summaryrefslogtreecommitdiffstats
path: root/src/gallium/drivers/swr/rasterizer/core/binner.cpp
blob: 75ddce95ad72aea402637581b0cc4b2af86345b8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
/****************************************************************************
* Copyright (C) 2014-2015 Intel Corporation.   All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* @file binner.cpp
*
* @brief Implementation for the macrotile binner
*
******************************************************************************/

#include "context.h"
#include "frontend.h"
#include "conservativeRast.h"
#include "pa.h"
#include "rasterizer.h"
#include "rdtsc_core.h"
#include "tilemgr.h"

//////////////////////////////////////////////////////////////////////////
/// @brief Offsets added to post-viewport vertex positions based on
/// raster state.
static const simdscalar g_pixelOffsets[SWR_PIXEL_LOCATION_UL + 1] =
{
    _simd_set1_ps(0.0f), // SWR_PIXEL_LOCATION_CENTER
    _simd_set1_ps(0.5f), // SWR_PIXEL_LOCATION_UL
};

//////////////////////////////////////////////////////////////////////////
/// @brief Convert the X,Y coords of a triangle to the requested Fixed 
/// Point precision from FP32.
template <typename PT = FixedPointTraits<Fixed_16_8>>
INLINE simdscalari fpToFixedPointVertical(const simdscalar vIn)
{
    simdscalar vFixed = _simd_mul_ps(vIn, _simd_set1_ps(PT::ScaleT::value));
    return _simd_cvtps_epi32(vFixed);
}

//////////////////////////////////////////////////////////////////////////
/// @brief Helper function to set the X,Y coords of a triangle to the 
/// requested Fixed Point precision from FP32.
/// @param tri: simdvector[3] of FP triangle verts
/// @param vXi: fixed point X coords of tri verts
/// @param vYi: fixed point Y coords of tri verts
INLINE static void FPToFixedPoint(const simdvector * const tri, simdscalari(&vXi)[3], simdscalari(&vYi)[3])
{
    vXi[0] = fpToFixedPointVertical(tri[0].x);
    vYi[0] = fpToFixedPointVertical(tri[0].y);
    vXi[1] = fpToFixedPointVertical(tri[1].x);
    vYi[1] = fpToFixedPointVertical(tri[1].y);
    vXi[2] = fpToFixedPointVertical(tri[2].x);
    vYi[2] = fpToFixedPointVertical(tri[2].y);
}

//////////////////////////////////////////////////////////////////////////
/// @brief Calculate bounding box for current triangle
/// @tparam CT: ConservativeRastFETraits type
/// @param vX: fixed point X position for triangle verts
/// @param vY: fixed point Y position for triangle verts
/// @param bbox: fixed point bbox
/// *Note*: expects vX, vY to be in the correct precision for the type 
/// of rasterization. This avoids unnecessary FP->fixed conversions.
template <typename CT>
INLINE void calcBoundingBoxIntVertical(const simdvector * const tri, simdscalari(&vX)[3], simdscalari(&vY)[3], simdBBox &bbox)
{
    simdscalari vMinX = vX[0];
    vMinX = _simd_min_epi32(vMinX, vX[1]);
    vMinX = _simd_min_epi32(vMinX, vX[2]);

    simdscalari vMaxX = vX[0];
    vMaxX = _simd_max_epi32(vMaxX, vX[1]);
    vMaxX = _simd_max_epi32(vMaxX, vX[2]);

    simdscalari vMinY = vY[0];
    vMinY = _simd_min_epi32(vMinY, vY[1]);
    vMinY = _simd_min_epi32(vMinY, vY[2]);

    simdscalari vMaxY = vY[0];
    vMaxY = _simd_max_epi32(vMaxY, vY[1]);
    vMaxY = _simd_max_epi32(vMaxY, vY[2]);

    bbox.xmin = vMinX;
    bbox.xmax = vMaxX;
    bbox.ymin = vMinY;
    bbox.ymax = vMaxY;
}

//////////////////////////////////////////////////////////////////////////
/// @brief FEConservativeRastT specialization of calcBoundingBoxIntVertical
/// Offsets BBox for conservative rast
template <>
INLINE void calcBoundingBoxIntVertical<FEConservativeRastT>(const simdvector * const tri, simdscalari(&vX)[3], simdscalari(&vY)[3], simdBBox &bbox)
{
    // FE conservative rast traits
    typedef FEConservativeRastT CT;

    simdscalari vMinX = vX[0];
    vMinX = _simd_min_epi32(vMinX, vX[1]);
    vMinX = _simd_min_epi32(vMinX, vX[2]);

    simdscalari vMaxX = vX[0];
    vMaxX = _simd_max_epi32(vMaxX, vX[1]);
    vMaxX = _simd_max_epi32(vMaxX, vX[2]);

    simdscalari vMinY = vY[0];
    vMinY = _simd_min_epi32(vMinY, vY[1]);
    vMinY = _simd_min_epi32(vMinY, vY[2]);

    simdscalari vMaxY = vY[0];
    vMaxY = _simd_max_epi32(vMaxY, vY[1]);
    vMaxY = _simd_max_epi32(vMaxY, vY[2]);

    /// Bounding box needs to be expanded by 1/512 before snapping to 16.8 for conservative rasterization
    /// expand bbox by 1/256; coverage will be correctly handled in the rasterizer.
    bbox.xmin = _simd_sub_epi32(vMinX, _simd_set1_epi32(CT::BoundingBoxOffsetT::value));
    bbox.xmax = _simd_add_epi32(vMaxX, _simd_set1_epi32(CT::BoundingBoxOffsetT::value));
    bbox.ymin = _simd_sub_epi32(vMinY, _simd_set1_epi32(CT::BoundingBoxOffsetT::value));
    bbox.ymax = _simd_add_epi32(vMaxY, _simd_set1_epi32(CT::BoundingBoxOffsetT::value));
}

//////////////////////////////////////////////////////////////////////////
/// @brief Processes attributes for the backend based on linkage mask and
///        linkage map.  Essentially just doing an SOA->AOS conversion and pack.
/// @param pDC - Draw context
/// @param pa - Primitive Assembly state
/// @param linkageMask - Specifies which VS outputs are routed to PS.
/// @param pLinkageMap - maps VS attribute slot to PS slot
/// @param triIndex - Triangle to process attributes for
/// @param pBuffer - Output result
template<typename NumVertsT, typename IsSwizzledT, typename HasConstantInterpT, typename IsDegenerate>
INLINE void ProcessAttributes(
    DRAW_CONTEXT *pDC,
    PA_STATE&pa,
    uint32_t triIndex,
    uint32_t primId,
    float *pBuffer)
{
    static_assert(NumVertsT::value > 0 && NumVertsT::value <= 3, "Invalid value for NumVertsT");
    const SWR_BACKEND_STATE& backendState = pDC->pState->state.backendState;
    // Conservative Rasterization requires degenerate tris to have constant attribute interpolation
    LONG constantInterpMask = IsDegenerate::value ? 0xFFFFFFFF : backendState.constantInterpolationMask;
    const uint32_t provokingVertex = pDC->pState->state.frontendState.topologyProvokingVertex;
    const PRIMITIVE_TOPOLOGY topo = pDC->pState->state.topology;

    static const float constTable[3][4] = {
        { 0.0f, 0.0f, 0.0f, 0.0f },
        { 0.0f, 0.0f, 0.0f, 1.0f },
        { 1.0f, 1.0f, 1.0f, 1.0f }
    };

    for (uint32_t i = 0; i < backendState.numAttributes; ++i)
    {
        uint32_t inputSlot;
        if (IsSwizzledT::value)
        {
            SWR_ATTRIB_SWIZZLE attribSwizzle = backendState.swizzleMap[i];
            inputSlot = VERTEX_ATTRIB_START_SLOT + attribSwizzle.sourceAttrib;

        }
        else
        {
            inputSlot = VERTEX_ATTRIB_START_SLOT + i;
        }

        __m128 attrib[3];    // triangle attribs (always 4 wide)
        float* pAttribStart = pBuffer;

        if (HasConstantInterpT::value || IsDegenerate::value)
        {
            if (_bittest(&constantInterpMask, i))
            {
                uint32_t vid;
                uint32_t adjustedTriIndex;
                static const uint32_t tristripProvokingVertex[] = { 0, 2, 1 };
                static const int32_t quadProvokingTri[2][4] = { { 0, 0, 0, 1 },{ 0, -1, 0, 0 } };
                static const uint32_t quadProvokingVertex[2][4] = { { 0, 1, 2, 2 },{ 0, 1, 1, 2 } };
                static const int32_t qstripProvokingTri[2][4] = { { 0, 0, 0, 1 },{ -1, 0, 0, 0 } };
                static const uint32_t qstripProvokingVertex[2][4] = { { 0, 1, 2, 1 },{ 0, 0, 2, 1 } };

                switch (topo) {
                case TOP_QUAD_LIST:
                    adjustedTriIndex = triIndex + quadProvokingTri[triIndex & 1][provokingVertex];
                    vid = quadProvokingVertex[triIndex & 1][provokingVertex];
                    break;
                case TOP_QUAD_STRIP:
                    adjustedTriIndex = triIndex + qstripProvokingTri[triIndex & 1][provokingVertex];
                    vid = qstripProvokingVertex[triIndex & 1][provokingVertex];
                    break;
                case TOP_TRIANGLE_STRIP:
                    adjustedTriIndex = triIndex;
                    vid = (triIndex & 1)
                        ? tristripProvokingVertex[provokingVertex]
                        : provokingVertex;
                    break;
                default:
                    adjustedTriIndex = triIndex;
                    vid = provokingVertex;
                    break;
                }

                pa.AssembleSingle(inputSlot, adjustedTriIndex, attrib);

                for (uint32_t i = 0; i < NumVertsT::value; ++i)
                {
                    _mm_store_ps(pBuffer, attrib[vid]);
                    pBuffer += 4;
                }
            }
            else
            {
                pa.AssembleSingle(inputSlot, triIndex, attrib);

                for (uint32_t i = 0; i < NumVertsT::value; ++i)
                {
                    _mm_store_ps(pBuffer, attrib[i]);
                    pBuffer += 4;
                }
            }
        }
        else
        {
            pa.AssembleSingle(inputSlot, triIndex, attrib);

            for (uint32_t i = 0; i < NumVertsT::value; ++i)
            {
                _mm_store_ps(pBuffer, attrib[i]);
                pBuffer += 4;
            }
        }

        // pad out the attrib buffer to 3 verts to ensure the triangle
        // interpolation code in the pixel shader works correctly for the
        // 3 topologies - point, line, tri.  This effectively zeros out the
        // effect of the missing vertices in the triangle interpolation.
        for (uint32_t v = NumVertsT::value; v < 3; ++v)
        {
            _mm_store_ps(pBuffer, attrib[NumVertsT::value - 1]);
            pBuffer += 4;
        }

        // check for constant source overrides
        if (IsSwizzledT::value)
        {
            uint32_t mask = backendState.swizzleMap[i].componentOverrideMask;
            if (mask)
            {
                DWORD comp;
                while (_BitScanForward(&comp, mask))
                {
                    mask &= ~(1 << comp);

                    float constantValue = 0.0f;
                    switch ((SWR_CONSTANT_SOURCE)backendState.swizzleMap[i].constantSource)
                    {
                    case SWR_CONSTANT_SOURCE_CONST_0000:
                    case SWR_CONSTANT_SOURCE_CONST_0001_FLOAT:
                    case SWR_CONSTANT_SOURCE_CONST_1111_FLOAT:
                        constantValue = constTable[backendState.swizzleMap[i].constantSource][comp];
                        break;
                    case SWR_CONSTANT_SOURCE_PRIM_ID:
                        constantValue = *(float*)&primId;
                        break;
                    }

                    // apply constant value to all 3 vertices
                    for (uint32_t v = 0; v < 3; ++v)
                    {
                        pAttribStart[comp + v * 4] = constantValue;
                    }
                }
            }
        }
    }
}

//////////////////////////////////////////////////////////////////////////
/// @brief  Gather scissor rect data based on per-prim viewport indices.
/// @param pScissorsInFixedPoint - array of scissor rects in 16.8 fixed point.
/// @param pViewportIndex - array of per-primitive vewport indexes.
/// @param scisXmin - output vector of per-prmitive scissor rect Xmin data.
/// @param scisYmin - output vector of per-prmitive scissor rect Ymin data.
/// @param scisXmax - output vector of per-prmitive scissor rect Xmax data.
/// @param scisYmax - output vector of per-prmitive scissor rect Ymax data.
//
/// @todo:  Look at speeding this up -- weigh against corresponding costs in rasterizer.
template<size_t SimdWidth>
struct GatherScissors
{
    static void Gather(const SWR_RECT* pScissorsInFixedPoint, const uint32_t* pViewportIndex,
        simdscalari &scisXmin, simdscalari &scisYmin,
        simdscalari &scisXmax, simdscalari &scisYmax)
    {
        SWR_ASSERT(0, "Unhandled Simd Width in Scissor Rect Gather");
    }
};

template<>
struct GatherScissors<8>
{
    static void Gather(const SWR_RECT* pScissorsInFixedPoint, const uint32_t* pViewportIndex,
        simdscalari &scisXmin, simdscalari &scisYmin,
        simdscalari &scisXmax, simdscalari &scisYmax)
    {
        scisXmin = _simd_set_epi32(pScissorsInFixedPoint[pViewportIndex[0]].xmin,
            pScissorsInFixedPoint[pViewportIndex[1]].xmin,
            pScissorsInFixedPoint[pViewportIndex[2]].xmin,
            pScissorsInFixedPoint[pViewportIndex[3]].xmin,
            pScissorsInFixedPoint[pViewportIndex[4]].xmin,
            pScissorsInFixedPoint[pViewportIndex[5]].xmin,
            pScissorsInFixedPoint[pViewportIndex[6]].xmin,
            pScissorsInFixedPoint[pViewportIndex[7]].xmin);
        scisYmin = _simd_set_epi32(pScissorsInFixedPoint[pViewportIndex[0]].ymin,
            pScissorsInFixedPoint[pViewportIndex[1]].ymin,
            pScissorsInFixedPoint[pViewportIndex[2]].ymin,
            pScissorsInFixedPoint[pViewportIndex[3]].ymin,
            pScissorsInFixedPoint[pViewportIndex[4]].ymin,
            pScissorsInFixedPoint[pViewportIndex[5]].ymin,
            pScissorsInFixedPoint[pViewportIndex[6]].ymin,
            pScissorsInFixedPoint[pViewportIndex[7]].ymin);
        scisXmax = _simd_set_epi32(pScissorsInFixedPoint[pViewportIndex[0]].xmax,
            pScissorsInFixedPoint[pViewportIndex[1]].xmax,
            pScissorsInFixedPoint[pViewportIndex[2]].xmax,
            pScissorsInFixedPoint[pViewportIndex[3]].xmax,
            pScissorsInFixedPoint[pViewportIndex[4]].xmax,
            pScissorsInFixedPoint[pViewportIndex[5]].xmax,
            pScissorsInFixedPoint[pViewportIndex[6]].xmax,
            pScissorsInFixedPoint[pViewportIndex[7]].xmax);
        scisYmax = _simd_set_epi32(pScissorsInFixedPoint[pViewportIndex[0]].ymax,
            pScissorsInFixedPoint[pViewportIndex[1]].ymax,
            pScissorsInFixedPoint[pViewportIndex[2]].ymax,
            pScissorsInFixedPoint[pViewportIndex[3]].ymax,
            pScissorsInFixedPoint[pViewportIndex[4]].ymax,
            pScissorsInFixedPoint[pViewportIndex[5]].ymax,
            pScissorsInFixedPoint[pViewportIndex[6]].ymax,
            pScissorsInFixedPoint[pViewportIndex[7]].ymax);
    }
};

typedef void(*PFN_PROCESS_ATTRIBUTES)(DRAW_CONTEXT*, PA_STATE&, uint32_t, uint32_t, float*);

struct ProcessAttributesChooser
{
    typedef PFN_PROCESS_ATTRIBUTES FuncType;

    template <typename... ArgsB>
    static FuncType GetFunc()
    {
        return ProcessAttributes<ArgsB...>;
    }
};

PFN_PROCESS_ATTRIBUTES GetProcessAttributesFunc(uint32_t NumVerts, bool IsSwizzled, bool HasConstantInterp, bool IsDegenerate = false)
{
    return TemplateArgUnroller<ProcessAttributesChooser>::GetFunc(IntArg<1, 3>{NumVerts}, IsSwizzled, HasConstantInterp, IsDegenerate);
}

//////////////////////////////////////////////////////////////////////////
/// @brief Processes enabled user clip distances. Loads the active clip
///        distances from the PA, sets up barycentric equations, and
///        stores the results to the output buffer
/// @param pa - Primitive Assembly state
/// @param primIndex - primitive index to process
/// @param clipDistMask - mask of enabled clip distances
/// @param pUserClipBuffer - buffer to store results
template<uint32_t NumVerts>
void ProcessUserClipDist(PA_STATE& pa, uint32_t primIndex, uint8_t clipDistMask, float* pUserClipBuffer)
{
    DWORD clipDist;
    while (_BitScanForward(&clipDist, clipDistMask))
    {
        clipDistMask &= ~(1 << clipDist);
        uint32_t clipSlot = clipDist >> 2;
        uint32_t clipComp = clipDist & 0x3;
        uint32_t clipAttribSlot = clipSlot == 0 ?
            VERTEX_CLIPCULL_DIST_LO_SLOT : VERTEX_CLIPCULL_DIST_HI_SLOT;

        __m128 primClipDist[3];
        pa.AssembleSingle(clipAttribSlot, primIndex, primClipDist);

        float vertClipDist[NumVerts];
        for (uint32_t e = 0; e < NumVerts; ++e)
        {
            OSALIGNSIMD(float) aVertClipDist[4];
            _mm_store_ps(aVertClipDist, primClipDist[e]);
            vertClipDist[e] = aVertClipDist[clipComp];
        };

        // setup plane equations for barycentric interpolation in the backend
        float baryCoeff[NumVerts];
        for (uint32_t e = 0; e < NumVerts - 1; ++e)
        {
            baryCoeff[e] = vertClipDist[e] - vertClipDist[NumVerts - 1];
        }
        baryCoeff[NumVerts - 1] = vertClipDist[NumVerts - 1];

        for (uint32_t e = 0; e < NumVerts; ++e)
        {
            *(pUserClipBuffer++) = baryCoeff[e];
        }
    }
}

//////////////////////////////////////////////////////////////////////////
/// @brief Bin triangle primitives to macro tiles. Performs setup, clipping
///        culling, viewport transform, etc.
/// @param pDC - pointer to draw context.
/// @param pa - The primitive assembly object.
/// @param workerId - thread's worker id. Even thread has a unique id.
/// @param tri - Contains triangle position data for SIMDs worth of triangles.
/// @param primID - Primitive ID for each triangle.
/// @param viewportIdx - viewport array index for each triangle.
/// @tparam CT - ConservativeRastFETraits
template <typename CT>
void BinTriangles(
    DRAW_CONTEXT *pDC,
    PA_STATE& pa,
    uint32_t workerId,
    simdvector tri[3],
    uint32_t triMask,
    simdscalari primID,
    simdscalari viewportIdx)
{
    SWR_CONTEXT *pContext = pDC->pContext;

    AR_BEGIN(FEBinTriangles, pDC->drawId);

    const API_STATE& state = GetApiState(pDC);
    const SWR_RASTSTATE& rastState = state.rastState;
    const SWR_FRONTEND_STATE& feState = state.frontendState;
    const SWR_GS_STATE& gsState = state.gsState;
    MacroTileMgr *pTileMgr = pDC->pTileMgr;

    // Simple non-conformant wireframe mode, useful for debugging
    if (rastState.fillMode == SWR_FILLMODE_WIREFRAME)
    {
        // construct 3 SIMD lines out of the triangle and call the line binner for each SIMD
        simdvector line[2];
        line[0] = tri[0];
        line[1] = tri[1];
        BinLines(pDC, pa, workerId, line, triMask, primID, viewportIdx);

        line[0] = tri[1];
        line[1] = tri[2];
        BinLines(pDC, pa, workerId, line, triMask, primID, viewportIdx);

        line[0] = tri[2];
        line[1] = tri[0];
        BinLines(pDC, pa, workerId, line, triMask, primID, viewportIdx);

        AR_END(FEBinTriangles, 1);
        return;
    }

    simdscalar vRecipW0 = _simd_set1_ps(1.0f);
    simdscalar vRecipW1 = _simd_set1_ps(1.0f);
    simdscalar vRecipW2 = _simd_set1_ps(1.0f);

    if (feState.vpTransformDisable)
    {
        // RHW is passed in directly when VP transform is disabled
        vRecipW0 = tri[0].v[3];
        vRecipW1 = tri[1].v[3];
        vRecipW2 = tri[2].v[3];
    }
    else
    {
        // Perspective divide
        vRecipW0 = _simd_div_ps(_simd_set1_ps(1.0f), tri[0].w);
        vRecipW1 = _simd_div_ps(_simd_set1_ps(1.0f), tri[1].w);
        vRecipW2 = _simd_div_ps(_simd_set1_ps(1.0f), tri[2].w);

        tri[0].v[0] = _simd_mul_ps(tri[0].v[0], vRecipW0);
        tri[1].v[0] = _simd_mul_ps(tri[1].v[0], vRecipW1);
        tri[2].v[0] = _simd_mul_ps(tri[2].v[0], vRecipW2);

        tri[0].v[1] = _simd_mul_ps(tri[0].v[1], vRecipW0);
        tri[1].v[1] = _simd_mul_ps(tri[1].v[1], vRecipW1);
        tri[2].v[1] = _simd_mul_ps(tri[2].v[1], vRecipW2);

        tri[0].v[2] = _simd_mul_ps(tri[0].v[2], vRecipW0);
        tri[1].v[2] = _simd_mul_ps(tri[1].v[2], vRecipW1);
        tri[2].v[2] = _simd_mul_ps(tri[2].v[2], vRecipW2);

        // Viewport transform to screen space coords
        if (state.gsState.emitsViewportArrayIndex)
        {
            viewportTransform<3>(tri, state.vpMatrices, viewportIdx);
        }
        else
        {
            viewportTransform<3>(tri, state.vpMatrices);
        }
    }

    // Adjust for pixel center location
    simdscalar offset = g_pixelOffsets[rastState.pixelLocation];
    tri[0].x = _simd_add_ps(tri[0].x, offset);
    tri[0].y = _simd_add_ps(tri[0].y, offset);

    tri[1].x = _simd_add_ps(tri[1].x, offset);
    tri[1].y = _simd_add_ps(tri[1].y, offset);

    tri[2].x = _simd_add_ps(tri[2].x, offset);
    tri[2].y = _simd_add_ps(tri[2].y, offset);

    simdscalari vXi[3], vYi[3];
    // Set vXi, vYi to required fixed point precision
    FPToFixedPoint(tri, vXi, vYi);

    // triangle setup
    simdscalari vAi[3], vBi[3];
    triangleSetupABIntVertical(vXi, vYi, vAi, vBi);

    // determinant
    simdscalari vDet[2];
    calcDeterminantIntVertical(vAi, vBi, vDet);

    // cull zero area
    int maskLo = _simd_movemask_pd(_simd_castsi_pd(_simd_cmpeq_epi64(vDet[0], _simd_setzero_si())));
    int maskHi = _simd_movemask_pd(_simd_castsi_pd(_simd_cmpeq_epi64(vDet[1], _simd_setzero_si())));

    int cullZeroAreaMask = maskLo | (maskHi << (KNOB_SIMD_WIDTH / 2));

    uint32_t origTriMask = triMask;
    // don't cull degenerate triangles if we're conservatively rasterizing
    if (!CT::IsConservativeT::value)
    {
        triMask &= ~cullZeroAreaMask;
    }

    // determine front winding tris
    // CW  +det
    // CCW det <= 0; 0 area triangles are marked as backfacing, which is required behavior for conservative rast
    maskLo = _simd_movemask_pd(_simd_castsi_pd(_simd_cmpgt_epi64(vDet[0], _simd_setzero_si())));
    maskHi = _simd_movemask_pd(_simd_castsi_pd(_simd_cmpgt_epi64(vDet[1], _simd_setzero_si())));
    int cwTriMask = maskLo | (maskHi << (KNOB_SIMD_WIDTH / 2));

    uint32_t frontWindingTris;
    if (rastState.frontWinding == SWR_FRONTWINDING_CW)
    {
        frontWindingTris = cwTriMask;
    }
    else
    {
        frontWindingTris = ~cwTriMask;
    }

    // cull
    uint32_t cullTris;
    switch ((SWR_CULLMODE)rastState.cullMode)
    {
    case SWR_CULLMODE_BOTH:  cullTris = 0xffffffff; break;
    case SWR_CULLMODE_NONE:  cullTris = 0x0; break;
    case SWR_CULLMODE_FRONT: cullTris = frontWindingTris; break;
        // 0 area triangles are marked as backfacing, which is required behavior for conservative rast
    case SWR_CULLMODE_BACK:  cullTris = ~frontWindingTris; break;
    default: SWR_ASSERT(false, "Invalid cull mode: %d", rastState.cullMode); cullTris = 0x0; break;
    }

    triMask &= ~cullTris;

    if (origTriMask ^ triMask)
    {
        RDTSC_EVENT(FECullZeroAreaAndBackface, _mm_popcnt_u32(origTriMask ^ triMask), 0);
    }

    /// Note: these variable initializations must stay above any 'goto endBenTriangles'
    // compute per tri backface
    uint32_t frontFaceMask = frontWindingTris;
    uint32_t *pPrimID = (uint32_t *)&primID;
    const uint32_t *pViewportIndex = (uint32_t *)&viewportIdx;
    DWORD triIndex = 0;
    // for center sample pattern, all samples are at pixel center; calculate coverage
    // once at center and broadcast the results in the backend
    const SWR_MULTISAMPLE_COUNT sampleCount = (rastState.samplePattern == SWR_MSAA_STANDARD_PATTERN) ? rastState.sampleCount : SWR_MULTISAMPLE_1X;
    uint32_t edgeEnable;
    PFN_WORK_FUNC pfnWork;
    if (CT::IsConservativeT::value)
    {
        // determine which edges of the degenerate tri, if any, are valid to rasterize.
        // used to call the appropriate templated rasterizer function
        if (cullZeroAreaMask > 0)
        {
            // e0 = v1-v0
            simdscalari x0x1Mask = _simd_cmpeq_epi32(vXi[0], vXi[1]);
            simdscalari y0y1Mask = _simd_cmpeq_epi32(vYi[0], vYi[1]);
            uint32_t e0Mask = _simd_movemask_ps(_simd_castsi_ps(_simd_and_si(x0x1Mask, y0y1Mask)));

            // e1 = v2-v1
            simdscalari x1x2Mask = _simd_cmpeq_epi32(vXi[1], vXi[2]);
            simdscalari y1y2Mask = _simd_cmpeq_epi32(vYi[1], vYi[2]);
            uint32_t e1Mask = _simd_movemask_ps(_simd_castsi_ps(_simd_and_si(x1x2Mask, y1y2Mask)));

            // e2 = v0-v2
            // if v0 == v1 & v1 == v2, v0 == v2
            uint32_t e2Mask = e0Mask & e1Mask;
            SWR_ASSERT(KNOB_SIMD_WIDTH == 8, "Need to update degenerate mask code for avx512");

            // edge order: e0 = v0v1, e1 = v1v2, e2 = v0v2
            // 32 bit binary: 0000 0000 0010 0100 1001 0010 0100 1001
            e0Mask = pdep_u32(e0Mask, 0x00249249);
            // 32 bit binary: 0000 0000 0100 1001 0010 0100 1001 0010
            e1Mask = pdep_u32(e1Mask, 0x00492492);
            // 32 bit binary: 0000 0000 1001 0010 0100 1001 0010 0100
            e2Mask = pdep_u32(e2Mask, 0x00924924);

            edgeEnable = (0x00FFFFFF & (~(e0Mask | e1Mask | e2Mask)));
        }
        else
        {
            edgeEnable = 0x00FFFFFF;
        }
    }
    else
    {
        // degenerate triangles won't be sent to rasterizer; just enable all edges
        pfnWork = GetRasterizerFunc(sampleCount, (rastState.conservativeRast > 0),
            (SWR_INPUT_COVERAGE)pDC->pState->state.psState.inputCoverage, ALL_EDGES_VALID,
            (state.scissorsTileAligned == false));
    }

    if (!triMask)
    {
        goto endBinTriangles;
    }

    // Calc bounding box of triangles
    simdBBox bbox;
    calcBoundingBoxIntVertical<CT>(tri, vXi, vYi, bbox);

    // determine if triangle falls between pixel centers and discard
    // only discard for non-MSAA case and when conservative rast is disabled
    // (xmin + 127) & ~255
    // (xmax + 128) & ~255
    if (rastState.sampleCount == SWR_MULTISAMPLE_1X && (!CT::IsConservativeT::value))
    {
        origTriMask = triMask;

        int cullCenterMask;
        {
            simdscalari xmin = _simd_add_epi32(bbox.xmin, _simd_set1_epi32(127));
            xmin = _simd_and_si(xmin, _simd_set1_epi32(~255));
            simdscalari xmax = _simd_add_epi32(bbox.xmax, _simd_set1_epi32(128));
            xmax = _simd_and_si(xmax, _simd_set1_epi32(~255));

            simdscalari vMaskH = _simd_cmpeq_epi32(xmin, xmax);

            simdscalari ymin = _simd_add_epi32(bbox.ymin, _simd_set1_epi32(127));
            ymin = _simd_and_si(ymin, _simd_set1_epi32(~255));
            simdscalari ymax = _simd_add_epi32(bbox.ymax, _simd_set1_epi32(128));
            ymax = _simd_and_si(ymax, _simd_set1_epi32(~255));

            simdscalari vMaskV = _simd_cmpeq_epi32(ymin, ymax);
            vMaskV = _simd_or_si(vMaskH, vMaskV);
            cullCenterMask = _simd_movemask_ps(_simd_castsi_ps(vMaskV));
        }

        triMask &= ~cullCenterMask;

        if (origTriMask ^ triMask)
        {
            RDTSC_EVENT(FECullBetweenCenters, _mm_popcnt_u32(origTriMask ^ triMask), 0);
        }
    }

    // Intersect with scissor/viewport. Subtract 1 ULP in x.8 fixed point since xmax/ymax edge is exclusive.
    // Gather the AOS effective scissor rects based on the per-prim VP index.
    /// @todo:  Look at speeding this up -- weigh against corresponding costs in rasterizer.
    simdscalari scisXmin, scisYmin, scisXmax, scisYmax;
    if (state.gsState.emitsViewportArrayIndex)
    {
        GatherScissors<KNOB_SIMD_WIDTH>::Gather(&state.scissorsInFixedPoint[0], pViewportIndex,
            scisXmin, scisYmin, scisXmax, scisYmax);
    }
    else // broadcast fast path for non-VPAI case.
    {
        scisXmin = _simd_set1_epi32(state.scissorsInFixedPoint[0].xmin);
        scisYmin = _simd_set1_epi32(state.scissorsInFixedPoint[0].ymin);
        scisXmax = _simd_set1_epi32(state.scissorsInFixedPoint[0].xmax);
        scisYmax = _simd_set1_epi32(state.scissorsInFixedPoint[0].ymax);
    }

    bbox.xmin = _simd_max_epi32(bbox.xmin, scisXmin);
    bbox.ymin = _simd_max_epi32(bbox.ymin, scisYmin);
    bbox.xmax = _simd_min_epi32(_simd_sub_epi32(bbox.xmax, _simd_set1_epi32(1)), scisXmax);
    bbox.ymax = _simd_min_epi32(_simd_sub_epi32(bbox.ymax, _simd_set1_epi32(1)), scisYmax);

    if (CT::IsConservativeT::value)
    {
        // in the case where a degenerate triangle is on a scissor edge, we need to make sure the primitive bbox has
        // some area. Bump the xmax/ymax edges out 
        simdscalari topEqualsBottom = _simd_cmpeq_epi32(bbox.ymin, bbox.ymax);
        bbox.ymax = _simd_blendv_epi32(bbox.ymax, _simd_add_epi32(bbox.ymax, _simd_set1_epi32(1)), topEqualsBottom);
        simdscalari leftEqualsRight = _simd_cmpeq_epi32(bbox.xmin, bbox.xmax);
        bbox.xmax = _simd_blendv_epi32(bbox.xmax, _simd_add_epi32(bbox.xmax, _simd_set1_epi32(1)), leftEqualsRight);
    }

    // Cull tris completely outside scissor
    {
        simdscalari maskOutsideScissorX = _simd_cmpgt_epi32(bbox.xmin, bbox.xmax);
        simdscalari maskOutsideScissorY = _simd_cmpgt_epi32(bbox.ymin, bbox.ymax);
        simdscalari maskOutsideScissorXY = _simd_or_si(maskOutsideScissorX, maskOutsideScissorY);
        uint32_t maskOutsideScissor = _simd_movemask_ps(_simd_castsi_ps(maskOutsideScissorXY));
        triMask = triMask & ~maskOutsideScissor;
    }

    if (!triMask)
    {
        goto endBinTriangles;
    }

    // Convert triangle bbox to macrotile units.
    bbox.xmin = _simd_srai_epi32(bbox.xmin, KNOB_MACROTILE_X_DIM_FIXED_SHIFT);
    bbox.ymin = _simd_srai_epi32(bbox.ymin, KNOB_MACROTILE_Y_DIM_FIXED_SHIFT);
    bbox.xmax = _simd_srai_epi32(bbox.xmax, KNOB_MACROTILE_X_DIM_FIXED_SHIFT);
    bbox.ymax = _simd_srai_epi32(bbox.ymax, KNOB_MACROTILE_Y_DIM_FIXED_SHIFT);

    OSALIGNSIMD(uint32_t) aMTLeft[KNOB_SIMD_WIDTH], aMTRight[KNOB_SIMD_WIDTH], aMTTop[KNOB_SIMD_WIDTH], aMTBottom[KNOB_SIMD_WIDTH];
    _simd_store_si((simdscalari*)aMTLeft, bbox.xmin);
    _simd_store_si((simdscalari*)aMTRight, bbox.xmax);
    _simd_store_si((simdscalari*)aMTTop, bbox.ymin);
    _simd_store_si((simdscalari*)aMTBottom, bbox.ymax);

    // transpose verts needed for backend
    /// @todo modify BE to take non-transformed verts
    __m128 vHorizX[8], vHorizY[8], vHorizZ[8], vHorizW[8];
    vTranspose3x8(vHorizX, tri[0].x, tri[1].x, tri[2].x);
    vTranspose3x8(vHorizY, tri[0].y, tri[1].y, tri[2].y);
    vTranspose3x8(vHorizZ, tri[0].z, tri[1].z, tri[2].z);
    vTranspose3x8(vHorizW, vRecipW0, vRecipW1, vRecipW2);

    // store render target array index
    OSALIGNSIMD(uint32_t) aRTAI[KNOB_SIMD_WIDTH];
    if (gsState.gsEnable && gsState.emitsRenderTargetArrayIndex)
    {
        simdvector vRtai[3];
        pa.Assemble(VERTEX_RTAI_SLOT, vRtai);
        simdscalari vRtaii;
        vRtaii = _simd_castps_si(vRtai[0].x);
        _simd_store_si((simdscalari*)aRTAI, vRtaii);
    }
    else
    {
        _simd_store_si((simdscalari*)aRTAI, _simd_setzero_si());
    }

    // scan remaining valid triangles and bin each separately
    while (_BitScanForward(&triIndex, triMask))
    {
        uint32_t linkageCount = state.backendState.numAttributes;
        uint32_t numScalarAttribs = linkageCount * 4;

        BE_WORK work;
        work.type = DRAW;

        bool isDegenerate;
        if (CT::IsConservativeT::value)
        {
            // only rasterize valid edges if we have a degenerate primitive
            int32_t triEdgeEnable = (edgeEnable >> (triIndex * 3)) & ALL_EDGES_VALID;
            work.pfnWork = GetRasterizerFunc(sampleCount, (rastState.conservativeRast > 0),
                (SWR_INPUT_COVERAGE)pDC->pState->state.psState.inputCoverage, triEdgeEnable,
                (state.scissorsTileAligned == false));

            // Degenerate triangles are required to be constant interpolated
            isDegenerate = (triEdgeEnable != ALL_EDGES_VALID) ? true : false;
        }
        else
        {
            isDegenerate = false;
            work.pfnWork = pfnWork;
        }

        // Select attribute processor
        PFN_PROCESS_ATTRIBUTES pfnProcessAttribs = GetProcessAttributesFunc(3,
            state.backendState.swizzleEnable, state.backendState.constantInterpolationMask, isDegenerate);

        TRIANGLE_WORK_DESC &desc = work.desc.tri;

        desc.triFlags.frontFacing = state.forceFront ? 1 : ((frontFaceMask >> triIndex) & 1);
        desc.triFlags.primID = pPrimID[triIndex];
        desc.triFlags.renderTargetArrayIndex = aRTAI[triIndex];
        desc.triFlags.viewportIndex = pViewportIndex[triIndex];

        auto pArena = pDC->pArena;
        SWR_ASSERT(pArena != nullptr);

        // store active attribs
        float *pAttribs = (float*)pArena->AllocAligned(numScalarAttribs * 3 * sizeof(float), 16);
        desc.pAttribs = pAttribs;
        desc.numAttribs = linkageCount;
        pfnProcessAttribs(pDC, pa, triIndex, pPrimID[triIndex], desc.pAttribs);

        // store triangle vertex data
        desc.pTriBuffer = (float*)pArena->AllocAligned(4 * 4 * sizeof(float), 16);

        _mm_store_ps(&desc.pTriBuffer[0], vHorizX[triIndex]);
        _mm_store_ps(&desc.pTriBuffer[4], vHorizY[triIndex]);
        _mm_store_ps(&desc.pTriBuffer[8], vHorizZ[triIndex]);
        _mm_store_ps(&desc.pTriBuffer[12], vHorizW[triIndex]);

        // store user clip distances
        if (rastState.clipDistanceMask)
        {
            uint32_t numClipDist = _mm_popcnt_u32(rastState.clipDistanceMask);
            desc.pUserClipBuffer = (float*)pArena->Alloc(numClipDist * 3 * sizeof(float));
            ProcessUserClipDist<3>(pa, triIndex, rastState.clipDistanceMask, desc.pUserClipBuffer);
        }

        for (uint32_t y = aMTTop[triIndex]; y <= aMTBottom[triIndex]; ++y)
        {
            for (uint32_t x = aMTLeft[triIndex]; x <= aMTRight[triIndex]; ++x)
            {
#if KNOB_ENABLE_TOSS_POINTS
                if (!KNOB_TOSS_SETUP_TRIS)
#endif
                {
                    pTileMgr->enqueue(x, y, &work);
                }
            }
        }
                     triMask &= ~(1 << triIndex);
    }

endBinTriangles:
    AR_END(FEBinTriangles, 1);
}

struct FEBinTrianglesChooser
{
    typedef PFN_PROCESS_PRIMS FuncType;

    template <typename... ArgsB>
    static FuncType GetFunc()
    {
        return BinTriangles<ConservativeRastFETraits<ArgsB...>>;
    }
};

// Selector for correct templated BinTrinagles function
PFN_PROCESS_PRIMS GetBinTrianglesFunc(bool IsConservative)
{
    return TemplateArgUnroller<FEBinTrianglesChooser>::GetFunc(IsConservative);
}

//////////////////////////////////////////////////////////////////////////
/// @brief Bin SIMD points to the backend.  Only supports point size of 1
/// @param pDC - pointer to draw context.
/// @param pa - The primitive assembly object.
/// @param workerId - thread's worker id. Even thread has a unique id.
/// @param tri - Contains point position data for SIMDs worth of points.
/// @param primID - Primitive ID for each point.
void BinPoints(
    DRAW_CONTEXT *pDC,
    PA_STATE& pa,
    uint32_t workerId,
    simdvector prim[3],
    uint32_t primMask,
    simdscalari primID,
    simdscalari viewportIdx)
{
    SWR_CONTEXT *pContext = pDC->pContext;

    AR_BEGIN(FEBinPoints, pDC->drawId);

    simdvector& primVerts = prim[0];

    const API_STATE& state = GetApiState(pDC);
    const SWR_FRONTEND_STATE& feState = state.frontendState;
    const SWR_GS_STATE& gsState = state.gsState;
    const SWR_RASTSTATE& rastState = state.rastState;
    const uint32_t *pViewportIndex = (uint32_t *)&viewportIdx;

    // Select attribute processor
    PFN_PROCESS_ATTRIBUTES pfnProcessAttribs = GetProcessAttributesFunc(1,
        state.backendState.swizzleEnable, state.backendState.constantInterpolationMask);

    if (!feState.vpTransformDisable)
    {
        // perspective divide
        simdscalar vRecipW0 = _simd_div_ps(_simd_set1_ps(1.0f), primVerts.w);
        primVerts.x = _simd_mul_ps(primVerts.x, vRecipW0);
        primVerts.y = _simd_mul_ps(primVerts.y, vRecipW0);
        primVerts.z = _simd_mul_ps(primVerts.z, vRecipW0);

        // viewport transform to screen coords
        if (state.gsState.emitsViewportArrayIndex)
        {
            viewportTransform<1>(&primVerts, state.vpMatrices, viewportIdx);
        }
        else
        {
            viewportTransform<1>(&primVerts, state.vpMatrices);
        }
    }

    // adjust for pixel center location
    simdscalar offset = g_pixelOffsets[rastState.pixelLocation];
    primVerts.x = _simd_add_ps(primVerts.x, offset);
    primVerts.y = _simd_add_ps(primVerts.y, offset);

    // convert to fixed point
    simdscalari vXi, vYi;
    vXi = fpToFixedPointVertical(primVerts.x);
    vYi = fpToFixedPointVertical(primVerts.y);

    if (CanUseSimplePoints(pDC))
    {
        // adjust for ymin-xmin rule
        vXi = _simd_sub_epi32(vXi, _simd_set1_epi32(1));
        vYi = _simd_sub_epi32(vYi, _simd_set1_epi32(1));

        // cull points off the ymin-xmin edge of the viewport
        primMask &= ~_simd_movemask_ps(_simd_castsi_ps(vXi));
        primMask &= ~_simd_movemask_ps(_simd_castsi_ps(vYi));

        // compute macro tile coordinates 
        simdscalari macroX = _simd_srai_epi32(vXi, KNOB_MACROTILE_X_DIM_FIXED_SHIFT);
        simdscalari macroY = _simd_srai_epi32(vYi, KNOB_MACROTILE_Y_DIM_FIXED_SHIFT);

        OSALIGNSIMD(uint32_t) aMacroX[KNOB_SIMD_WIDTH], aMacroY[KNOB_SIMD_WIDTH];
        _simd_store_si((simdscalari*)aMacroX, macroX);
        _simd_store_si((simdscalari*)aMacroY, macroY);

        // compute raster tile coordinates
        simdscalari rasterX = _simd_srai_epi32(vXi, KNOB_TILE_X_DIM_SHIFT + FIXED_POINT_SHIFT);
        simdscalari rasterY = _simd_srai_epi32(vYi, KNOB_TILE_Y_DIM_SHIFT + FIXED_POINT_SHIFT);

        // compute raster tile relative x,y for coverage mask
        simdscalari tileAlignedX = _simd_slli_epi32(rasterX, KNOB_TILE_X_DIM_SHIFT);
        simdscalari tileAlignedY = _simd_slli_epi32(rasterY, KNOB_TILE_Y_DIM_SHIFT);

        simdscalari tileRelativeX = _simd_sub_epi32(_simd_srai_epi32(vXi, FIXED_POINT_SHIFT), tileAlignedX);
        simdscalari tileRelativeY = _simd_sub_epi32(_simd_srai_epi32(vYi, FIXED_POINT_SHIFT), tileAlignedY);

        OSALIGNSIMD(uint32_t) aTileRelativeX[KNOB_SIMD_WIDTH];
        OSALIGNSIMD(uint32_t) aTileRelativeY[KNOB_SIMD_WIDTH];
        _simd_store_si((simdscalari*)aTileRelativeX, tileRelativeX);
        _simd_store_si((simdscalari*)aTileRelativeY, tileRelativeY);

        OSALIGNSIMD(uint32_t) aTileAlignedX[KNOB_SIMD_WIDTH];
        OSALIGNSIMD(uint32_t) aTileAlignedY[KNOB_SIMD_WIDTH];
        _simd_store_si((simdscalari*)aTileAlignedX, tileAlignedX);
        _simd_store_si((simdscalari*)aTileAlignedY, tileAlignedY);

        OSALIGNSIMD(float) aZ[KNOB_SIMD_WIDTH];
        _simd_store_ps((float*)aZ, primVerts.z);

        // store render target array index
        OSALIGNSIMD(uint32_t) aRTAI[KNOB_SIMD_WIDTH];
        if (gsState.gsEnable && gsState.emitsRenderTargetArrayIndex)
        {
            simdvector vRtai;
            pa.Assemble(VERTEX_RTAI_SLOT, &vRtai);
            simdscalari vRtaii = _simd_castps_si(vRtai.x);
            _simd_store_si((simdscalari*)aRTAI, vRtaii);
        }
        else
        {
            _simd_store_si((simdscalari*)aRTAI, _simd_setzero_si());
        }

        uint32_t *pPrimID = (uint32_t *)&primID;
        DWORD primIndex = 0;

        const SWR_BACKEND_STATE& backendState = pDC->pState->state.backendState;

        // scan remaining valid triangles and bin each separately
        while (_BitScanForward(&primIndex, primMask))
        {
            uint32_t linkageCount = backendState.numAttributes;
            uint32_t numScalarAttribs = linkageCount * 4;

            BE_WORK work;
            work.type = DRAW;

            TRIANGLE_WORK_DESC &desc = work.desc.tri;

            // points are always front facing
            desc.triFlags.frontFacing = 1;
            desc.triFlags.primID = pPrimID[primIndex];
            desc.triFlags.renderTargetArrayIndex = aRTAI[primIndex];
            desc.triFlags.viewportIndex = pViewportIndex[primIndex];

            work.pfnWork = RasterizeSimplePoint;

            auto pArena = pDC->pArena;
            SWR_ASSERT(pArena != nullptr);

            // store attributes
            float *pAttribs = (float*)pArena->AllocAligned(3 * numScalarAttribs * sizeof(float), 16);
            desc.pAttribs = pAttribs;
            desc.numAttribs = linkageCount;

            pfnProcessAttribs(pDC, pa, primIndex, pPrimID[primIndex], pAttribs);

            // store raster tile aligned x, y, perspective correct z
            float *pTriBuffer = (float*)pArena->AllocAligned(4 * sizeof(float), 16);
            desc.pTriBuffer = pTriBuffer;
            *(uint32_t*)pTriBuffer++ = aTileAlignedX[primIndex];
            *(uint32_t*)pTriBuffer++ = aTileAlignedY[primIndex];
            *pTriBuffer = aZ[primIndex];

            uint32_t tX = aTileRelativeX[primIndex];
            uint32_t tY = aTileRelativeY[primIndex];

            // pack the relative x,y into the coverageMask, the rasterizer will
            // generate the true coverage mask from it
            work.desc.tri.triFlags.coverageMask = tX | (tY << 4);

            // bin it
            MacroTileMgr *pTileMgr = pDC->pTileMgr;
#if KNOB_ENABLE_TOSS_POINTS
            if (!KNOB_TOSS_SETUP_TRIS)
#endif
            {
                pTileMgr->enqueue(aMacroX[primIndex], aMacroY[primIndex], &work);
            }
            primMask &= ~(1 << primIndex);
        }
    }
    else
    {
        // non simple points need to be potentially binned to multiple macro tiles
        simdscalar vPointSize;
        if (rastState.pointParam)
        {
            simdvector size[3];
            pa.Assemble(VERTEX_POINT_SIZE_SLOT, size);
            vPointSize = size[0].x;
        }
        else
        {
            vPointSize = _simd_set1_ps(rastState.pointSize);
        }

        // bloat point to bbox
        simdBBox bbox;
        bbox.xmin = bbox.xmax = vXi;
        bbox.ymin = bbox.ymax = vYi;

        simdscalar vHalfWidth = _simd_mul_ps(vPointSize, _simd_set1_ps(0.5f));
        simdscalari vHalfWidthi = fpToFixedPointVertical(vHalfWidth);
        bbox.xmin = _simd_sub_epi32(bbox.xmin, vHalfWidthi);
        bbox.xmax = _simd_add_epi32(bbox.xmax, vHalfWidthi);
        bbox.ymin = _simd_sub_epi32(bbox.ymin, vHalfWidthi);
        bbox.ymax = _simd_add_epi32(bbox.ymax, vHalfWidthi);

        // Intersect with scissor/viewport. Subtract 1 ULP in x.8 fixed point since xmax/ymax edge is exclusive.
        // Gather the AOS effective scissor rects based on the per-prim VP index.
        /// @todo:  Look at speeding this up -- weigh against corresponding costs in rasterizer.
        simdscalari scisXmin, scisYmin, scisXmax, scisYmax;
        if (state.gsState.emitsViewportArrayIndex)
        {
            GatherScissors<KNOB_SIMD_WIDTH>::Gather(&state.scissorsInFixedPoint[0], pViewportIndex,
                scisXmin, scisYmin, scisXmax, scisYmax);
        }
        else // broadcast fast path for non-VPAI case.
        {
            scisXmin = _simd_set1_epi32(state.scissorsInFixedPoint[0].xmin);
            scisYmin = _simd_set1_epi32(state.scissorsInFixedPoint[0].ymin);
            scisXmax = _simd_set1_epi32(state.scissorsInFixedPoint[0].xmax);
            scisYmax = _simd_set1_epi32(state.scissorsInFixedPoint[0].ymax);
        }

        bbox.xmin = _simd_max_epi32(bbox.xmin, scisXmin);
        bbox.ymin = _simd_max_epi32(bbox.ymin, scisYmin);
        bbox.xmax = _simd_min_epi32(_simd_sub_epi32(bbox.xmax, _simd_set1_epi32(1)), scisXmax);
        bbox.ymax = _simd_min_epi32(_simd_sub_epi32(bbox.ymax, _simd_set1_epi32(1)), scisYmax);

        // Cull bloated points completely outside scissor
        simdscalari maskOutsideScissorX = _simd_cmpgt_epi32(bbox.xmin, bbox.xmax);
        simdscalari maskOutsideScissorY = _simd_cmpgt_epi32(bbox.ymin, bbox.ymax);
        simdscalari maskOutsideScissorXY = _simd_or_si(maskOutsideScissorX, maskOutsideScissorY);
        uint32_t maskOutsideScissor = _simd_movemask_ps(_simd_castsi_ps(maskOutsideScissorXY));
        primMask = primMask & ~maskOutsideScissor;

        // Convert bbox to macrotile units.
        bbox.xmin = _simd_srai_epi32(bbox.xmin, KNOB_MACROTILE_X_DIM_FIXED_SHIFT);
        bbox.ymin = _simd_srai_epi32(bbox.ymin, KNOB_MACROTILE_Y_DIM_FIXED_SHIFT);
        bbox.xmax = _simd_srai_epi32(bbox.xmax, KNOB_MACROTILE_X_DIM_FIXED_SHIFT);
        bbox.ymax = _simd_srai_epi32(bbox.ymax, KNOB_MACROTILE_Y_DIM_FIXED_SHIFT);

        OSALIGNSIMD(uint32_t) aMTLeft[KNOB_SIMD_WIDTH], aMTRight[KNOB_SIMD_WIDTH], aMTTop[KNOB_SIMD_WIDTH], aMTBottom[KNOB_SIMD_WIDTH];
        _simd_store_si((simdscalari*)aMTLeft, bbox.xmin);
        _simd_store_si((simdscalari*)aMTRight, bbox.xmax);
        _simd_store_si((simdscalari*)aMTTop, bbox.ymin);
        _simd_store_si((simdscalari*)aMTBottom, bbox.ymax);

        // store render target array index
        OSALIGNSIMD(uint32_t) aRTAI[KNOB_SIMD_WIDTH];
        if (gsState.gsEnable && gsState.emitsRenderTargetArrayIndex)
        {
            simdvector vRtai[2];
            pa.Assemble(VERTEX_RTAI_SLOT, vRtai);
            simdscalari vRtaii = _simd_castps_si(vRtai[0].x);
            _simd_store_si((simdscalari*)aRTAI, vRtaii);
        }
        else
        {
            _simd_store_si((simdscalari*)aRTAI, _simd_setzero_si());
        }

        OSALIGNSIMD(float) aPointSize[KNOB_SIMD_WIDTH];
        _simd_store_ps((float*)aPointSize, vPointSize);

        uint32_t *pPrimID = (uint32_t *)&primID;

        OSALIGNSIMD(float) aPrimVertsX[KNOB_SIMD_WIDTH];
        OSALIGNSIMD(float) aPrimVertsY[KNOB_SIMD_WIDTH];
        OSALIGNSIMD(float) aPrimVertsZ[KNOB_SIMD_WIDTH];

        _simd_store_ps((float*)aPrimVertsX, primVerts.x);
        _simd_store_ps((float*)aPrimVertsY, primVerts.y);
        _simd_store_ps((float*)aPrimVertsZ, primVerts.z);

        // scan remaining valid prims and bin each separately
        const SWR_BACKEND_STATE& backendState = state.backendState;
        DWORD primIndex;
        while (_BitScanForward(&primIndex, primMask))
        {
            uint32_t linkageCount = backendState.numAttributes;
            uint32_t numScalarAttribs = linkageCount * 4;

            BE_WORK work;
            work.type = DRAW;

            TRIANGLE_WORK_DESC &desc = work.desc.tri;

            desc.triFlags.frontFacing = 1;
            desc.triFlags.primID = pPrimID[primIndex];
            desc.triFlags.pointSize = aPointSize[primIndex];
            desc.triFlags.renderTargetArrayIndex = aRTAI[primIndex];
            desc.triFlags.viewportIndex = pViewportIndex[primIndex];

            work.pfnWork = RasterizeTriPoint;

            auto pArena = pDC->pArena;
            SWR_ASSERT(pArena != nullptr);

            // store active attribs
            desc.pAttribs = (float*)pArena->AllocAligned(numScalarAttribs * 3 * sizeof(float), 16);
            desc.numAttribs = linkageCount;
            pfnProcessAttribs(pDC, pa, primIndex, pPrimID[primIndex], desc.pAttribs);

            // store point vertex data
            float *pTriBuffer = (float*)pArena->AllocAligned(4 * sizeof(float), 16);
            desc.pTriBuffer = pTriBuffer;
            *pTriBuffer++ = aPrimVertsX[primIndex];
            *pTriBuffer++ = aPrimVertsY[primIndex];
            *pTriBuffer = aPrimVertsZ[primIndex];

            // store user clip distances
            if (rastState.clipDistanceMask)
            {
                uint32_t numClipDist = _mm_popcnt_u32(rastState.clipDistanceMask);
                desc.pUserClipBuffer = (float*)pArena->Alloc(numClipDist * 2 * sizeof(float));
                ProcessUserClipDist<2>(pa, primIndex, rastState.clipDistanceMask, desc.pUserClipBuffer);
            }

            MacroTileMgr *pTileMgr = pDC->pTileMgr;
            for (uint32_t y = aMTTop[primIndex]; y <= aMTBottom[primIndex]; ++y)
            {
                for (uint32_t x = aMTLeft[primIndex]; x <= aMTRight[primIndex]; ++x)
                {
#if KNOB_ENABLE_TOSS_POINTS
                    if (!KNOB_TOSS_SETUP_TRIS)
#endif
                    {
                        pTileMgr->enqueue(x, y, &work);
                    }
                }
            }

            primMask &= ~(1 << primIndex);
        }
    }

    AR_END(FEBinPoints, 1);
}

//////////////////////////////////////////////////////////////////////////
/// @brief Bin SIMD lines to the backend.
/// @param pDC - pointer to draw context.
/// @param pa - The primitive assembly object.
/// @param workerId - thread's worker id. Even thread has a unique id.
/// @param tri - Contains line position data for SIMDs worth of points.
/// @param primID - Primitive ID for each line.
/// @param viewportIdx - Viewport Array Index for each line.
void BinLines(
    DRAW_CONTEXT *pDC,
    PA_STATE& pa,
    uint32_t workerId,
    simdvector prim[],
    uint32_t primMask,
    simdscalari primID,
    simdscalari viewportIdx)
{
    SWR_CONTEXT *pContext = pDC->pContext;

    AR_BEGIN(FEBinLines, pDC->drawId);

    const API_STATE& state = GetApiState(pDC);
    const SWR_RASTSTATE& rastState = state.rastState;
    const SWR_FRONTEND_STATE& feState = state.frontendState;
    const SWR_GS_STATE& gsState = state.gsState;

    // Select attribute processor
    PFN_PROCESS_ATTRIBUTES pfnProcessAttribs = GetProcessAttributesFunc(2,
        state.backendState.swizzleEnable, state.backendState.constantInterpolationMask);

    simdscalar vRecipW0 = _simd_set1_ps(1.0f);
    simdscalar vRecipW1 = _simd_set1_ps(1.0f);

    if (!feState.vpTransformDisable)
    {
        // perspective divide
        vRecipW0 = _simd_div_ps(_simd_set1_ps(1.0f), prim[0].w);
        vRecipW1 = _simd_div_ps(_simd_set1_ps(1.0f), prim[1].w);

        prim[0].v[0] = _simd_mul_ps(prim[0].v[0], vRecipW0);
        prim[1].v[0] = _simd_mul_ps(prim[1].v[0], vRecipW1);

        prim[0].v[1] = _simd_mul_ps(prim[0].v[1], vRecipW0);
        prim[1].v[1] = _simd_mul_ps(prim[1].v[1], vRecipW1);

        prim[0].v[2] = _simd_mul_ps(prim[0].v[2], vRecipW0);
        prim[1].v[2] = _simd_mul_ps(prim[1].v[2], vRecipW1);

        // viewport transform to screen coords
        if (state.gsState.emitsViewportArrayIndex)
        {
            viewportTransform<2>(prim, state.vpMatrices, viewportIdx);
        }
        else
        {
            viewportTransform<2>(prim, state.vpMatrices);
        }
    }

    // adjust for pixel center location
    simdscalar offset = g_pixelOffsets[rastState.pixelLocation];
    prim[0].x = _simd_add_ps(prim[0].x, offset);
    prim[0].y = _simd_add_ps(prim[0].y, offset);

    prim[1].x = _simd_add_ps(prim[1].x, offset);
    prim[1].y = _simd_add_ps(prim[1].y, offset);

    // convert to fixed point
    simdscalari vXi[2], vYi[2];
    vXi[0] = fpToFixedPointVertical(prim[0].x);
    vYi[0] = fpToFixedPointVertical(prim[0].y);
    vXi[1] = fpToFixedPointVertical(prim[1].x);
    vYi[1] = fpToFixedPointVertical(prim[1].y);

    // compute x-major vs y-major mask
    simdscalari xLength = _simd_abs_epi32(_simd_sub_epi32(vXi[0], vXi[1]));
    simdscalari yLength = _simd_abs_epi32(_simd_sub_epi32(vYi[0], vYi[1]));
    simdscalar vYmajorMask = _simd_castsi_ps(_simd_cmpgt_epi32(yLength, xLength));
    uint32_t yMajorMask = _simd_movemask_ps(vYmajorMask);

    // cull zero-length lines
    simdscalari vZeroLengthMask = _simd_cmpeq_epi32(xLength, _simd_setzero_si());
    vZeroLengthMask = _simd_and_si(vZeroLengthMask, _simd_cmpeq_epi32(yLength, _simd_setzero_si()));

    primMask &= ~_simd_movemask_ps(_simd_castsi_ps(vZeroLengthMask));

    uint32_t *pPrimID = (uint32_t *)&primID;
    const uint32_t *pViewportIndex = (uint32_t *)&viewportIdx;

    simdscalar vUnused = _simd_setzero_ps();

    // Calc bounding box of lines
    simdBBox bbox;
    bbox.xmin = _simd_min_epi32(vXi[0], vXi[1]);
    bbox.xmax = _simd_max_epi32(vXi[0], vXi[1]);
    bbox.ymin = _simd_min_epi32(vYi[0], vYi[1]);
    bbox.ymax = _simd_max_epi32(vYi[0], vYi[1]);

    // bloat bbox by line width along minor axis
    simdscalar vHalfWidth = _simd_set1_ps(rastState.lineWidth / 2.0f);
    simdscalari vHalfWidthi = fpToFixedPointVertical(vHalfWidth);
    simdBBox bloatBox;
    bloatBox.xmin = _simd_sub_epi32(bbox.xmin, vHalfWidthi);
    bloatBox.xmax = _simd_add_epi32(bbox.xmax, vHalfWidthi);
    bloatBox.ymin = _simd_sub_epi32(bbox.ymin, vHalfWidthi);
    bloatBox.ymax = _simd_add_epi32(bbox.ymax, vHalfWidthi);

    bbox.xmin = _simd_blendv_epi32(bbox.xmin, bloatBox.xmin, vYmajorMask);
    bbox.xmax = _simd_blendv_epi32(bbox.xmax, bloatBox.xmax, vYmajorMask);
    bbox.ymin = _simd_blendv_epi32(bloatBox.ymin, bbox.ymin, vYmajorMask);
    bbox.ymax = _simd_blendv_epi32(bloatBox.ymax, bbox.ymax, vYmajorMask);

    // Intersect with scissor/viewport. Subtract 1 ULP in x.8 fixed point since xmax/ymax edge is exclusive.
    simdscalari scisXmin, scisYmin, scisXmax, scisYmax;
    if (state.gsState.emitsViewportArrayIndex)
    {
        GatherScissors<KNOB_SIMD_WIDTH>::Gather(&state.scissorsInFixedPoint[0], pViewportIndex,
            scisXmin, scisYmin, scisXmax, scisYmax);
    }
    else // broadcast fast path for non-VPAI case.
    {
        scisXmin = _simd_set1_epi32(state.scissorsInFixedPoint[0].xmin);
        scisYmin = _simd_set1_epi32(state.scissorsInFixedPoint[0].ymin);
        scisXmax = _simd_set1_epi32(state.scissorsInFixedPoint[0].xmax);
        scisYmax = _simd_set1_epi32(state.scissorsInFixedPoint[0].ymax);
    }

    bbox.xmin = _simd_max_epi32(bbox.xmin, scisXmin);
    bbox.ymin = _simd_max_epi32(bbox.ymin, scisYmin);
    bbox.xmax = _simd_min_epi32(_simd_sub_epi32(bbox.xmax, _simd_set1_epi32(1)), scisXmax);
    bbox.ymax = _simd_min_epi32(_simd_sub_epi32(bbox.ymax, _simd_set1_epi32(1)), scisYmax);

    // Cull prims completely outside scissor
    {
        simdscalari maskOutsideScissorX = _simd_cmpgt_epi32(bbox.xmin, bbox.xmax);
        simdscalari maskOutsideScissorY = _simd_cmpgt_epi32(bbox.ymin, bbox.ymax);
        simdscalari maskOutsideScissorXY = _simd_or_si(maskOutsideScissorX, maskOutsideScissorY);
        uint32_t maskOutsideScissor = _simd_movemask_ps(_simd_castsi_ps(maskOutsideScissorXY));
        primMask = primMask & ~maskOutsideScissor;
    }

    if (!primMask)
    {
        goto endBinLines;
    }

    // Convert triangle bbox to macrotile units.
    bbox.xmin = _simd_srai_epi32(bbox.xmin, KNOB_MACROTILE_X_DIM_FIXED_SHIFT);
    bbox.ymin = _simd_srai_epi32(bbox.ymin, KNOB_MACROTILE_Y_DIM_FIXED_SHIFT);
    bbox.xmax = _simd_srai_epi32(bbox.xmax, KNOB_MACROTILE_X_DIM_FIXED_SHIFT);
    bbox.ymax = _simd_srai_epi32(bbox.ymax, KNOB_MACROTILE_Y_DIM_FIXED_SHIFT);

    OSALIGNSIMD(uint32_t) aMTLeft[KNOB_SIMD_WIDTH], aMTRight[KNOB_SIMD_WIDTH], aMTTop[KNOB_SIMD_WIDTH], aMTBottom[KNOB_SIMD_WIDTH];
    _simd_store_si((simdscalari*)aMTLeft, bbox.xmin);
    _simd_store_si((simdscalari*)aMTRight, bbox.xmax);
    _simd_store_si((simdscalari*)aMTTop, bbox.ymin);
    _simd_store_si((simdscalari*)aMTBottom, bbox.ymax);

    // transpose verts needed for backend
    /// @todo modify BE to take non-transformed verts
    __m128 vHorizX[8], vHorizY[8], vHorizZ[8], vHorizW[8];
    vTranspose3x8(vHorizX, prim[0].x, prim[1].x, vUnused);
    vTranspose3x8(vHorizY, prim[0].y, prim[1].y, vUnused);
    vTranspose3x8(vHorizZ, prim[0].z, prim[1].z, vUnused);
    vTranspose3x8(vHorizW, vRecipW0, vRecipW1, vUnused);

    // store render target array index
    OSALIGNSIMD(uint32_t) aRTAI[KNOB_SIMD_WIDTH];
    if (gsState.gsEnable && gsState.emitsRenderTargetArrayIndex)
    {
        simdvector vRtai[2];
        pa.Assemble(VERTEX_RTAI_SLOT, vRtai);
        simdscalari vRtaii = _simd_castps_si(vRtai[0].x);
        _simd_store_si((simdscalari*)aRTAI, vRtaii);
    }
    else
    {
        _simd_store_si((simdscalari*)aRTAI, _simd_setzero_si());
    }

    // scan remaining valid prims and bin each separately
    DWORD primIndex;
    while (_BitScanForward(&primIndex, primMask))
    {
        uint32_t linkageCount = state.backendState.numAttributes;
        uint32_t numScalarAttribs = linkageCount * 4;

        BE_WORK work;
        work.type = DRAW;

        TRIANGLE_WORK_DESC &desc = work.desc.tri;

        desc.triFlags.frontFacing = 1;
        desc.triFlags.primID = pPrimID[primIndex];
        desc.triFlags.yMajor = (yMajorMask >> primIndex) & 1;
        desc.triFlags.renderTargetArrayIndex = aRTAI[primIndex];
        desc.triFlags.viewportIndex = pViewportIndex[primIndex];

        work.pfnWork = RasterizeLine;

        auto pArena = pDC->pArena;
        SWR_ASSERT(pArena != nullptr);

        // store active attribs
        desc.pAttribs = (float*)pArena->AllocAligned(numScalarAttribs * 3 * sizeof(float), 16);
        desc.numAttribs = linkageCount;
        pfnProcessAttribs(pDC, pa, primIndex, pPrimID[primIndex], desc.pAttribs);

        // store line vertex data
        desc.pTriBuffer = (float*)pArena->AllocAligned(4 * 4 * sizeof(float), 16);
        _mm_store_ps(&desc.pTriBuffer[0], vHorizX[primIndex]);
        _mm_store_ps(&desc.pTriBuffer[4], vHorizY[primIndex]);
        _mm_store_ps(&desc.pTriBuffer[8], vHorizZ[primIndex]);
        _mm_store_ps(&desc.pTriBuffer[12], vHorizW[primIndex]);

        // store user clip distances
        if (rastState.clipDistanceMask)
        {
            uint32_t numClipDist = _mm_popcnt_u32(rastState.clipDistanceMask);
            desc.pUserClipBuffer = (float*)pArena->Alloc(numClipDist * 2 * sizeof(float));
            ProcessUserClipDist<2>(pa, primIndex, rastState.clipDistanceMask, desc.pUserClipBuffer);
        }

        MacroTileMgr *pTileMgr = pDC->pTileMgr;
        for (uint32_t y = aMTTop[primIndex]; y <= aMTBottom[primIndex]; ++y)
        {
            for (uint32_t x = aMTLeft[primIndex]; x <= aMTRight[primIndex]; ++x)
            {
#if KNOB_ENABLE_TOSS_POINTS
                if (!KNOB_TOSS_SETUP_TRIS)
#endif
                {
                    pTileMgr->enqueue(x, y, &work);
                }
            }
        }

        primMask &= ~(1 << primIndex);
    }

endBinLines:

    AR_END(FEBinLines, 1);
}