {2,1,0,3},{0,0,0,0},{0,0,0,0},{0,0,0,0},{3,1,0,2},{0,0,0,0},{3,2,0,1},{3,2,1,0}}; + +/* 1D simplex noise */ +GLfloat _slang_library_noise1 (GLfloat x) +{ + int i0 = FASTFLOOR(x); + int i1 = i0 + 1; + float x0 = x - i0; + float x1 = x0 - 1.0f; + float t1 = 1.0f - x1*x1; + float n0, n1; + + float t0 = 1.0f - x0*x0; +/* if(t0 < 0.0f) t0 = 0.0f; // this never happens for the 1D case */ + t0 *= t0; + n0 = t0 * t0 * grad1(perm[i0 & 0xff], x0); + +/* if(t1 < 0.0f) t1 = 0.0f; // this never happens for the 1D case */ + t1 *= t1; + n1 = t1 * t1 * grad1(perm[i1 & 0xff], x1); + /* The maximum value of this noise is 8*(3/4)^4 = 2.53125 */ + /* A factor of 0.395 would scale to fit exactly within [-1,1], but */ + /* we want to match PRMan's 1D noise, so we scale it down some more. */ + return 0.25f * (n0 + n1); +} + +/* 2D simplex noise */ +GLfloat _slang_library_noise2 (GLfloat x, GLfloat y) +{ +#define F2 0.366025403f /* F2 = 0.5*(sqrt(3.0)-1.0) */ +#define G2 0.211324865f /* G2 = (3.0-Math.sqrt(3.0))/6.0 */ + + float n0, n1, n2; /* Noise contributions from the three corners */ + + /* Skew the input space to determine which simplex cell we're in */ + float s = (x+y)*F2; /* Hairy factor for 2D */ + float xs = x + s; + float ys = y + s; + int i = FASTFLOOR(xs); + int j = FASTFLOOR(ys); + + float t = (float)(i+j)*G2; + float X0 = i-t; /* Unskew the cell origin back to (x,y) space */ + float Y0 = j-t; + float x0 = x-X0; /* The x,y distances from the cell origin */ + float y0 = y-Y0; + + float x1, y1, x2, y2; + int ii, jj; + float t0, t1, t2; + + /* For the 2D case, the simplex shape is an equilateral triangle. */ + /* Determine which simplex we are in. */ + int i1, j1; /* Offsets for second (middle) corner of simplex in (i,j) coords */ + if(x0>y0) {i1=1; j1=0;} /* lower triangle, XY order: (0,0)->(1,0)->(1,1) */ + else {i1=0; j1=1;} /* upper triangle, YX order: (0,0)->(0,1)->(1,1) */ + + /* A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and */ + /* a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where */ + /* c = (3-sqrt(3))/6 */ + + x1 = x0 - i1 + G2; /* Offsets for middle corner in (x,y) unskewed coords */ + y1 = y0 - j1 + G2; + x2 = x0 - 1.0f + 2.0f * G2; /* Offsets for last corner in (x,y) unskewed coords */ + y2 = y0 - 1.0f + 2.0f * G2; + + /* Wrap the integer indices at 256, to avoid indexing perm[] out of bounds */ + ii = i % 256; + jj = j % 256; + + /* Calculate the contribution from the three corners */ + t0 = 0.5f - x0*x0-y0*y0; + if(t0 < 0.0f) n0 = 0.0f; + else { + t0 *= t0; + n0 = t0 * t0 * grad2(perm[ii+perm[jj]], x0, y0); + } + + t1 = 0.5f - x1*x1-y1*y1; + if(t1 < 0.0f) n1 = 0.0f; + else { + t1 *= t1; + n1 = t1 * t1 * grad2(perm[ii+i1+perm[jj+j1]], x1, y1); + } + + t2 = 0.5f - x2*x2-y2*y2; + if(t2 < 0.0f) n2 = 0.0f; + else { + t2 *= t2; + n2 = t2 * t2 * grad2(perm[ii+1+perm[jj+1]], x2, y2); + } + + /* Add contributions from each corner to get the final noise value. */ + /* The result is scaled to return values in the interval [-1,1]. */ + return 40.0f * (n0 + n1 + n2); /* TODO: The scale factor is preliminary! */ +} + +/* 3D simplex noise */ +GLfloat _slang_library_noise3 (GLfloat x, GLfloat y, GLfloat z) +{ +/* Simple skewing factors for the 3D case */ +#define F3 0.333333333f +#define G3 0.166666667f + + float n0, n1, n2, n3; /* Noise contributions from the four corners */ + + /* Skew the input space to determine which simplex cell we're in */ + float s = (x+y+z)*F3; /* Very nice and simple skew factor for 3D */ + float xs = x+s; + float ys = y+s; + float zs = z+s; + int i = FASTFLOOR(xs); + int j = FASTFLOOR(ys); + int k = FASTFLOOR(zs); + + float t = (float)(i+j+k)*G3; + float X0 = i-t; /* Unskew the cell origin back to (x,y,z) space */ + float Y0 = j-t; + float Z0 = k-t; + float x0 = x-X0; /* The x,y,z distances from the cell origin */ + float y0 = y-Y0; + float z0 = z-Z0; + + float x1, y1, z1, x2, y2, z2, x3, y3, z3; + int ii, jj, kk; + float t0, t1, t2, t3; + + /* For the 3D case, the simplex shape is a slightly irregular tetrahedron. */ + /* Determine which simplex we are in. */ + int i1, j1, k1; /* Offsets for second corner of simplex in (i,j,k) coords */ + int i2, j2, k2; /* Offsets for third corner of simplex in (i,j,k) coords */ + +/* This code would benefit from a backport from the GLSL version! */ + if(x0>=y0) { + if(y0>=z0) + { i1=1; j1=0; k1=0; i2=1; j2=1; k2=0; } /* X Y Z order */ + else if(x0>=z0) { i1=1; j1=0; k1=0; i2=1; j2=0; k2=1; } /* X Z Y order */ + else { i1=0; j1=0; k1=1; i2=1; j2=0; k2=1; } /* Z X Y order */ + } + else { /* x0<y0 */ + if(y0<z0) { i1=0; j1=0; k1=1; i2=0; j2=1; k2=1; } /* Z Y X order */ + else if(x0<z0) { i1=0; j1=1; k1=0; i2=0; j2=1; k2=1; } /* Y Z X order */ + else { i1=0; j1=1; k1=0; i2=1; j2=1; k2=0; } /* Y X Z order */ + } + + /* A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z), */ + /* a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and */ + /* a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where */ + /* c = 1/6. */ + + x1 = x0 - i1 + G3; /* Offsets for second corner in (x,y,z) coords */ + y1 = y0 - j1 + G3; + z1 = z0 - k1 + G3; + x2 = x0 - i2 + 2.0f*G3; /* Offsets for third corner in (x,y,z) coords */ + y2 = y0 - j2 + 2.0f*G3; + z2 = z0 - k2 + 2.0f*G3; + x3 = x0 - 1.0f + 3.0f*G3; /* Offsets for last corner in (x,y,z) coords */ + y3 = y0 - 1.0f + 3.0f*G3; + z3 = z0 - 1.0f + 3.0f*G3; + + /* Wrap the integer indices at 256, to avoid indexing perm[] out of bounds */ + ii = i % 256; + jj = j % 256; + kk = k % 256; + + /* Calculate the contribution from the four corners */ + t0 = 0.6f - x0*x0 - y0*y0 - z0*z0; + if(t0 < 0.0f) n0 = 0.0f; + else { + t0 *= t0; + n0 = t0 * t0 * grad3(perm[ii+perm[jj+perm[kk]]], x0, y0, z0); + } + + t1 = 0.6f - x1*x1 - y1*y1 - z1*z1; + if(t1 < 0.0f) n1 = 0.0f; + else { + t1 *= t1; + n1 = t1 * t1 * grad3(perm[ii+i1+perm[jj+j1+perm[kk+k1]]], x1, y1, z1); + } + + t2 = 0.6f - x2*x2 - y2*y2 - z2*z2; + if(t2 < 0.0f) n2 = 0.0f; + else { + t2 *= t2; + n2 = t2 * t2 * grad3(perm[ii+i2+perm[jj+j2+perm[kk+k2]]], x2, y2, z2); + } + + t3 = 0.6f - x3*x3 - y3*y3 - z3*z3; + if(t3<0.0f) n3 = 0.0f; + else { + t3 *= t3; + n3 = t3 * t3 * grad3(perm[ii+1+perm[jj+1+perm[kk+1]]], x3, y3, z3); + } + + /* Add contributions from each corner to get the final noise value. */ + /* The result is scaled to stay just inside [-1,1] */ + return 32.0f * (n0 + n1 + n2 + n3); /* TODO: The scale factor is preliminary! */ +} + +/* 4D simplex noise */ +GLfloat _slang_library_noise4 (GLfloat x, GLfloat y, GLfloat z, GLfloat w) +{ + /* The skewing and unskewing factors are hairy again for the 4D case */ +#define F4 0.309016994f /* F4 = (Math.sqrt(5.0)-1.0)/4.0 */ +#define G4 0.138196601f /* G4 = (5.0-Math.sqrt(5.0))/20.0 */ + + float n0, n1, n2, n3, n4; /* Noise contributions from the five corners */ + + /* Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in */ + float s = (x + y + z + w) * F4; /* Factor for 4D skewing */ + float xs = x + s; + float ys = y + s; + float zs = z + s; + float ws = w + s; + int i = FASTFLOOR(xs); + int j = FASTFLOOR(ys); + int k = FASTFLOOR(zs); + int l = FASTFLOOR(ws); + + float t = (i + j + k + l) * G4; /* Factor for 4D unskewing */ + float X0 = i - t; /* Unskew the cell origin back to (x,y,z,w) space */ + float Y0 = j - t; + float Z0 = k - t; + float W0 = l - t; + + float x0 = x - X0; /* The x,y,z,w distances from the cell origin */ + float y0 = y - Y0; + float z0 = z - Z0; + float w0 = w - W0; + + /* For the 4D case, the simplex is a 4D shape I won't even try to describe. */ + /* To find out which of the 24 possible simplices we're in, we need to */ + /* determine the magnitude ordering of x0, y0, z0 and w0. */ + /* The method below is a good way of finding the ordering of x,y,z,w and */ + /* then find the correct traversal order for the simplex we’re in. */ + /* First, six pair-wise comparisons are performed between each possible pair */ + /* of the four coordinates, and the results are used to add up binary bits */ + /* for an integer index. */ + int c1 = (x0 > y0) ? 32 : 0; + int c2 = (x0 > z0) ? 16 : 0; + int c3 = (y0 > z0) ? 8 : 0; + int c4 = (x0 > w0) ? 4 : 0; + int c5 = (y0 > w0) ? 2 : 0; + int c6 = (z0 > w0) ? 1 : 0; + int c = c1 + c2 + c3 + c4 + c5 + c6; + + int i1, j1, k1, l1; /* The integer offsets for the second simplex corner */ + int i2, j2, k2, l2; /* The integer offsets for the third simplex corner */ + int i3, j3, k3, l3; /* The integer offsets for the fourth simplex corner */ + + float x1, y1, z1, w1, x2, y2, z2, w2, x3, y3, z3, w3, x4, y4, z4, w4; + int ii, jj, kk, ll; + float t0, t1, t2, t3, t4; + + /* simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order. */ + /* Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w */ + /* impossible. Only the 24 indices which have non-zero entries make any sense. */ + /* We use a thresholding to set the coordinates in turn from the largest magnitude. */ + /* The number 3 in the "simplex" array is at the position of the largest coordinate. */ + i1 = simplex[c][0]>=3 ? 1 : 0; + j1 = simplex[c][1]>=3 ? 1 : 0; + k1 = simplex[c][2]>=3 ? 1 : 0; + l1 = simplex[c][3]>=3 ? 1 : 0; + /* The number 2 in the "simplex" array is at the second largest coordinate. */ + i2 = simplex[c][0]>=2 ? 1 : 0; + j2 = simplex[c][1]>=2 ? 1 : 0; + k2 = simplex[c][2]>=2 ? 1 : 0; + l2 = simplex[c][3]>=2 ? 1 : 0; + /* The number 1 in the "simplex" array is at the second smallest coordinate. */ + i3 = simplex[c][0]>=1 ? 1 : 0; + j3 = simplex[c][1]>=1 ? 1 : 0; + k3 = simplex[c][2]>=1 ? 1 : 0; + l3 = simplex[c][3]>=1 ? 1 : 0; + /* The fifth corner has all coordinate offsets = 1, so no need to look that up. */ + + x1 = x0 - i1 + G4; /* Offsets for second corner in (x,y,z,w) coords */ + y1 = y0 - j1 + G4; + z1 = z0 - k1 + G4; + w1 = w0 - l1 + G4; + x2 = x0 - i2 + 2.0f*G4; /* Offsets for third corner in (x,y,z,w) coords */ + y2 = y0 - j2 + 2.0f*G4; + z2 = z0 - k2 + 2.0f*G4; + w2 = w0 - l2 + 2.0f*G4; + x3 = x0 - i3 + 3.0f*G4; /* Offsets for fourth corner in (x,y,z,w) coords */ + y3 = y0 - j3 + 3.0f*G4; + z3 = z0 - k3 + 3.0f*G4; + w3 = w0 - l3 + 3.0f*G4; + x4 = x0 - 1.0f + 4.0f*G4; /* Offsets for last corner in (x,y,z,w) coords */ + y4 = y0 - 1.0f + 4.0f*G4; + z4 = z0 - 1.0f + 4.0f*G4; + w4 = w0 - 1.0f + 4.0f*G4; + + /* Wrap the integer indices at 256, to avoid indexing perm[] out of bounds */ + ii = i % 256; + jj = j % 256; + kk = k % 256; + ll = l % 256; + + /* Calculate the contribution from the five corners */ + t0 = 0.6f - x0*x0 - y0*y0 - z0*z0 - w0*w0; + if(t0 < 0.0f) n0 = 0.0f; + else { + t0 *= t0; + n0 = t0 * t0 * grad4(perm[ii+perm[jj+perm[kk+perm[ll]]]], x0, y0, z0, w0); + } + + t1 = 0.6f - x1*x1 - y1*y1 - z1*z1 - w1*w1; + if(t1 < 0.0f) n1 = 0.0f; + else { + t1 *= t1; + n1 = t1 * t1 * grad4(perm[ii+i1+perm[jj+j1+perm[kk+k1+perm[ll+l1]]]], x1, y1, z1, w1); + } + + t2 = 0.6f - x2*x2 - y2*y2 - z2*z2 - w2*w2; + if(t2 < 0.0f) n2 = 0.0f; + else { + t2 *= t2; + n2 = t2 * t2 * grad4(perm[ii+i2+perm[jj+j2+perm[kk+k2+perm[ll+l2]]]], x2, y2, z2, w2); + } + + t3 = 0.6f - x3*x3 - y3*y3 - z3*z3 - w3*w3; + if(t3 < 0.0f) n3 = 0.0f; + else { + t3 *= t3; + n3 = t3 * t3 * grad4(perm[ii+i3+perm[jj+j3+perm[kk+k3+perm[ll+l3]]]], x3, y3, z3, w3); + } + + t4 = 0.6f - x4*x4 - y4*y4 - z4*z4 - w4*w4; + if(t4 < 0.0f) n4 = 0.0f; + else { + t4 *= t4; + n4 = t4 * t4 * grad4(perm[ii+1+perm[jj+1+perm[kk+1+perm[ll+1]]]], x4, y4, z4, w4); + } + + /* Sum up and scale the result to cover the range [-1,1] */ + return 27.0f * (n0 + n1 + n2 + n3 + n4); /* TODO: The scale factor is preliminary! */ +} + |