1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
|
/****************************************************************************
* Copyright (C) 2014-2015 Intel Corporation. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* @file clip.h
*
* @brief Definitions for clipping
*
******************************************************************************/
#pragma once
#include "common/simdintrin.h"
#include "core/context.h"
#include "core/pa.h"
#include "rdtsc_core.h"
// Temp storage used by the clipper
extern THREAD simdvertex tlsTempVertices[7];
enum SWR_CLIPCODES
{
// Shift clip codes out of the mantissa to prevent denormalized values when used in float compare.
// Guardband is able to use a single high-bit with 4 separate LSBs, because it computes a union, rather than intersection, of clipcodes.
#define CLIPCODE_SHIFT 23
FRUSTUM_LEFT = (0x01 << CLIPCODE_SHIFT),
FRUSTUM_TOP = (0x02 << CLIPCODE_SHIFT),
FRUSTUM_RIGHT = (0x04 << CLIPCODE_SHIFT),
FRUSTUM_BOTTOM = (0x08 << CLIPCODE_SHIFT),
FRUSTUM_NEAR = (0x10 << CLIPCODE_SHIFT),
FRUSTUM_FAR = (0x20 << CLIPCODE_SHIFT),
NEGW = (0x40 << CLIPCODE_SHIFT),
GUARDBAND_LEFT = (0x80 << CLIPCODE_SHIFT | 0x1),
GUARDBAND_TOP = (0x80 << CLIPCODE_SHIFT | 0x2),
GUARDBAND_RIGHT = (0x80 << CLIPCODE_SHIFT | 0x4),
GUARDBAND_BOTTOM = (0x80 << CLIPCODE_SHIFT | 0x8)
};
#define FRUSTUM_CLIP_MASK (FRUSTUM_LEFT|FRUSTUM_TOP|FRUSTUM_RIGHT|FRUSTUM_BOTTOM|FRUSTUM_NEAR|FRUSTUM_FAR)
#define GUARDBAND_CLIP_MASK (FRUSTUM_NEAR|FRUSTUM_FAR|GUARDBAND_LEFT|GUARDBAND_TOP|GUARDBAND_RIGHT|GUARDBAND_BOTTOM|NEGW)
void Clip(const float *pTriangle, const float *pAttribs, int numAttribs, float *pOutTriangles,
int *numVerts, float *pOutAttribs);
INLINE
void ComputeClipCodes(DRIVER_TYPE type, const API_STATE& state, const simdvector& vertex, simdscalar& clipCodes, simdscalari viewportIndexes)
{
clipCodes = _simd_setzero_ps();
// -w
simdscalar vNegW = _simd_mul_ps(vertex.w, _simd_set1_ps(-1.0f));
// FRUSTUM_LEFT
simdscalar vRes = _simd_cmplt_ps(vertex.x, vNegW);
clipCodes = _simd_and_ps(vRes, _simd_castsi_ps(_simd_set1_epi32(FRUSTUM_LEFT)));
// FRUSTUM_TOP
vRes = _simd_cmplt_ps(vertex.y, vNegW);
clipCodes = _simd_or_ps(clipCodes, _simd_and_ps(vRes, _simd_castsi_ps(_simd_set1_epi32(FRUSTUM_TOP))));
// FRUSTUM_RIGHT
vRes = _simd_cmpgt_ps(vertex.x, vertex.w);
clipCodes = _simd_or_ps(clipCodes, _simd_and_ps(vRes, _simd_castsi_ps(_simd_set1_epi32(FRUSTUM_RIGHT))));
// FRUSTUM_BOTTOM
vRes = _simd_cmpgt_ps(vertex.y, vertex.w);
clipCodes = _simd_or_ps(clipCodes, _simd_and_ps(vRes, _simd_castsi_ps(_simd_set1_epi32(FRUSTUM_BOTTOM))));
if (state.rastState.depthClipEnable)
{
// FRUSTUM_NEAR
// DX clips depth [0..w], GL clips [-w..w]
if (type == DX)
{
vRes = _simd_cmplt_ps(vertex.z, _simd_setzero_ps());
}
else
{
vRes = _simd_cmplt_ps(vertex.z, vNegW);
}
clipCodes = _simd_or_ps(clipCodes, _simd_and_ps(vRes, _simd_castsi_ps(_simd_set1_epi32(FRUSTUM_NEAR))));
// FRUSTUM_FAR
vRes = _simd_cmpgt_ps(vertex.z, vertex.w);
clipCodes = _simd_or_ps(clipCodes, _simd_and_ps(vRes, _simd_castsi_ps(_simd_set1_epi32(FRUSTUM_FAR))));
}
// NEGW
vRes = _simd_cmple_ps(vertex.w, _simd_setzero_ps());
clipCodes = _simd_or_ps(clipCodes, _simd_and_ps(vRes, _simd_castsi_ps(_simd_set1_epi32(NEGW))));
// GUARDBAND_LEFT
simdscalar gbMult = _simd_mul_ps(vNegW, _simd_i32gather_ps(&state.gbState.left[0], viewportIndexes, 4));
vRes = _simd_cmplt_ps(vertex.x, gbMult);
clipCodes = _simd_or_ps(clipCodes, _simd_and_ps(vRes, _simd_castsi_ps(_simd_set1_epi32(GUARDBAND_LEFT))));
// GUARDBAND_TOP
gbMult = _simd_mul_ps(vNegW, _simd_i32gather_ps(&state.gbState.top[0], viewportIndexes, 4));
vRes = _simd_cmplt_ps(vertex.y, gbMult);
clipCodes = _simd_or_ps(clipCodes, _simd_and_ps(vRes, _simd_castsi_ps(_simd_set1_epi32(GUARDBAND_TOP))));
// GUARDBAND_RIGHT
gbMult = _simd_mul_ps(vertex.w, _simd_i32gather_ps(&state.gbState.right[0], viewportIndexes, 4));
vRes = _simd_cmpgt_ps(vertex.x, gbMult);
clipCodes = _simd_or_ps(clipCodes, _simd_and_ps(vRes, _simd_castsi_ps(_simd_set1_epi32(GUARDBAND_RIGHT))));
// GUARDBAND_BOTTOM
gbMult = _simd_mul_ps(vertex.w, _simd_i32gather_ps(&state.gbState.bottom[0], viewportIndexes, 4));
vRes = _simd_cmpgt_ps(vertex.y, gbMult);
clipCodes = _simd_or_ps(clipCodes, _simd_and_ps(vRes, _simd_castsi_ps(_simd_set1_epi32(GUARDBAND_BOTTOM))));
}
template<uint32_t NumVertsPerPrim>
class Clipper
{
public:
Clipper(uint32_t in_workerId, DRAW_CONTEXT* in_pDC) :
workerId(in_workerId), driverType(in_pDC->pContext->driverType), pDC(in_pDC), state(GetApiState(in_pDC))
{
static_assert(NumVertsPerPrim >= 1 && NumVertsPerPrim <= 3, "Invalid NumVertsPerPrim");
}
void ComputeClipCodes(simdvector vertex[], simdscalari viewportIndexes)
{
for (uint32_t i = 0; i < NumVertsPerPrim; ++i)
{
::ComputeClipCodes(this->driverType, this->state, vertex[i], this->clipCodes[i], viewportIndexes);
}
}
simdscalar ComputeClipCodeIntersection()
{
simdscalar result = this->clipCodes[0];
for (uint32_t i = 1; i < NumVertsPerPrim; ++i)
{
result = _simd_and_ps(result, this->clipCodes[i]);
}
return result;
}
simdscalar ComputeClipCodeUnion()
{
simdscalar result = this->clipCodes[0];
for (uint32_t i = 1; i < NumVertsPerPrim; ++i)
{
result = _simd_or_ps(result, this->clipCodes[i]);
}
return result;
}
int ComputeNegWMask()
{
simdscalar clipCodeUnion = ComputeClipCodeUnion();
clipCodeUnion = _simd_and_ps(clipCodeUnion, _simd_castsi_ps(_simd_set1_epi32(NEGW)));
return _simd_movemask_ps(_simd_cmpneq_ps(clipCodeUnion, _simd_setzero_ps()));
}
int ComputeClipMask()
{
simdscalar clipUnion = ComputeClipCodeUnion();
clipUnion = _simd_and_ps(clipUnion, _simd_castsi_ps(_simd_set1_epi32(GUARDBAND_CLIP_MASK)));
return _simd_movemask_ps(_simd_cmpneq_ps(clipUnion, _simd_setzero_ps()));
}
// clipper is responsible for culling any prims with NAN coordinates
int ComputeNaNMask(simdvector prim[])
{
simdscalar vNanMask = _simd_setzero_ps();
for (uint32_t e = 0; e < NumVertsPerPrim; ++e)
{
simdscalar vNan01 = _simd_cmp_ps(prim[e].v[0], prim[e].v[1], _CMP_UNORD_Q);
vNanMask = _simd_or_ps(vNanMask, vNan01);
simdscalar vNan23 = _simd_cmp_ps(prim[e].v[2], prim[e].v[3], _CMP_UNORD_Q);
vNanMask = _simd_or_ps(vNanMask, vNan23);
}
return _simd_movemask_ps(vNanMask);
}
int ComputeUserClipCullMask(PA_STATE& pa, simdvector prim[])
{
uint8_t cullMask = this->state.rastState.cullDistanceMask;
simdscalar vClipCullMask = _simd_setzero_ps();
DWORD index;
simdvector vClipCullDistLo[3];
simdvector vClipCullDistHi[3];
pa.Assemble(VERTEX_CLIPCULL_DIST_LO_SLOT, vClipCullDistLo);
pa.Assemble(VERTEX_CLIPCULL_DIST_HI_SLOT, vClipCullDistHi);
while (_BitScanForward(&index, cullMask))
{
cullMask &= ~(1 << index);
uint32_t slot = index >> 2;
uint32_t component = index & 0x3;
simdscalar vCullMaskElem = _simd_set1_ps(-1.0f);
for (uint32_t e = 0; e < NumVertsPerPrim; ++e)
{
simdscalar vCullComp;
if (slot == 0)
{
vCullComp = vClipCullDistLo[e][component];
}
else
{
vCullComp = vClipCullDistHi[e][component];
}
// cull if cull distance < 0 || NAN
simdscalar vCull = _simd_cmp_ps(_mm256_setzero_ps(), vCullComp, _CMP_NLE_UQ);
vCullMaskElem = _simd_and_ps(vCullMaskElem, vCull);
}
vClipCullMask = _simd_or_ps(vClipCullMask, vCullMaskElem);
}
// clipper should also discard any primitive with NAN clip distance
uint8_t clipMask = this->state.rastState.clipDistanceMask;
while (_BitScanForward(&index, clipMask))
{
clipMask &= ~(1 << index);
uint32_t slot = index >> 2;
uint32_t component = index & 0x3;
for (uint32_t e = 0; e < NumVertsPerPrim; ++e)
{
simdscalar vClipComp;
if (slot == 0)
{
vClipComp = vClipCullDistLo[e][component];
}
else
{
vClipComp = vClipCullDistHi[e][component];
}
simdscalar vClip = _simd_cmp_ps(vClipComp, vClipComp, _CMP_UNORD_Q);
vClipCullMask = _simd_or_ps(vClipCullMask, vClip);
}
}
return _simd_movemask_ps(vClipCullMask);
}
// clip a single primitive
int ClipScalar(PA_STATE& pa, uint32_t primIndex, float* pOutPos, float* pOutAttribs)
{
OSALIGNSIMD(float) inVerts[3 * 4];
OSALIGNSIMD(float) inAttribs[3 * KNOB_NUM_ATTRIBUTES * 4];
// transpose primitive position
__m128 verts[3];
pa.AssembleSingle(VERTEX_POSITION_SLOT, primIndex, verts);
_mm_store_ps(&inVerts[0], verts[0]);
_mm_store_ps(&inVerts[4], verts[1]);
_mm_store_ps(&inVerts[8], verts[2]);
// transpose attribs
uint32_t numScalarAttribs = this->state.linkageCount * 4;
int idx = 0;
DWORD slot = 0;
uint32_t mapIdx = 0;
uint32_t tmpLinkage = uint32_t(this->state.linkageMask);
while (_BitScanForward(&slot, tmpLinkage))
{
tmpLinkage &= ~(1 << slot);
// Compute absolute attrib slot in vertex array
uint32_t inputSlot = VERTEX_ATTRIB_START_SLOT + this->state.linkageMap[mapIdx++];
__m128 attrib[3]; // triangle attribs (always 4 wide)
pa.AssembleSingle(inputSlot, primIndex, attrib);
_mm_store_ps(&inAttribs[idx], attrib[0]);
_mm_store_ps(&inAttribs[idx + numScalarAttribs], attrib[1]);
_mm_store_ps(&inAttribs[idx + numScalarAttribs * 2], attrib[2]);
idx += 4;
}
int numVerts;
Clip(inVerts, inAttribs, numScalarAttribs, pOutPos, &numVerts, pOutAttribs);
return numVerts;
}
// clip SIMD primitives
void ClipSimd(const simdscalar& vPrimMask, const simdscalar& vClipMask, PA_STATE& pa, const simdscalari& vPrimId, const simdscalari& vViewportIdx)
{
// input/output vertex store for clipper
simdvertex vertices[7]; // maximum 7 verts generated per triangle
LONG constantInterpMask = this->state.backendState.constantInterpolationMask;
uint32_t provokingVertex = 0;
if(pa.binTopology == TOP_TRIANGLE_FAN)
{
provokingVertex = this->state.frontendState.provokingVertex.triFan;
}
///@todo: line topology for wireframe?
// assemble pos
simdvector tmpVector[NumVertsPerPrim];
pa.Assemble(VERTEX_POSITION_SLOT, tmpVector);
for (uint32_t i = 0; i < NumVertsPerPrim; ++i)
{
vertices[i].attrib[VERTEX_POSITION_SLOT] = tmpVector[i];
}
// assemble attribs
const SWR_BACKEND_STATE& backendState = this->state.backendState;
int32_t maxSlot = -1;
for (uint32_t slot = 0; slot < backendState.numAttributes; ++slot)
{
// Compute absolute attrib slot in vertex array
uint32_t mapSlot = backendState.swizzleEnable ? backendState.swizzleMap[slot].sourceAttrib : slot;
maxSlot = std::max<int32_t>(maxSlot, mapSlot);
uint32_t inputSlot = VERTEX_ATTRIB_START_SLOT + mapSlot;
pa.Assemble(inputSlot, tmpVector);
// if constant interpolation enabled for this attribute, assign the provoking
// vertex values to all edges
if (_bittest(&constantInterpMask, slot))
{
for (uint32_t i = 0; i < NumVertsPerPrim; ++i)
{
vertices[i].attrib[inputSlot] = tmpVector[provokingVertex];
}
}
else
{
for (uint32_t i = 0; i < NumVertsPerPrim; ++i)
{
vertices[i].attrib[inputSlot] = tmpVector[i];
}
}
}
// assemble user clip distances if enabled
if (this->state.rastState.clipDistanceMask & 0xf)
{
pa.Assemble(VERTEX_CLIPCULL_DIST_LO_SLOT, tmpVector);
for (uint32_t i = 0; i < NumVertsPerPrim; ++i)
{
vertices[i].attrib[VERTEX_CLIPCULL_DIST_LO_SLOT] = tmpVector[i];
}
}
if (this->state.rastState.clipDistanceMask & 0xf0)
{
pa.Assemble(VERTEX_CLIPCULL_DIST_HI_SLOT, tmpVector);
for (uint32_t i = 0; i < NumVertsPerPrim; ++i)
{
vertices[i].attrib[VERTEX_CLIPCULL_DIST_HI_SLOT] = tmpVector[i];
}
}
uint32_t numAttribs = maxSlot + 1;
simdscalari vNumClippedVerts = ClipPrims((float*)&vertices[0], vPrimMask, vClipMask, numAttribs);
// set up new PA for binning clipped primitives
PFN_PROCESS_PRIMS pfnBinFunc = nullptr;
PRIMITIVE_TOPOLOGY clipTopology = TOP_UNKNOWN;
if (NumVertsPerPrim == 3)
{
pfnBinFunc = GetBinTrianglesFunc((pa.pDC->pState->state.rastState.conservativeRast > 0));
clipTopology = TOP_TRIANGLE_FAN;
// so that the binner knows to bloat wide points later
if (pa.binTopology == TOP_POINT_LIST)
clipTopology = TOP_POINT_LIST;
}
else if (NumVertsPerPrim == 2)
{
pfnBinFunc = BinLines;
clipTopology = TOP_LINE_LIST;
}
else
{
SWR_ASSERT(0 && "Unexpected points in clipper.");
}
uint32_t* pVertexCount = (uint32_t*)&vNumClippedVerts;
uint32_t* pPrimitiveId = (uint32_t*)&vPrimId;
uint32_t* pViewportIdx = (uint32_t*)&vViewportIdx;
const simdscalari vOffsets = _mm256_set_epi32(
0 * sizeof(simdvertex), // unused lane
6 * sizeof(simdvertex),
5 * sizeof(simdvertex),
4 * sizeof(simdvertex),
3 * sizeof(simdvertex),
2 * sizeof(simdvertex),
1 * sizeof(simdvertex),
0 * sizeof(simdvertex));
// only need to gather 7 verts
// @todo dynamic mask based on actual # of verts generated per lane
const simdscalar vMask = _mm256_set_ps(0, -1, -1, -1, -1, -1, -1, -1);
uint32_t numClippedPrims = 0;
for (uint32_t inputPrim = 0; inputPrim < pa.NumPrims(); ++inputPrim)
{
uint32_t numEmittedVerts = pVertexCount[inputPrim];
if (numEmittedVerts < NumVertsPerPrim)
{
continue;
}
SWR_ASSERT(numEmittedVerts <= 7, "Unexpected vertex count from clipper.");
uint32_t numEmittedPrims = GetNumPrims(clipTopology, numEmittedVerts);
numClippedPrims += numEmittedPrims;
// tranpose clipper output so that each lane's vertices are in SIMD order
// set aside space for 2 vertices, as the PA will try to read up to 16 verts
// for triangle fan
simdvertex transposedPrims[2];
// transpose pos
uint8_t* pBase = (uint8_t*)(&vertices[0].attrib[VERTEX_POSITION_SLOT]) + sizeof(float) * inputPrim;
for (uint32_t c = 0; c < 4; ++c)
{
transposedPrims[0].attrib[VERTEX_POSITION_SLOT][c] = _simd_mask_i32gather_ps(_mm256_undefined_ps(), (const float*)pBase, vOffsets, vMask, 1);
pBase += sizeof(simdscalar);
}
// transpose attribs
pBase = (uint8_t*)(&vertices[0].attrib[VERTEX_ATTRIB_START_SLOT]) + sizeof(float) * inputPrim;
for (uint32_t attrib = 0; attrib < numAttribs; ++attrib)
{
uint32_t attribSlot = VERTEX_ATTRIB_START_SLOT + attrib;
for (uint32_t c = 0; c < 4; ++c)
{
transposedPrims[0].attrib[attribSlot][c] = _simd_mask_i32gather_ps(_mm256_undefined_ps(), (const float*)pBase, vOffsets, vMask, 1);
pBase += sizeof(simdscalar);
}
}
// transpose user clip distances if enabled
if (this->state.rastState.clipDistanceMask & 0xf)
{
pBase = (uint8_t*)(&vertices[0].attrib[VERTEX_CLIPCULL_DIST_LO_SLOT]) + sizeof(float) * inputPrim;
for (uint32_t c = 0; c < 4; ++c)
{
transposedPrims[0].attrib[VERTEX_CLIPCULL_DIST_LO_SLOT][c] = _simd_mask_i32gather_ps(_mm256_undefined_ps(), (const float*)pBase, vOffsets, vMask, 1);
pBase += sizeof(simdscalar);
}
}
if (this->state.rastState.clipDistanceMask & 0xf0)
{
pBase = (uint8_t*)(&vertices[0].attrib[VERTEX_CLIPCULL_DIST_HI_SLOT]) + sizeof(float) * inputPrim;
for (uint32_t c = 0; c < 4; ++c)
{
transposedPrims[0].attrib[VERTEX_CLIPCULL_DIST_HI_SLOT][c] = _simd_mask_i32gather_ps(_mm256_undefined_ps(), (const float*)pBase, vOffsets, vMask, 1);
pBase += sizeof(simdscalar);
}
}
PA_STATE_OPT clipPa(this->pDC, numEmittedPrims, (uint8_t*)&transposedPrims[0], numEmittedVerts, true, clipTopology);
while (clipPa.GetNextStreamOutput())
{
do
{
simdvector attrib[NumVertsPerPrim];
bool assemble = clipPa.Assemble(VERTEX_POSITION_SLOT, attrib);
if (assemble)
{
static const uint32_t primMaskMap[] = { 0x0, 0x1, 0x3, 0x7, 0xf, 0x1f, 0x3f, 0x7f, 0xff };
pfnBinFunc(this->pDC, clipPa, this->workerId, attrib, primMaskMap[numEmittedPrims], _simd_set1_epi32(pPrimitiveId[inputPrim]), _simd_set1_epi32(pViewportIdx[inputPrim]));
}
} while (clipPa.NextPrim());
}
}
// update global pipeline stat
UPDATE_STAT_FE(CPrimitives, numClippedPrims);
}
// execute the clipper stage
void ExecuteStage(PA_STATE& pa, simdvector prim[], uint32_t primMask, simdscalari primId, simdscalari viewportIdx)
{
SWR_ASSERT(pa.pDC != nullptr);
SWR_CONTEXT *pContext = pa.pDC->pContext;
// set up binner based on PA state
PFN_PROCESS_PRIMS pfnBinner;
switch (pa.binTopology)
{
case TOP_POINT_LIST:
pfnBinner = BinPoints;
break;
case TOP_LINE_LIST:
case TOP_LINE_STRIP:
case TOP_LINE_LOOP:
case TOP_LINE_LIST_ADJ:
case TOP_LISTSTRIP_ADJ:
pfnBinner = BinLines;
break;
default:
pfnBinner = GetBinTrianglesFunc((pa.pDC->pState->state.rastState.conservativeRast > 0));
break;
};
// update clipper invocations pipeline stat
uint32_t numInvoc = _mm_popcnt_u32(primMask);
UPDATE_STAT_FE(CInvocations, numInvoc);
ComputeClipCodes(prim, viewportIdx);
// cull prims with NAN coords
primMask &= ~ComputeNaNMask(prim);
// user cull distance cull
if (this->state.rastState.cullDistanceMask)
{
primMask &= ~ComputeUserClipCullMask(pa, prim);
}
// cull prims outside view frustum
simdscalar clipIntersection = ComputeClipCodeIntersection();
int validMask = primMask & _simd_movemask_ps(_simd_cmpeq_ps(clipIntersection, _simd_setzero_ps()));
// skip clipping for points
uint32_t clipMask = 0;
if (NumVertsPerPrim != 1)
{
clipMask = primMask & ComputeClipMask();
}
if (clipMask)
{
AR_BEGIN(FEGuardbandClip, pa.pDC->drawId);
// we have to clip tris, execute the clipper, which will also
// call the binner
ClipSimd(vMask(primMask), vMask(clipMask), pa, primId, viewportIdx);
AR_END(FEGuardbandClip, 1);
}
else if (validMask)
{
// update CPrimitives pipeline state
UPDATE_STAT_FE(CPrimitives, _mm_popcnt_u32(validMask));
// forward valid prims directly to binner
pfnBinner(this->pDC, pa, this->workerId, prim, validMask, primId, viewportIdx);
}
}
private:
inline simdscalar ComputeInterpFactor(simdscalar boundaryCoord0, simdscalar boundaryCoord1)
{
return _simd_div_ps(boundaryCoord0, _simd_sub_ps(boundaryCoord0, boundaryCoord1));
}
inline simdscalari ComputeOffsets(uint32_t attrib, simdscalari vIndices, uint32_t component)
{
const uint32_t simdVertexStride = sizeof(simdvertex);
const uint32_t componentStride = sizeof(simdscalar);
const uint32_t attribStride = sizeof(simdvector);
const __m256i vElemOffset = _mm256_set_epi32(7 * sizeof(float), 6 * sizeof(float), 5 * sizeof(float), 4 * sizeof(float),
3 * sizeof(float), 2 * sizeof(float), 1 * sizeof(float), 0 * sizeof(float));
// step to the simdvertex
simdscalari vOffsets = _simd_mullo_epi32(vIndices, _simd_set1_epi32(simdVertexStride));
// step to the attribute and component
vOffsets = _simd_add_epi32(vOffsets, _simd_set1_epi32(attribStride * attrib + componentStride * component));
// step to the lane
vOffsets = _simd_add_epi32(vOffsets, vElemOffset);
return vOffsets;
}
// gathers a single component for a given attribute for each SIMD lane
inline simdscalar GatherComponent(const float* pBuffer, uint32_t attrib, simdscalar vMask, simdscalari vIndices, uint32_t component)
{
simdscalari vOffsets = ComputeOffsets(attrib, vIndices, component);
simdscalar vSrc = _mm256_undefined_ps();
return _simd_mask_i32gather_ps(vSrc, pBuffer, vOffsets, vMask, 1);
}
inline void ScatterComponent(const float* pBuffer, uint32_t attrib, simdscalar vMask, simdscalari vIndices, uint32_t component, simdscalar vSrc)
{
simdscalari vOffsets = ComputeOffsets(attrib, vIndices, component);
uint32_t* pOffsets = (uint32_t*)&vOffsets;
float* pSrc = (float*)&vSrc;
uint32_t mask = _simd_movemask_ps(vMask);
DWORD lane;
while (_BitScanForward(&lane, mask))
{
mask &= ~(1 << lane);
uint8_t* pBuf = (uint8_t*)pBuffer + pOffsets[lane];
*(float*)pBuf = pSrc[lane];
}
}
template<SWR_CLIPCODES ClippingPlane>
inline void intersect(
const simdscalar& vActiveMask, // active lanes to operate on
const simdscalari& s, // index to first edge vertex v0 in pInPts.
const simdscalari& p, // index to second edge vertex v1 in pInPts.
const simdvector& v1, // vertex 0 position
const simdvector& v2, // vertex 1 position
simdscalari& outIndex, // output index.
const float *pInVerts, // array of all the input positions.
uint32_t numInAttribs, // number of attributes per vertex.
float *pOutVerts) // array of output positions. We'll write our new intersection point at i*4.
{
// compute interpolation factor
simdscalar t;
switch (ClippingPlane)
{
case FRUSTUM_LEFT: t = ComputeInterpFactor(_simd_add_ps(v1[3], v1[0]), _simd_add_ps(v2[3], v2[0])); break;
case FRUSTUM_RIGHT: t = ComputeInterpFactor(_simd_sub_ps(v1[3], v1[0]), _simd_sub_ps(v2[3], v2[0])); break;
case FRUSTUM_TOP: t = ComputeInterpFactor(_simd_add_ps(v1[3], v1[1]), _simd_add_ps(v2[3], v2[1])); break;
case FRUSTUM_BOTTOM: t = ComputeInterpFactor(_simd_sub_ps(v1[3], v1[1]), _simd_sub_ps(v2[3], v2[1])); break;
case FRUSTUM_NEAR:
// DX Znear plane is 0, GL is -w
if (this->driverType == DX)
{
t = ComputeInterpFactor(v1[2], v2[2]);
}
else
{
t = ComputeInterpFactor(_simd_add_ps(v1[3], v1[2]), _simd_add_ps(v2[3], v2[2]));
}
break;
case FRUSTUM_FAR: t = ComputeInterpFactor(_simd_sub_ps(v1[3], v1[2]), _simd_sub_ps(v2[3], v2[2])); break;
default: SWR_ASSERT(false, "invalid clipping plane: %d", ClippingPlane);
};
// interpolate position and store
for (uint32_t c = 0; c < 4; ++c)
{
simdscalar vOutPos = _simd_fmadd_ps(_simd_sub_ps(v2[c], v1[c]), t, v1[c]);
ScatterComponent(pOutVerts, VERTEX_POSITION_SLOT, vActiveMask, outIndex, c, vOutPos);
}
// interpolate attributes and store
for (uint32_t a = 0; a < numInAttribs; ++a)
{
uint32_t attribSlot = VERTEX_ATTRIB_START_SLOT + a;
for (uint32_t c = 0; c < 4; ++c)
{
simdscalar vAttrib0 = GatherComponent(pInVerts, attribSlot, vActiveMask, s, c);
simdscalar vAttrib1 = GatherComponent(pInVerts, attribSlot, vActiveMask, p, c);
simdscalar vOutAttrib = _simd_fmadd_ps(_simd_sub_ps(vAttrib1, vAttrib0), t, vAttrib0);
ScatterComponent(pOutVerts, attribSlot, vActiveMask, outIndex, c, vOutAttrib);
}
}
// interpolate clip distance if enabled
if (this->state.rastState.clipDistanceMask & 0xf)
{
uint32_t attribSlot = VERTEX_CLIPCULL_DIST_LO_SLOT;
for (uint32_t c = 0; c < 4; ++c)
{
simdscalar vAttrib0 = GatherComponent(pInVerts, attribSlot, vActiveMask, s, c);
simdscalar vAttrib1 = GatherComponent(pInVerts, attribSlot, vActiveMask, p, c);
simdscalar vOutAttrib = _simd_fmadd_ps(_simd_sub_ps(vAttrib1, vAttrib0), t, vAttrib0);
ScatterComponent(pOutVerts, attribSlot, vActiveMask, outIndex, c, vOutAttrib);
}
}
if (this->state.rastState.clipDistanceMask & 0xf0)
{
uint32_t attribSlot = VERTEX_CLIPCULL_DIST_HI_SLOT;
for (uint32_t c = 0; c < 4; ++c)
{
simdscalar vAttrib0 = GatherComponent(pInVerts, attribSlot, vActiveMask, s, c);
simdscalar vAttrib1 = GatherComponent(pInVerts, attribSlot, vActiveMask, p, c);
simdscalar vOutAttrib = _simd_fmadd_ps(_simd_sub_ps(vAttrib1, vAttrib0), t, vAttrib0);
ScatterComponent(pOutVerts, attribSlot, vActiveMask, outIndex, c, vOutAttrib);
}
}
}
template<SWR_CLIPCODES ClippingPlane>
inline simdscalar inside(const simdvector& v)
{
switch (ClippingPlane)
{
case FRUSTUM_LEFT: return _simd_cmpge_ps(v[0], _simd_mul_ps(v[3], _simd_set1_ps(-1.0f)));
case FRUSTUM_RIGHT: return _simd_cmple_ps(v[0], v[3]);
case FRUSTUM_TOP: return _simd_cmpge_ps(v[1], _simd_mul_ps(v[3], _simd_set1_ps(-1.0f)));
case FRUSTUM_BOTTOM: return _simd_cmple_ps(v[1], v[3]);
case FRUSTUM_NEAR: return _simd_cmpge_ps(v[2], this->driverType == DX ? _simd_setzero_ps() : _simd_mul_ps(v[3], _simd_set1_ps(-1.0f)));
case FRUSTUM_FAR: return _simd_cmple_ps(v[2], v[3]);
default:
SWR_ASSERT(false, "invalid clipping plane: %d", ClippingPlane);
return _simd_setzero_ps();
}
}
template<SWR_CLIPCODES ClippingPlane>
simdscalari ClipTriToPlane(const float* pInVerts, const simdscalari& vNumInPts, uint32_t numInAttribs, float* pOutVerts)
{
simdscalari vCurIndex = _simd_setzero_si();
simdscalari vOutIndex = _simd_setzero_si();
simdscalar vActiveMask = _simd_castsi_ps(_simd_cmplt_epi32(vCurIndex, vNumInPts));
while (!_simd_testz_ps(vActiveMask, vActiveMask)) // loop until activeMask is empty
{
simdscalari s = vCurIndex;
simdscalari p = _simd_add_epi32(s, _simd_set1_epi32(1));
simdscalari underFlowMask = _simd_cmpgt_epi32(vNumInPts, p);
p = _simd_castps_si(_simd_blendv_ps(_simd_setzero_ps(), _simd_castsi_ps(p), _simd_castsi_ps(underFlowMask)));
// gather position
simdvector vInPos0, vInPos1;
for (uint32_t c = 0; c < 4; ++c)
{
vInPos0[c] = GatherComponent(pInVerts, VERTEX_POSITION_SLOT, vActiveMask, s, c);
vInPos1[c] = GatherComponent(pInVerts, VERTEX_POSITION_SLOT, vActiveMask, p, c);
}
// compute inside mask
simdscalar s_in = inside<ClippingPlane>(vInPos0);
simdscalar p_in = inside<ClippingPlane>(vInPos1);
// compute intersection mask (s_in != p_in)
simdscalar intersectMask = _simd_xor_ps(s_in, p_in);
intersectMask = _simd_and_ps(intersectMask, vActiveMask);
// store s if inside
s_in = _simd_and_ps(s_in, vActiveMask);
if (!_simd_testz_ps(s_in, s_in))
{
// store position
for (uint32_t c = 0; c < 4; ++c)
{
ScatterComponent(pOutVerts, VERTEX_POSITION_SLOT, s_in, vOutIndex, c, vInPos0[c]);
}
// store attribs
for (uint32_t a = 0; a < numInAttribs; ++a)
{
uint32_t attribSlot = VERTEX_ATTRIB_START_SLOT + a;
for (uint32_t c = 0; c < 4; ++c)
{
simdscalar vAttrib = GatherComponent(pInVerts, attribSlot, s_in, s, c);
ScatterComponent(pOutVerts, attribSlot, s_in, vOutIndex, c, vAttrib);
}
}
// store clip distance if enabled
if (this->state.rastState.clipDistanceMask & 0xf)
{
uint32_t attribSlot = VERTEX_CLIPCULL_DIST_LO_SLOT;
for (uint32_t c = 0; c < 4; ++c)
{
simdscalar vAttrib = GatherComponent(pInVerts, attribSlot, s_in, s, c);
ScatterComponent(pOutVerts, attribSlot, s_in, vOutIndex, c, vAttrib);
}
}
if (this->state.rastState.clipDistanceMask & 0xf0)
{
uint32_t attribSlot = VERTEX_CLIPCULL_DIST_HI_SLOT;
for (uint32_t c = 0; c < 4; ++c)
{
simdscalar vAttrib = GatherComponent(pInVerts, attribSlot, s_in, s, c);
ScatterComponent(pOutVerts, attribSlot, s_in, vOutIndex, c, vAttrib);
}
}
// increment outIndex
vOutIndex = _simd_blendv_epi32(vOutIndex, _simd_add_epi32(vOutIndex, _simd_set1_epi32(1)), s_in);
}
// compute and store intersection
if (!_simd_testz_ps(intersectMask, intersectMask))
{
intersect<ClippingPlane>(intersectMask, s, p, vInPos0, vInPos1, vOutIndex, pInVerts, numInAttribs, pOutVerts);
// increment outIndex for active lanes
vOutIndex = _simd_blendv_epi32(vOutIndex, _simd_add_epi32(vOutIndex, _simd_set1_epi32(1)), intersectMask);
}
// increment loop index and update active mask
vCurIndex = _simd_add_epi32(vCurIndex, _simd_set1_epi32(1));
vActiveMask = _simd_castsi_ps(_simd_cmplt_epi32(vCurIndex, vNumInPts));
}
return vOutIndex;
}
template<SWR_CLIPCODES ClippingPlane>
simdscalari ClipLineToPlane(const float* pInVerts, const simdscalari& vNumInPts, uint32_t numInAttribs, float* pOutVerts)
{
simdscalari vCurIndex = _simd_setzero_si();
simdscalari vOutIndex = _simd_setzero_si();
simdscalar vActiveMask = _simd_castsi_ps(_simd_cmplt_epi32(vCurIndex, vNumInPts));
if (!_simd_testz_ps(vActiveMask, vActiveMask))
{
simdscalari s = vCurIndex;
simdscalari p = _simd_add_epi32(s, _simd_set1_epi32(1));
// gather position
simdvector vInPos0, vInPos1;
for (uint32_t c = 0; c < 4; ++c)
{
vInPos0[c] = GatherComponent(pInVerts, VERTEX_POSITION_SLOT, vActiveMask, s, c);
vInPos1[c] = GatherComponent(pInVerts, VERTEX_POSITION_SLOT, vActiveMask, p, c);
}
// compute inside mask
simdscalar s_in = inside<ClippingPlane>(vInPos0);
simdscalar p_in = inside<ClippingPlane>(vInPos1);
// compute intersection mask (s_in != p_in)
simdscalar intersectMask = _simd_xor_ps(s_in, p_in);
intersectMask = _simd_and_ps(intersectMask, vActiveMask);
// store s if inside
s_in = _simd_and_ps(s_in, vActiveMask);
if (!_simd_testz_ps(s_in, s_in))
{
for (uint32_t c = 0; c < 4; ++c)
{
ScatterComponent(pOutVerts, VERTEX_POSITION_SLOT, s_in, vOutIndex, c, vInPos0[c]);
}
// interpolate attributes and store
for (uint32_t a = 0; a < numInAttribs; ++a)
{
uint32_t attribSlot = VERTEX_ATTRIB_START_SLOT + a;
for (uint32_t c = 0; c < 4; ++c)
{
simdscalar vAttrib = GatherComponent(pInVerts, attribSlot, s_in, s, c);
ScatterComponent(pOutVerts, attribSlot, s_in, vOutIndex, c, vAttrib);
}
}
// increment outIndex
vOutIndex = _simd_blendv_epi32(vOutIndex, _simd_add_epi32(vOutIndex, _simd_set1_epi32(1)), s_in);
}
// compute and store intersection
if (!_simd_testz_ps(intersectMask, intersectMask))
{
intersect<ClippingPlane>(intersectMask, s, p, vInPos0, vInPos1, vOutIndex, pInVerts, numInAttribs, pOutVerts);
// increment outIndex for active lanes
vOutIndex = _simd_blendv_epi32(vOutIndex, _simd_add_epi32(vOutIndex, _simd_set1_epi32(1)), intersectMask);
}
// store p if inside
p_in = _simd_and_ps(p_in, vActiveMask);
if (!_simd_testz_ps(p_in, p_in))
{
for (uint32_t c = 0; c < 4; ++c)
{
ScatterComponent(pOutVerts, VERTEX_POSITION_SLOT, p_in, vOutIndex, c, vInPos1[c]);
}
// interpolate attributes and store
for (uint32_t a = 0; a < numInAttribs; ++a)
{
uint32_t attribSlot = VERTEX_ATTRIB_START_SLOT + a;
for (uint32_t c = 0; c < 4; ++c)
{
simdscalar vAttrib = GatherComponent(pInVerts, attribSlot, p_in, p, c);
ScatterComponent(pOutVerts, attribSlot, p_in, vOutIndex, c, vAttrib);
}
}
// increment outIndex
vOutIndex = _simd_blendv_epi32(vOutIndex, _simd_add_epi32(vOutIndex, _simd_set1_epi32(1)), p_in);
}
}
return vOutIndex;
}
//////////////////////////////////////////////////////////////////////////
/// @brief Vertical clipper. Clips SIMD primitives at a time
/// @param pVertices - pointer to vertices in SOA form. Clipper will read input and write results to this buffer
/// @param vPrimMask - mask of valid input primitives, including non-clipped prims
/// @param numAttribs - number of valid input attribs, including position
simdscalari ClipPrims(float* pVertices, const simdscalar& vPrimMask, const simdscalar& vClipMask, int numAttribs)
{
// temp storage
float* pTempVerts = (float*)&tlsTempVertices[0];
// zero out num input verts for non-active lanes
simdscalari vNumInPts = _simd_set1_epi32(NumVertsPerPrim);
vNumInPts = _simd_blendv_epi32(_simd_setzero_si(), vNumInPts, vClipMask);
// clip prims to frustum
simdscalari vNumOutPts;
if (NumVertsPerPrim == 3)
{
vNumOutPts = ClipTriToPlane<FRUSTUM_NEAR>(pVertices, vNumInPts, numAttribs, pTempVerts);
vNumOutPts = ClipTriToPlane<FRUSTUM_FAR>(pTempVerts, vNumOutPts, numAttribs, pVertices);
vNumOutPts = ClipTriToPlane<FRUSTUM_LEFT>(pVertices, vNumOutPts, numAttribs, pTempVerts);
vNumOutPts = ClipTriToPlane<FRUSTUM_RIGHT>(pTempVerts, vNumOutPts, numAttribs, pVertices);
vNumOutPts = ClipTriToPlane<FRUSTUM_BOTTOM>(pVertices, vNumOutPts, numAttribs, pTempVerts);
vNumOutPts = ClipTriToPlane<FRUSTUM_TOP>(pTempVerts, vNumOutPts, numAttribs, pVertices);
}
else
{
SWR_ASSERT(NumVertsPerPrim == 2);
vNumOutPts = ClipLineToPlane<FRUSTUM_NEAR>(pVertices, vNumInPts, numAttribs, pTempVerts);
vNumOutPts = ClipLineToPlane<FRUSTUM_FAR>(pTempVerts, vNumOutPts, numAttribs, pVertices);
vNumOutPts = ClipLineToPlane<FRUSTUM_LEFT>(pVertices, vNumOutPts, numAttribs, pTempVerts);
vNumOutPts = ClipLineToPlane<FRUSTUM_RIGHT>(pTempVerts, vNumOutPts, numAttribs, pVertices);
vNumOutPts = ClipLineToPlane<FRUSTUM_BOTTOM>(pVertices, vNumOutPts, numAttribs, pTempVerts);
vNumOutPts = ClipLineToPlane<FRUSTUM_TOP>(pTempVerts, vNumOutPts, numAttribs, pVertices);
}
// restore num verts for non-clipped, active lanes
simdscalar vNonClippedMask = _simd_andnot_ps(vClipMask, vPrimMask);
vNumOutPts = _simd_blendv_epi32(vNumOutPts, _simd_set1_epi32(NumVertsPerPrim), vNonClippedMask);
return vNumOutPts;
}
const uint32_t workerId{ 0 };
const DRIVER_TYPE driverType{ DX };
DRAW_CONTEXT* pDC{ nullptr };
const API_STATE& state;
simdscalar clipCodes[NumVertsPerPrim];
};
// pipeline stage functions
void ClipTriangles(DRAW_CONTEXT *pDC, PA_STATE& pa, uint32_t workerId, simdvector prims[], uint32_t primMask, simdscalari primId, simdscalari viewportIdx);
void ClipLines(DRAW_CONTEXT *pDC, PA_STATE& pa, uint32_t workerId, simdvector prims[], uint32_t primMask, simdscalari primId, simdscalari viewportIdx);
void ClipPoints(DRAW_CONTEXT *pDC, PA_STATE& pa, uint32_t workerId, simdvector prims[], uint32_t primMask, simdscalari primId, simdscalari viewportIdx);
|