1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
|
/**************************************************************************
*
* Copyright 2009 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/**
* @file
* Helper
*
* LLVM IR doesn't support all basic arithmetic operations we care about (most
* notably min/max and saturated operations), and it is often necessary to
* resort machine-specific intrinsics directly. The functions here hide all
* these implementation details from the other modules.
*
* We also do simple expressions simplification here. Reasons are:
* - it is very easy given we have all necessary information readily available
* - LLVM optimization passes fail to simplify several vector expressions
* - We often know value constraints which the optimization passes have no way
* of knowing, such as when source arguments are known to be in [0, 1] range.
*
* @author Jose Fonseca <jfonseca@vmware.com>
*/
#include "util/u_debug.h"
#include "util/u_math.h"
#include "lp_bld_type.h"
#include "lp_bld_const.h"
#include "lp_bld_intr.h"
#include "lp_bld_arit.h"
#include "lp_bld_conv.h"
LLVMValueRef
lp_build_clamped_float_to_unsigned_norm(LLVMBuilderRef builder,
union lp_type src_type,
unsigned dst_width,
LLVMValueRef src)
{
LLVMTypeRef int_vec_type = lp_build_int_vec_type(src_type);
LLVMValueRef res;
unsigned mantissa;
unsigned n;
unsigned long long ubound;
unsigned long long mask;
double scale;
double bias;
assert(src_type.floating);
switch(src_type.width) {
case 32:
mantissa = 23;
break;
case 64:
mantissa = 53;
break;
default:
assert(0);
return LLVMGetUndef(int_vec_type);
}
/* We cannot carry more bits than the mantissa */
n = MIN2(mantissa, dst_width);
/* This magic coefficients will make the desired result to appear in the
* lowest significant bits of the mantissa.
*/
ubound = ((unsigned long long)1 << n);
mask = ubound - 1;
scale = (double)mask/ubound;
bias = (double)((unsigned long long)1 << (mantissa - n));
res = LLVMBuildMul(builder, src, lp_build_const_uni(src_type, scale), "");
res = LLVMBuildAdd(builder, res, lp_build_const_uni(src_type, bias), "");
res = LLVMBuildBitCast(builder, res, int_vec_type, "");
if(dst_width < src_type.width)
res = LLVMBuildAnd(builder, res, lp_build_int_const_uni(src_type, mask), "");
if(dst_width > n) {
int shift = dst_width - n;
res = LLVMBuildShl(builder, res, lp_build_int_const_uni(src_type, shift), "");
/* Fill in the empty lower bits for added precision? */
#if 0
{
LLVMValueRef msb;
msb = LLVMBuildLShr(builder, res, lp_build_int_const_uni(src_type, dst_width - 1), "");
msb = LLVMBuildShl(builder, msb, lp_build_int_const_uni(src_type, shift), "");
msb = LLVMBuildSub(builder, msb, lp_build_int_const_uni(src_type, 1), "");
res = LLVMBuildOr(builder, res, msb, "");
}
#elif 0
while(shift > 0) {
res = LLVMBuildOr(builder, res, LLVMBuildLShr(builder, res, lp_build_int_const_uni(src_type, n), ""), "");
shift -= n;
n *= 2;
}
#endif
}
return res;
}
/**
* Build shuffle vectors that match PUNPCKLxx and PUNPCKHxx instructions.
*/
static LLVMValueRef
lp_build_const_expand_shuffle(unsigned n, unsigned lo_hi)
{
LLVMValueRef elems[LP_MAX_VECTOR_LENGTH];
unsigned i, j;
assert(n <= LP_MAX_VECTOR_LENGTH);
assert(lo_hi < 2);
/* TODO: cache results in a static table */
for(i = 0, j = lo_hi*n/2; i < n; i += 2, ++j) {
elems[i + 0] = LLVMConstInt(LLVMInt32Type(), 0 + j, 0);
elems[i + 1] = LLVMConstInt(LLVMInt32Type(), n + j, 0);
}
return LLVMConstVector(elems, n);
}
static void
lp_build_expand(LLVMBuilderRef builder,
union lp_type src_type,
union lp_type dst_type,
LLVMValueRef src,
LLVMValueRef *dst, unsigned num_dsts)
{
unsigned num_tmps;
unsigned i;
/* Register width must remain constant */
assert(src_type.width * src_type.length == dst_type.width * dst_type.length);
/* We must not loose or gain channels. Only precision */
assert(src_type.length == dst_type.length * num_dsts);
num_tmps = 1;
dst[0] = src;
while(src_type.width < dst_type.width) {
union lp_type new_type = src_type;
LLVMTypeRef new_vec_type;
new_type.width *= 2;
new_type.length /= 2;
new_vec_type = lp_build_vec_type(new_type);
for(i = num_tmps; i--; ) {
LLVMValueRef zero;
LLVMValueRef shuffle_lo;
LLVMValueRef shuffle_hi;
LLVMValueRef lo;
LLVMValueRef hi;
zero = lp_build_zero(src_type);
shuffle_lo = lp_build_const_expand_shuffle(src_type.length, 0);
shuffle_hi = lp_build_const_expand_shuffle(src_type.length, 1);
/* PUNPCKLBW, PUNPCKHBW */
lo = LLVMBuildShuffleVector(builder, dst[i], zero, shuffle_lo, "");
hi = LLVMBuildShuffleVector(builder, dst[i], zero, shuffle_hi, "");
dst[2*i + 0] = LLVMBuildBitCast(builder, lo, new_vec_type, "");
dst[2*i + 1] = LLVMBuildBitCast(builder, hi, new_vec_type, "");
}
src_type = new_type;
num_tmps *= 2;
}
assert(num_tmps == num_dsts);
}
static LLVMValueRef
lp_build_trunc(LLVMBuilderRef builder,
union lp_type src_type,
union lp_type dst_type,
const LLVMValueRef *src, unsigned num_srcs)
{
LLVMValueRef tmp[LP_MAX_VECTOR_LENGTH];
unsigned i;
/* Register width must remain constant */
assert(src_type.width * src_type.length == dst_type.width * dst_type.length);
/* We must not loose or gain channels. Only precision */
assert(src_type.length * num_srcs == dst_type.length);
for(i = 0; i < num_srcs; ++i)
tmp[i] = src[i];
while(src_type.width > dst_type.width) {
LLVMTypeRef tmp_vec_type = lp_build_vec_type(src_type);
union lp_type new_type = src_type;
LLVMTypeRef new_vec_type;
new_type.width /= 2;
new_type.length *= 2;
new_vec_type = lp_build_vec_type(new_type);
for(i = 0; i < num_srcs/2; ++i) {
LLVMValueRef lo = tmp[2*i + 0];
LLVMValueRef hi = tmp[2*i + 1];
LLVMValueRef packed = NULL;
if(src_type.width == 32) {
#if 0
if(dst_type.sign)
packed = lp_build_intrinsic_binary(builder, "llvm.x86.sse2.packssdw.128", tmp_vec_type, lo, hi);
else {
/* XXX: PACKUSDW intrinsic is actually the only one with a consistent signature */
packed = lp_build_intrinsic_binary(builder, "llvm.x86.sse41.packusdw", new_vec_type, lo, hi);
}
#else
packed = lp_build_intrinsic_binary(builder, "llvm.x86.sse2.packssdw.128", tmp_vec_type, lo, hi);
#endif
}
else if(src_type.width == 16) {
if(dst_type.sign)
packed = lp_build_intrinsic_binary(builder, "llvm.x86.sse2.packsswb.128", tmp_vec_type, lo, hi);
else
packed = lp_build_intrinsic_binary(builder, "llvm.x86.sse2.packuswb.128", tmp_vec_type, lo, hi);
}
else
assert(0);
tmp[i] = LLVMBuildBitCast(builder, packed, new_vec_type, "");
}
src_type = new_type;
num_srcs /= 2;
}
assert(num_srcs == 1);
return tmp[0];
}
/**
* Convert between two SIMD types.
*
* Converting between SIMD types of different element width poses a problem:
* SIMD registers have a fixed number of bits, so different element widths
* imply different vector lengths. Therefore we must multiplex the multiple
* incoming sources into a single destination vector, or demux a single incoming
* vector into multiple vectors.
*/
void
lp_build_conv(LLVMBuilderRef builder,
union lp_type src_type,
union lp_type dst_type,
const LLVMValueRef *src, unsigned num_srcs,
LLVMValueRef *dst, unsigned num_dsts)
{
union lp_type tmp_type;
LLVMValueRef tmp[LP_MAX_VECTOR_LENGTH];
unsigned num_tmps;
unsigned i;
/* Register width must remain constant */
assert(src_type.width * src_type.length == dst_type.width * dst_type.length);
/* We must not loose or gain channels. Only precision */
assert(src_type.length * num_srcs == dst_type.length * num_dsts);
assert(src_type.length <= LP_MAX_VECTOR_LENGTH);
assert(dst_type.length <= LP_MAX_VECTOR_LENGTH);
tmp_type = src_type;
for(i = 0; i < num_srcs; ++i)
tmp[i] = src[i];
num_tmps = num_srcs;
/*
* Clamp if necessary
*/
if(tmp_type.sign != dst_type.sign || tmp_type.norm != dst_type.norm) {
struct lp_build_context bld;
lp_build_context_init(&bld, builder, tmp_type);
if(tmp_type.sign && !dst_type.sign)
for(i = 0; i < num_tmps; ++i)
tmp[i] = lp_build_max(&bld, tmp[i], bld.zero);
if(!tmp_type.norm && dst_type.norm)
for(i = 0; i < num_tmps; ++i)
tmp[i] = lp_build_min(&bld, tmp[i], bld.one);
}
/*
* Scale to the narrowest range
*/
if(dst_type.floating) {
/* Nothing to do */
}
else if(tmp_type.floating) {
if(!dst_type.fixed && !dst_type.sign && dst_type.norm) {
for(i = 0; i < num_tmps; ++i) {
tmp[i] = lp_build_clamped_float_to_unsigned_norm(builder,
tmp_type,
dst_type.width,
tmp[i]);
}
tmp_type.floating = FALSE;
}
else {
double dst_scale = lp_const_scale(dst_type);
LLVMTypeRef tmp_vec_type;
if (dst_scale != 1.0) {
LLVMValueRef scale = lp_build_const_uni(tmp_type, dst_scale);
for(i = 0; i < num_tmps; ++i)
tmp[i] = LLVMBuildMul(builder, tmp[i], scale, "");
}
/* Use an equally sized integer for intermediate computations */
tmp_type.floating = FALSE;
tmp_vec_type = lp_build_vec_type(tmp_type);
for(i = 0; i < num_tmps; ++i) {
#if 0
if(dst_type.sign)
tmp[i] = LLVMBuildFPToSI(builder, tmp[i], tmp_vec_type, "");
else
tmp[i] = LLVMBuildFPToUI(builder, tmp[i], tmp_vec_type, "");
#else
/* FIXME: there is no SSE counterpart for LLVMBuildFPToUI */
tmp[i] = LLVMBuildFPToSI(builder, tmp[i], tmp_vec_type, "");
#endif
}
}
}
else {
unsigned src_shift = lp_const_shift(src_type);
unsigned dst_shift = lp_const_shift(dst_type);
/* FIXME: compensate different offsets too */
if(src_shift > dst_shift) {
LLVMValueRef shift = lp_build_int_const_uni(tmp_type, src_shift - dst_shift);
for(i = 0; i < num_tmps; ++i)
if(dst_type.sign)
tmp[i] = LLVMBuildAShr(builder, tmp[i], shift, "");
else
tmp[i] = LLVMBuildLShr(builder, tmp[i], shift, "");
}
}
/*
* Truncate or expand bit width
*/
assert(!tmp_type.floating || tmp_type.width == dst_type.width);
if(tmp_type.width > dst_type.width) {
assert(num_dsts == 1);
tmp[0] = lp_build_trunc(builder, tmp_type, dst_type, tmp, num_tmps);
tmp_type.width = dst_type.width;
tmp_type.length = dst_type.length;
num_tmps = 1;
}
if(tmp_type.width < dst_type.width) {
assert(num_tmps == 1);
lp_build_expand(builder, tmp_type, dst_type, tmp[0], tmp, num_dsts);
tmp_type.width = dst_type.width;
tmp_type.length = dst_type.length;
num_tmps = num_dsts;
}
assert(tmp_type.width == dst_type.width);
assert(tmp_type.length == dst_type.length);
assert(num_tmps == num_dsts);
/*
* Scale to the widest range
*/
if(src_type.floating) {
/* Nothing to do */
}
else if(!src_type.floating && dst_type.floating) {
double src_scale = lp_const_scale(src_type);
LLVMTypeRef tmp_vec_type;
/* Use an equally sized integer for intermediate computations */
tmp_type.floating = TRUE;
tmp_type.sign = TRUE;
tmp_vec_type = lp_build_vec_type(tmp_type);
for(i = 0; i < num_tmps; ++i) {
#if 0
if(dst_type.sign)
tmp[i] = LLVMBuildSIToFP(builder, tmp[i], tmp_vec_type, "");
else
tmp[i] = LLVMBuildUIToFP(builder, tmp[i], tmp_vec_type, "");
#else
/* FIXME: there is no SSE counterpart for LLVMBuildUIToFP */
tmp[i] = LLVMBuildSIToFP(builder, tmp[i], tmp_vec_type, "");
#endif
}
if (src_scale != 1.0) {
LLVMValueRef scale = lp_build_const_uni(tmp_type, 1.0/src_scale);
for(i = 0; i < num_tmps; ++i)
tmp[i] = LLVMBuildMul(builder, tmp[i], scale, "");
}
}
else {
unsigned src_shift = lp_const_shift(src_type);
unsigned dst_shift = lp_const_shift(dst_type);
/* FIXME: compensate different offsets too */
if(src_shift < dst_shift) {
LLVMValueRef shift = lp_build_int_const_uni(tmp_type, dst_shift - src_shift);
for(i = 0; i < num_tmps; ++i)
tmp[i] = LLVMBuildShl(builder, tmp[i], shift, "");
}
}
for(i = 0; i < num_dsts; ++i)
dst[i] = tmp[i];
}
|