summaryrefslogtreecommitdiffstats
path: root/src/gallium/drivers/swr/rasterizer/core/frontend.cpp
blob: bc8a1dae37e6c777a77d21669dc47d8e1bff4430 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
/****************************************************************************
* Copyright (C) 2014-2015 Intel Corporation.   All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* @file frontend.cpp
*
* @brief Implementation for Frontend which handles vertex processing,
*        primitive assembly, clipping, binning, etc.
*
******************************************************************************/

#include "api.h"
#include "frontend.h"
#include "backend.h"
#include "context.h"
#include "rdtsc_core.h"
#include "utils.h"
#include "threads.h"
#include "pa.h"
#include "clip.h"
#include "tilemgr.h"
#include "tessellator.h"
#include <limits>

//////////////////////////////////////////////////////////////////////////
/// @brief Helper macro to generate a bitmask
static INLINE uint32_t GenMask(uint32_t numBits)
{
    SWR_ASSERT(numBits <= (sizeof(uint32_t) * 8), "Too many bits (%d) for %s", numBits, __FUNCTION__);
    return ((1U << numBits) - 1);
}

//////////////////////////////////////////////////////////////////////////
/// @brief FE handler for SwrSync.
/// @param pContext - pointer to SWR context.
/// @param pDC - pointer to draw context.
/// @param workerId - thread's worker id. Even thread has a unique id.
/// @param pUserData - Pointer to user data passed back to sync callback.
/// @todo This should go away when we switch this to use compute threading.
void ProcessSync(
    SWR_CONTEXT *pContext,
    DRAW_CONTEXT *pDC,
    uint32_t workerId,
    void *pUserData)
{
    BE_WORK work;
    work.type = SYNC;
    work.pfnWork = ProcessSyncBE;

    MacroTileMgr *pTileMgr = pDC->pTileMgr;
    pTileMgr->enqueue(0, 0, &work);
}

//////////////////////////////////////////////////////////////////////////
/// @brief FE handler for SwrDestroyContext.
/// @param pContext - pointer to SWR context.
/// @param pDC - pointer to draw context.
/// @param workerId - thread's worker id. Even thread has a unique id.
/// @param pUserData - Pointer to user data passed back to sync callback.
void ProcessShutdown(
    SWR_CONTEXT *pContext,
    DRAW_CONTEXT *pDC,
    uint32_t workerId,
    void *pUserData)
{
    BE_WORK work;
    work.type = SHUTDOWN;
    work.pfnWork = ProcessShutdownBE;

    MacroTileMgr *pTileMgr = pDC->pTileMgr;
    // Enqueue at least 1 work item for each worker thread
    // account for number of numa nodes
    uint32_t numNumaNodes = pContext->threadPool.numaMask + 1;

    for (uint32_t i = 0; i < pContext->threadPool.numThreads; ++i)
    {
        for (uint32_t n = 0; n < numNumaNodes; ++n)
        {
            pTileMgr->enqueue(i, n, &work);
        }
    }
}

//////////////////////////////////////////////////////////////////////////
/// @brief FE handler for SwrClearRenderTarget.
/// @param pContext - pointer to SWR context.
/// @param pDC - pointer to draw context.
/// @param workerId - thread's worker id. Even thread has a unique id.
/// @param pUserData - Pointer to user data passed back to clear callback.
/// @todo This should go away when we switch this to use compute threading.
void ProcessClear(
    SWR_CONTEXT *pContext,
    DRAW_CONTEXT *pDC,
    uint32_t workerId,
    void *pUserData)
{
    CLEAR_DESC *pDesc = (CLEAR_DESC*)pUserData;
    MacroTileMgr *pTileMgr = pDC->pTileMgr;

    // queue a clear to each macro tile
    // compute macro tile bounds for the specified rect
    uint32_t macroTileXMin = pDesc->rect.xmin / KNOB_MACROTILE_X_DIM;
    uint32_t macroTileXMax = (pDesc->rect.xmax - 1) / KNOB_MACROTILE_X_DIM;
    uint32_t macroTileYMin = pDesc->rect.ymin / KNOB_MACROTILE_Y_DIM;
    uint32_t macroTileYMax = (pDesc->rect.ymax - 1) / KNOB_MACROTILE_Y_DIM;

    BE_WORK work;
    work.type = CLEAR;
    work.pfnWork = ProcessClearBE;
    work.desc.clear = *pDesc;

    for (uint32_t y = macroTileYMin; y <= macroTileYMax; ++y)
    {
        for (uint32_t x = macroTileXMin; x <= macroTileXMax; ++x)
        {
            pTileMgr->enqueue(x, y, &work);
        }
    }
}

//////////////////////////////////////////////////////////////////////////
/// @brief FE handler for SwrStoreTiles.
/// @param pContext - pointer to SWR context.
/// @param pDC - pointer to draw context.
/// @param workerId - thread's worker id. Even thread has a unique id.
/// @param pUserData - Pointer to user data passed back to callback.
/// @todo This should go away when we switch this to use compute threading.
void ProcessStoreTiles(
    SWR_CONTEXT *pContext,
    DRAW_CONTEXT *pDC,
    uint32_t workerId,
    void *pUserData)
{
    AR_BEGIN(FEProcessStoreTiles, pDC->drawId);
    MacroTileMgr *pTileMgr = pDC->pTileMgr;
    STORE_TILES_DESC* pDesc = (STORE_TILES_DESC*)pUserData;

    // queue a store to each macro tile
    // compute macro tile bounds for the specified rect
    uint32_t macroTileXMin = pDesc->rect.xmin / KNOB_MACROTILE_X_DIM;
    uint32_t macroTileXMax = (pDesc->rect.xmax - 1) / KNOB_MACROTILE_X_DIM;
    uint32_t macroTileYMin = pDesc->rect.ymin / KNOB_MACROTILE_Y_DIM;
    uint32_t macroTileYMax = (pDesc->rect.ymax - 1) / KNOB_MACROTILE_Y_DIM;

    // store tiles
    BE_WORK work;
    work.type = STORETILES;
    work.pfnWork = ProcessStoreTilesBE;
    work.desc.storeTiles = *pDesc;

    for (uint32_t y = macroTileYMin; y <= macroTileYMax; ++y)
    {
        for (uint32_t x = macroTileXMin; x <= macroTileXMax; ++x)
        {
            pTileMgr->enqueue(x, y, &work);
        }
    }

    AR_END(FEProcessStoreTiles, 0);
}

//////////////////////////////////////////////////////////////////////////
/// @brief FE handler for SwrInvalidateTiles.
/// @param pContext - pointer to SWR context.
/// @param pDC - pointer to draw context.
/// @param workerId - thread's worker id. Even thread has a unique id.
/// @param pUserData - Pointer to user data passed back to callback.
/// @todo This should go away when we switch this to use compute threading.
void ProcessDiscardInvalidateTiles(
    SWR_CONTEXT *pContext,
    DRAW_CONTEXT *pDC,
    uint32_t workerId,
    void *pUserData)
{
    AR_BEGIN(FEProcessInvalidateTiles, pDC->drawId);
    DISCARD_INVALIDATE_TILES_DESC *pDesc = (DISCARD_INVALIDATE_TILES_DESC*)pUserData;
    MacroTileMgr *pTileMgr = pDC->pTileMgr;

    // compute macro tile bounds for the specified rect
    uint32_t macroTileXMin = (pDesc->rect.xmin + KNOB_MACROTILE_X_DIM - 1) / KNOB_MACROTILE_X_DIM;
    uint32_t macroTileXMax = (pDesc->rect.xmax / KNOB_MACROTILE_X_DIM) - 1;
    uint32_t macroTileYMin = (pDesc->rect.ymin + KNOB_MACROTILE_Y_DIM - 1) / KNOB_MACROTILE_Y_DIM;
    uint32_t macroTileYMax = (pDesc->rect.ymax / KNOB_MACROTILE_Y_DIM) - 1;

    if (pDesc->fullTilesOnly == false)
    {
        // include partial tiles
        macroTileXMin = pDesc->rect.xmin / KNOB_MACROTILE_X_DIM;
        macroTileXMax = (pDesc->rect.xmax - 1) / KNOB_MACROTILE_X_DIM;
        macroTileYMin = pDesc->rect.ymin / KNOB_MACROTILE_Y_DIM;
        macroTileYMax = (pDesc->rect.ymax - 1) / KNOB_MACROTILE_Y_DIM;
    }

    SWR_ASSERT(macroTileXMax <= KNOB_NUM_HOT_TILES_X);
    SWR_ASSERT(macroTileYMax <= KNOB_NUM_HOT_TILES_Y);

    macroTileXMax = std::min<int32_t>(macroTileXMax, KNOB_NUM_HOT_TILES_X);
    macroTileYMax = std::min<int32_t>(macroTileYMax, KNOB_NUM_HOT_TILES_Y);

    // load tiles
    BE_WORK work;
    work.type = DISCARDINVALIDATETILES;
    work.pfnWork = ProcessDiscardInvalidateTilesBE;
    work.desc.discardInvalidateTiles = *pDesc;

    for (uint32_t x = macroTileXMin; x <= macroTileXMax; ++x)
    {
        for (uint32_t y = macroTileYMin; y <= macroTileYMax; ++y)
        {
            pTileMgr->enqueue(x, y, &work);
        }
    }

    AR_END(FEProcessInvalidateTiles, 0);
}

//////////////////////////////////////////////////////////////////////////
/// @brief Computes the number of primitives given the number of verts.
/// @param mode - primitive topology for draw operation.
/// @param numPrims - number of vertices or indices for draw.
/// @todo Frontend needs to be refactored. This will go in appropriate place then.
uint32_t GetNumPrims(
    PRIMITIVE_TOPOLOGY mode,
    uint32_t numPrims)
{
    switch (mode)
    {
    case TOP_POINT_LIST: return numPrims;
    case TOP_TRIANGLE_LIST: return numPrims / 3;
    case TOP_TRIANGLE_STRIP: return numPrims < 3 ? 0 : numPrims - 2;
    case TOP_TRIANGLE_FAN: return numPrims < 3 ? 0 : numPrims - 2;
    case TOP_TRIANGLE_DISC: return numPrims < 2 ? 0 : numPrims - 1;
    case TOP_QUAD_LIST: return numPrims / 4;
    case TOP_QUAD_STRIP: return numPrims < 4 ? 0 : (numPrims - 2) / 2;
    case TOP_LINE_STRIP: return numPrims < 2 ? 0 : numPrims - 1;
    case TOP_LINE_LIST: return numPrims / 2;
    case TOP_LINE_LOOP: return numPrims;
    case TOP_RECT_LIST: return numPrims / 3;
    case TOP_LINE_LIST_ADJ: return numPrims / 4;
    case TOP_LISTSTRIP_ADJ: return numPrims < 3 ? 0 : numPrims - 3;
    case TOP_TRI_LIST_ADJ: return numPrims / 6;
    case TOP_TRI_STRIP_ADJ: return numPrims < 4 ? 0 : (numPrims / 2) - 2;

    case TOP_PATCHLIST_1:
    case TOP_PATCHLIST_2:
    case TOP_PATCHLIST_3:
    case TOP_PATCHLIST_4:
    case TOP_PATCHLIST_5:
    case TOP_PATCHLIST_6:
    case TOP_PATCHLIST_7:
    case TOP_PATCHLIST_8:
    case TOP_PATCHLIST_9:
    case TOP_PATCHLIST_10:
    case TOP_PATCHLIST_11:
    case TOP_PATCHLIST_12:
    case TOP_PATCHLIST_13:
    case TOP_PATCHLIST_14:
    case TOP_PATCHLIST_15:
    case TOP_PATCHLIST_16:
    case TOP_PATCHLIST_17:
    case TOP_PATCHLIST_18:
    case TOP_PATCHLIST_19:
    case TOP_PATCHLIST_20:
    case TOP_PATCHLIST_21:
    case TOP_PATCHLIST_22:
    case TOP_PATCHLIST_23:
    case TOP_PATCHLIST_24:
    case TOP_PATCHLIST_25:
    case TOP_PATCHLIST_26:
    case TOP_PATCHLIST_27:
    case TOP_PATCHLIST_28:
    case TOP_PATCHLIST_29:
    case TOP_PATCHLIST_30:
    case TOP_PATCHLIST_31:
    case TOP_PATCHLIST_32:
        return numPrims / (mode - TOP_PATCHLIST_BASE);

    case TOP_POLYGON:
    case TOP_POINT_LIST_BF:
    case TOP_LINE_STRIP_CONT:
    case TOP_LINE_STRIP_BF:
    case TOP_LINE_STRIP_CONT_BF:
    case TOP_TRIANGLE_FAN_NOSTIPPLE:
    case TOP_TRI_STRIP_REVERSE:
    case TOP_PATCHLIST_BASE:
    case TOP_UNKNOWN:
        SWR_ASSERT(false, "Unsupported topology: %d", mode);
        return 0;
    }

    return 0;
}

//////////////////////////////////////////////////////////////////////////
/// @brief Computes the number of verts given the number of primitives.
/// @param mode - primitive topology for draw operation.
/// @param numPrims - number of primitives for draw.
uint32_t GetNumVerts(
    PRIMITIVE_TOPOLOGY mode,
    uint32_t numPrims)
{
    switch (mode)
    {
    case TOP_POINT_LIST: return numPrims;
    case TOP_TRIANGLE_LIST: return numPrims * 3;
    case TOP_TRIANGLE_STRIP: return numPrims ? numPrims + 2 : 0;
    case TOP_TRIANGLE_FAN: return numPrims ? numPrims + 2 : 0;
    case TOP_TRIANGLE_DISC: return numPrims ? numPrims + 1 : 0;
    case TOP_QUAD_LIST: return numPrims * 4;
    case TOP_QUAD_STRIP: return numPrims ? numPrims * 2 + 2 : 0;
    case TOP_LINE_STRIP: return numPrims ? numPrims + 1 : 0;
    case TOP_LINE_LIST: return numPrims * 2;
    case TOP_LINE_LOOP: return numPrims;
    case TOP_RECT_LIST: return numPrims * 3;
    case TOP_LINE_LIST_ADJ: return numPrims * 4;
    case TOP_LISTSTRIP_ADJ: return numPrims ? numPrims + 3 : 0;
    case TOP_TRI_LIST_ADJ: return numPrims * 6;
    case TOP_TRI_STRIP_ADJ: return numPrims ? (numPrims + 2) * 2 : 0;

    case TOP_PATCHLIST_1:
    case TOP_PATCHLIST_2:
    case TOP_PATCHLIST_3:
    case TOP_PATCHLIST_4:
    case TOP_PATCHLIST_5:
    case TOP_PATCHLIST_6:
    case TOP_PATCHLIST_7:
    case TOP_PATCHLIST_8:
    case TOP_PATCHLIST_9:
    case TOP_PATCHLIST_10:
    case TOP_PATCHLIST_11:
    case TOP_PATCHLIST_12:
    case TOP_PATCHLIST_13:
    case TOP_PATCHLIST_14:
    case TOP_PATCHLIST_15:
    case TOP_PATCHLIST_16:
    case TOP_PATCHLIST_17:
    case TOP_PATCHLIST_18:
    case TOP_PATCHLIST_19:
    case TOP_PATCHLIST_20:
    case TOP_PATCHLIST_21:
    case TOP_PATCHLIST_22:
    case TOP_PATCHLIST_23:
    case TOP_PATCHLIST_24:
    case TOP_PATCHLIST_25:
    case TOP_PATCHLIST_26:
    case TOP_PATCHLIST_27:
    case TOP_PATCHLIST_28:
    case TOP_PATCHLIST_29:
    case TOP_PATCHLIST_30:
    case TOP_PATCHLIST_31:
    case TOP_PATCHLIST_32:
        return numPrims * (mode - TOP_PATCHLIST_BASE);

    case TOP_POLYGON:
    case TOP_POINT_LIST_BF:
    case TOP_LINE_STRIP_CONT:
    case TOP_LINE_STRIP_BF:
    case TOP_LINE_STRIP_CONT_BF:
    case TOP_TRIANGLE_FAN_NOSTIPPLE:
    case TOP_TRI_STRIP_REVERSE:
    case TOP_PATCHLIST_BASE:
    case TOP_UNKNOWN:
        SWR_ASSERT(false, "Unsupported topology: %d", mode);
        return 0;
    }

    return 0;
}

//////////////////////////////////////////////////////////////////////////
/// @brief Return number of verts per primitive.
/// @param topology - topology
/// @param includeAdjVerts - include adjacent verts in primitive vertices
INLINE uint32_t NumVertsPerPrim(PRIMITIVE_TOPOLOGY topology, bool includeAdjVerts)
{
    uint32_t numVerts = 0;
    switch (topology)
    {
    case TOP_POINT_LIST:
    case TOP_POINT_LIST_BF:
        numVerts = 1;
        break;
    case TOP_LINE_LIST:
    case TOP_LINE_STRIP:
    case TOP_LINE_LIST_ADJ:
    case TOP_LINE_LOOP:
    case TOP_LINE_STRIP_CONT:
    case TOP_LINE_STRIP_BF:
    case TOP_LISTSTRIP_ADJ:
        numVerts = 2;
        break;
    case TOP_TRIANGLE_LIST:
    case TOP_TRIANGLE_STRIP:
    case TOP_TRIANGLE_FAN:
    case TOP_TRI_LIST_ADJ:
    case TOP_TRI_STRIP_ADJ:
    case TOP_TRI_STRIP_REVERSE:
    case TOP_RECT_LIST:
        numVerts = 3;
        break;
    case TOP_QUAD_LIST:
    case TOP_QUAD_STRIP:
        numVerts = 4;
        break;
    case TOP_PATCHLIST_1:
    case TOP_PATCHLIST_2:
    case TOP_PATCHLIST_3:
    case TOP_PATCHLIST_4:
    case TOP_PATCHLIST_5:
    case TOP_PATCHLIST_6:
    case TOP_PATCHLIST_7:
    case TOP_PATCHLIST_8:
    case TOP_PATCHLIST_9:
    case TOP_PATCHLIST_10:
    case TOP_PATCHLIST_11:
    case TOP_PATCHLIST_12:
    case TOP_PATCHLIST_13:
    case TOP_PATCHLIST_14:
    case TOP_PATCHLIST_15:
    case TOP_PATCHLIST_16:
    case TOP_PATCHLIST_17:
    case TOP_PATCHLIST_18:
    case TOP_PATCHLIST_19:
    case TOP_PATCHLIST_20:
    case TOP_PATCHLIST_21:
    case TOP_PATCHLIST_22:
    case TOP_PATCHLIST_23:
    case TOP_PATCHLIST_24:
    case TOP_PATCHLIST_25:
    case TOP_PATCHLIST_26:
    case TOP_PATCHLIST_27:
    case TOP_PATCHLIST_28:
    case TOP_PATCHLIST_29:
    case TOP_PATCHLIST_30:
    case TOP_PATCHLIST_31:
    case TOP_PATCHLIST_32:
        numVerts = topology - TOP_PATCHLIST_BASE;
        break;
    default:
        SWR_ASSERT(false, "Unsupported topology: %d", topology);
        break;
    }

    if (includeAdjVerts)
    {
        switch (topology)
        {
        case TOP_LISTSTRIP_ADJ:
        case TOP_LINE_LIST_ADJ: numVerts = 4; break;
        case TOP_TRI_STRIP_ADJ:
        case TOP_TRI_LIST_ADJ: numVerts = 6; break;
        default: break;
        }
    }

    return numVerts;
}

//////////////////////////////////////////////////////////////////////////
/// @brief Generate mask from remaining work.
/// @param numWorkItems - Number of items being worked on by a SIMD.
static INLINE simdscalari GenerateMask(uint32_t numItemsRemaining)
{
    uint32_t numActive = (numItemsRemaining >= KNOB_SIMD_WIDTH) ? KNOB_SIMD_WIDTH : numItemsRemaining;
    uint32_t mask = (numActive > 0) ? ((1 << numActive) - 1) : 0;
    return _simd_castps_si(vMask(mask));
}

//////////////////////////////////////////////////////////////////////////
/// @brief StreamOut - Streams vertex data out to SO buffers.
///        Generally, we are only streaming out a SIMDs worth of triangles.
/// @param pDC - pointer to draw context.
/// @param workerId - thread's worker id. Even thread has a unique id.
/// @param numPrims - Number of prims to streamout (e.g. points, lines, tris)
static void StreamOut(
    DRAW_CONTEXT* pDC,
    PA_STATE& pa,
    uint32_t workerId,
    uint32_t* pPrimData,
    uint32_t streamIndex)
{
    SWR_CONTEXT *pContext = pDC->pContext;

    AR_BEGIN(FEStreamout, pDC->drawId);

    const API_STATE& state = GetApiState(pDC);
    const SWR_STREAMOUT_STATE &soState = state.soState;

    uint32_t soVertsPerPrim = NumVertsPerPrim(pa.binTopology, false);

    // The pPrimData buffer is sparse in that we allocate memory for all 32 attributes for each vertex.
    uint32_t primDataDwordVertexStride = (KNOB_NUM_ATTRIBUTES * sizeof(float) * 4) / sizeof(uint32_t);

    SWR_STREAMOUT_CONTEXT soContext = { 0 };

    // Setup buffer state pointers.
    for (uint32_t i = 0; i < 4; ++i)
    {
        soContext.pBuffer[i] = &state.soBuffer[i];
    }

    uint32_t numPrims = pa.NumPrims();
    for (uint32_t primIndex = 0; primIndex < numPrims; ++primIndex)
    {
        DWORD slot = 0;
        uint32_t soMask = soState.streamMasks[streamIndex];

        // Write all entries into primitive data buffer for SOS.
        while (_BitScanForward(&slot, soMask))
        {
            __m128 attrib[MAX_NUM_VERTS_PER_PRIM];    // prim attribs (always 4 wide)
            uint32_t paSlot = slot + VERTEX_ATTRIB_START_SLOT;
            pa.AssembleSingle(paSlot, primIndex, attrib);

            // Attribute offset is relative offset from start of vertex.
            // Note that attributes start at slot 1 in the PA buffer. We need to write this
            // to prim data starting at slot 0. Which is why we do (slot - 1).
            // Also note: GL works slightly differently, and needs slot 0
            uint32_t primDataAttribOffset = slot * sizeof(float) * 4 / sizeof(uint32_t);

            // Store each vertex's attrib at appropriate locations in pPrimData buffer.
            for (uint32_t v = 0; v < soVertsPerPrim; ++v)
            {
                uint32_t* pPrimDataAttrib = pPrimData + primDataAttribOffset + (v * primDataDwordVertexStride);

                _mm_store_ps((float*)pPrimDataAttrib, attrib[v]);
            }
            soMask &= ~(1 << slot);
        }

        // Update pPrimData pointer 
        soContext.pPrimData = pPrimData;

        // Call SOS
        SWR_ASSERT(state.pfnSoFunc[streamIndex] != nullptr, "Trying to execute uninitialized streamout jit function.");
        state.pfnSoFunc[streamIndex](soContext);
    }

    // Update SO write offset. The driver provides memory for the update.
    for (uint32_t i = 0; i < 4; ++i)
    {
        if (state.soBuffer[i].pWriteOffset)
        {
            *state.soBuffer[i].pWriteOffset = soContext.pBuffer[i]->streamOffset * sizeof(uint32_t);
        }

        if (state.soBuffer[i].soWriteEnable)
        {
            pDC->dynState.SoWriteOffset[i] = soContext.pBuffer[i]->streamOffset * sizeof(uint32_t);
            pDC->dynState.SoWriteOffsetDirty[i] = true;
        }
    }

    UPDATE_STAT_FE(SoPrimStorageNeeded[streamIndex], soContext.numPrimStorageNeeded);
    UPDATE_STAT_FE(SoNumPrimsWritten[streamIndex], soContext.numPrimsWritten);

    AR_END(FEStreamout, 1);
}

//////////////////////////////////////////////////////////////////////////
/// @brief Computes number of invocations. The current index represents
///        the start of the SIMD. The max index represents how much work
///        items are remaining. If there is less then a SIMD's xmin of work
///        then return the remaining amount of work.
/// @param curIndex - The start index for the SIMD.
/// @param maxIndex - The last index for all work items.
static INLINE uint32_t GetNumInvocations(
    uint32_t curIndex,
    uint32_t maxIndex)
{
    uint32_t remainder = (maxIndex - curIndex);
    return (remainder >= KNOB_SIMD_WIDTH) ? KNOB_SIMD_WIDTH : remainder;
}

//////////////////////////////////////////////////////////////////////////
/// @brief Converts a streamId buffer to a cut buffer for the given stream id.
///        The geometry shader will loop over each active streamout buffer, assembling
///        primitives for the downstream stages. When multistream output is enabled,
///        the generated stream ID buffer from the GS needs to be converted to a cut
///        buffer for the primitive assembler.
/// @param stream - stream id to generate the cut buffer for
/// @param pStreamIdBase - pointer to the stream ID buffer
/// @param numEmittedVerts - Number of total verts emitted by the GS
/// @param pCutBuffer - output buffer to write cuts to
void ProcessStreamIdBuffer(uint32_t stream, uint8_t* pStreamIdBase, uint32_t numEmittedVerts, uint8_t *pCutBuffer)
{
    SWR_ASSERT(stream < MAX_SO_STREAMS);

    uint32_t numInputBytes = (numEmittedVerts * 2  + 7) / 8;
    uint32_t numOutputBytes = std::max(numInputBytes / 2, 1U);

    for (uint32_t b = 0; b < numOutputBytes; ++b)
    {
        uint8_t curInputByte = pStreamIdBase[2*b];
        uint8_t outByte = 0;
        for (uint32_t i = 0; i < 4; ++i)
        {
            if ((curInputByte & 0x3) != stream)
            {
                outByte |= (1 << i);
            }
            curInputByte >>= 2;
        }

        curInputByte = pStreamIdBase[2 * b + 1];
        for (uint32_t i = 0; i < 4; ++i)
        {
            if ((curInputByte & 0x3) != stream)
            {
                outByte |= (1 << (i + 4));
            }
            curInputByte >>= 2;
        }
        
        *pCutBuffer++ = outByte;
    }
}

THREAD SWR_GS_CONTEXT tlsGsContext;

//////////////////////////////////////////////////////////////////////////
/// @brief Implements GS stage.
/// @param pDC - pointer to draw context.
/// @param workerId - thread's worker id. Even thread has a unique id.
/// @param pa - The primitive assembly object.
/// @param pGsOut - output stream for GS
template <
    typename HasStreamOutT,
    typename HasRastT>
static void GeometryShaderStage(
    DRAW_CONTEXT *pDC,
    uint32_t workerId,
    PA_STATE& pa,
    void* pGsOut,
    void* pCutBuffer,
    void* pStreamCutBuffer,
    uint32_t* pSoPrimData,
    simdscalari primID)
{
    SWR_CONTEXT *pContext = pDC->pContext;

    AR_BEGIN(FEGeometryShader, pDC->drawId);

    const API_STATE& state = GetApiState(pDC);
    const SWR_GS_STATE* pState = &state.gsState;

    SWR_ASSERT(pGsOut != nullptr, "GS output buffer should be initialized");
    SWR_ASSERT(pCutBuffer != nullptr, "GS output cut buffer should be initialized");

    tlsGsContext.pStream = (uint8_t*)pGsOut;
    tlsGsContext.pCutOrStreamIdBuffer = (uint8_t*)pCutBuffer;
    tlsGsContext.PrimitiveID = primID;

    uint32_t numVertsPerPrim = NumVertsPerPrim(pa.binTopology, true);
    simdvector attrib[MAX_ATTRIBUTES];

    // assemble all attributes for the input primitive
    for (uint32_t slot = 0; slot < pState->numInputAttribs; ++slot)
    {
        uint32_t attribSlot = VERTEX_ATTRIB_START_SLOT + slot;
        pa.Assemble(attribSlot, attrib);

        for (uint32_t i = 0; i < numVertsPerPrim; ++i)
        {
            tlsGsContext.vert[i].attrib[attribSlot] = attrib[i];
        }
    }
    
    // assemble position
    pa.Assemble(VERTEX_POSITION_SLOT, attrib);
    for (uint32_t i = 0; i < numVertsPerPrim; ++i)
    {
        tlsGsContext.vert[i].attrib[VERTEX_POSITION_SLOT] = attrib[i];
    }

    const uint32_t vertexStride = sizeof(simdvertex);
    const uint32_t numSimdBatches = (state.gsState.maxNumVerts + KNOB_SIMD_WIDTH - 1) / KNOB_SIMD_WIDTH;
    const uint32_t inputPrimStride = numSimdBatches * vertexStride;
    const uint32_t instanceStride = inputPrimStride * KNOB_SIMD_WIDTH;
    uint32_t cutPrimStride;
    uint32_t cutInstanceStride;

    if (pState->isSingleStream)
    {
        cutPrimStride = (state.gsState.maxNumVerts + 7) / 8;
        cutInstanceStride = cutPrimStride * KNOB_SIMD_WIDTH;
    }
    else
    {
        cutPrimStride = AlignUp(state.gsState.maxNumVerts * 2 / 8, 4);
        cutInstanceStride = cutPrimStride * KNOB_SIMD_WIDTH;
    }

    // record valid prims from the frontend to avoid over binning the newly generated
    // prims from the GS
    uint32_t numInputPrims = pa.NumPrims();

    for (uint32_t instance = 0; instance < pState->instanceCount; ++instance)
    {
        tlsGsContext.InstanceID = instance;
        tlsGsContext.mask = GenerateMask(numInputPrims);

        // execute the geometry shader
        state.pfnGsFunc(GetPrivateState(pDC), &tlsGsContext);

        tlsGsContext.pStream += instanceStride;
        tlsGsContext.pCutOrStreamIdBuffer += cutInstanceStride;
    }

    // set up new binner and state for the GS output topology
    PFN_PROCESS_PRIMS pfnClipFunc = nullptr;
    if (HasRastT::value)
    {
        switch (pState->outputTopology)
        {
        case TOP_TRIANGLE_STRIP:    pfnClipFunc = ClipTriangles; break;
        case TOP_LINE_STRIP:        pfnClipFunc = ClipLines; break;
        case TOP_POINT_LIST:        pfnClipFunc = ClipPoints; break;
        default: SWR_ASSERT(false, "Unexpected GS output topology: %d", pState->outputTopology);
        }
    }

    // foreach input prim:
    // - setup a new PA based on the emitted verts for that prim
    // - loop over the new verts, calling PA to assemble each prim
    uint32_t* pVertexCount = (uint32_t*)&tlsGsContext.vertexCount;
    uint32_t* pPrimitiveId = (uint32_t*)&primID;

    uint32_t totalPrimsGenerated = 0;
    for (uint32_t inputPrim = 0; inputPrim < numInputPrims; ++inputPrim)
    {
        uint8_t* pInstanceBase = (uint8_t*)pGsOut + inputPrim * inputPrimStride;
        uint8_t* pCutBufferBase = (uint8_t*)pCutBuffer + inputPrim * cutPrimStride;
        for (uint32_t instance = 0; instance < pState->instanceCount; ++instance)
        {
            uint32_t numEmittedVerts = pVertexCount[inputPrim];
            if (numEmittedVerts == 0)
            {
                continue;
            }

            uint8_t* pBase = pInstanceBase + instance * instanceStride;
            uint8_t* pCutBase = pCutBufferBase + instance * cutInstanceStride;
            
            uint32_t numAttribs = state.feNumAttributes;

            for (uint32_t stream = 0; stream < MAX_SO_STREAMS; ++stream)
            {
                bool processCutVerts = false;

                uint8_t* pCutBuffer = pCutBase;

                // assign default stream ID, only relevant when GS is outputting a single stream
                uint32_t streamID = 0;
                if (pState->isSingleStream)
                {
                    processCutVerts = true;
                    streamID = pState->singleStreamID;
                    if (streamID != stream) continue;
                }
                else
                {
                    // early exit if this stream is not enabled for streamout
                    if (HasStreamOutT::value && !state.soState.streamEnable[stream])
                    {
                        continue;
                    }

                    // multi-stream output, need to translate StreamID buffer to a cut buffer
                    ProcessStreamIdBuffer(stream, pCutBase, numEmittedVerts, (uint8_t*)pStreamCutBuffer);
                    pCutBuffer = (uint8_t*)pStreamCutBuffer;
                    processCutVerts = false;
                }

                PA_STATE_CUT gsPa(pDC, pBase, numEmittedVerts, pCutBuffer, numEmittedVerts, numAttribs, pState->outputTopology, processCutVerts);

                while (gsPa.GetNextStreamOutput())
                {
                    do
                    {
                        bool assemble = gsPa.Assemble(VERTEX_POSITION_SLOT, attrib);

                        if (assemble)
                        {
                            totalPrimsGenerated += gsPa.NumPrims();

                            if (HasStreamOutT::value)
                            {
                                StreamOut(pDC, gsPa, workerId, pSoPrimData, stream);
                            }

                            if (HasRastT::value && state.soState.streamToRasterizer == stream)
                            {
                                simdscalari vPrimId;
                                // pull primitiveID from the GS output if available
                                if (state.gsState.emitsPrimitiveID)
                                {
                                    simdvector primIdAttrib[3];
                                    gsPa.Assemble(VERTEX_PRIMID_SLOT, primIdAttrib);
                                    vPrimId = _simd_castps_si(primIdAttrib[0].x);
                                }
                                else
                                {
                                    vPrimId = _simd_set1_epi32(pPrimitiveId[inputPrim]);
                                }

                                // use viewport array index if GS declares it as an output attribute. Otherwise use index 0.
                                simdscalari vViewPortIdx;
                                if (state.gsState.emitsViewportArrayIndex)
                                {
                                    simdvector vpiAttrib[3];
                                    gsPa.Assemble(VERTEX_VIEWPORT_ARRAY_INDEX_SLOT, vpiAttrib);

                                    // OOB indices => forced to zero.
                                    simdscalari vNumViewports = _simd_set1_epi32(KNOB_NUM_VIEWPORTS_SCISSORS);
                                    simdscalari vClearMask = _simd_cmplt_epi32(_simd_castps_si(vpiAttrib[0].x), vNumViewports);
                                    vpiAttrib[0].x = _simd_and_ps(_simd_castsi_ps(vClearMask), vpiAttrib[0].x);

                                    vViewPortIdx = _simd_castps_si(vpiAttrib[0].x);
                                }
                                else
                                {
                                    vViewPortIdx = _simd_set1_epi32(0);
                                }

                                pfnClipFunc(pDC, gsPa, workerId, attrib, GenMask(gsPa.NumPrims()), vPrimId, vViewPortIdx);
                            }
                        }
                    } while (gsPa.NextPrim());
                }
            }
        }
    }

    // update GS pipeline stats
    UPDATE_STAT_FE(GsInvocations, numInputPrims * pState->instanceCount);
    UPDATE_STAT_FE(GsPrimitives, totalPrimsGenerated);

    AR_END(FEGeometryShader, 1);
}

//////////////////////////////////////////////////////////////////////////
/// @brief Allocate GS buffers
/// @param pDC - pointer to draw context.
/// @param state - API state
/// @param ppGsOut - pointer to GS output buffer allocation
/// @param ppCutBuffer - pointer to GS output cut buffer allocation
static INLINE void AllocateGsBuffers(DRAW_CONTEXT* pDC, const API_STATE& state, void** ppGsOut, void** ppCutBuffer,
    void **ppStreamCutBuffer)
{
    auto pArena = pDC->pArena;
    SWR_ASSERT(pArena != nullptr);
    SWR_ASSERT(state.gsState.gsEnable);
    // allocate arena space to hold GS output verts
    // @todo pack attribs
    // @todo support multiple streams
    const uint32_t vertexStride = sizeof(simdvertex);
    const uint32_t numSimdBatches = (state.gsState.maxNumVerts + KNOB_SIMD_WIDTH - 1) / KNOB_SIMD_WIDTH;
    uint32_t size = state.gsState.instanceCount * numSimdBatches * vertexStride * KNOB_SIMD_WIDTH;
    *ppGsOut = pArena->AllocAligned(size, KNOB_SIMD_WIDTH * sizeof(float));

    const uint32_t cutPrimStride = (state.gsState.maxNumVerts + 7) / 8;
    const uint32_t streamIdPrimStride = AlignUp(state.gsState.maxNumVerts * 2 / 8, 4);
    const uint32_t cutBufferSize = cutPrimStride * state.gsState.instanceCount * KNOB_SIMD_WIDTH;
    const uint32_t streamIdSize = streamIdPrimStride * state.gsState.instanceCount * KNOB_SIMD_WIDTH;

    // allocate arena space to hold cut or streamid buffer, which is essentially a bitfield sized to the
    // maximum vertex output as defined by the GS state, per SIMD lane, per GS instance

    // allocate space for temporary per-stream cut buffer if multi-stream is enabled
    if (state.gsState.isSingleStream)
    {
        *ppCutBuffer = pArena->AllocAligned(cutBufferSize, KNOB_SIMD_WIDTH * sizeof(float));
        *ppStreamCutBuffer = nullptr;
    }
    else
    {
        *ppCutBuffer = pArena->AllocAligned(streamIdSize, KNOB_SIMD_WIDTH * sizeof(float));
        *ppStreamCutBuffer = pArena->AllocAligned(cutBufferSize, KNOB_SIMD_WIDTH * sizeof(float));
    }

}

//////////////////////////////////////////////////////////////////////////
/// @brief Contains all data generated by the HS and passed to the
/// tessellator and DS.
struct TessellationThreadLocalData
{
    SWR_HS_CONTEXT hsContext;
    ScalarPatch patchData[KNOB_SIMD_WIDTH];
    void* pTxCtx;
    size_t tsCtxSize;

    simdscalar* pDSOutput;
    size_t numDSOutputVectors;
};

THREAD TessellationThreadLocalData* gt_pTessellationThreadData = nullptr;

//////////////////////////////////////////////////////////////////////////
/// @brief Allocate tessellation data for this worker thread.
INLINE
static void AllocateTessellationData(SWR_CONTEXT* pContext)
{
    /// @TODO - Don't use thread local storage.  Use Worker local storage instead.
    if (gt_pTessellationThreadData == nullptr)
    {
        gt_pTessellationThreadData = (TessellationThreadLocalData*)
            AlignedMalloc(sizeof(TessellationThreadLocalData), 64);
        memset(gt_pTessellationThreadData, 0, sizeof(*gt_pTessellationThreadData));
    }
}

//////////////////////////////////////////////////////////////////////////
/// @brief Implements Tessellation Stages.
/// @param pDC - pointer to draw context.
/// @param workerId - thread's worker id. Even thread has a unique id.
/// @param pa - The primitive assembly object.
/// @param pGsOut - output stream for GS
template <
    typename HasGeometryShaderT,
    typename HasStreamOutT,
    typename HasRastT>
static void TessellationStages(
    DRAW_CONTEXT *pDC,
    uint32_t workerId,
    PA_STATE& pa,
    void* pGsOut,
    void* pCutBuffer,
    void* pCutStreamBuffer,
    uint32_t* pSoPrimData,
    simdscalari primID)
{
    SWR_CONTEXT *pContext = pDC->pContext;
    const API_STATE& state = GetApiState(pDC);
    const SWR_TS_STATE& tsState = state.tsState;

    SWR_ASSERT(gt_pTessellationThreadData);

    HANDLE tsCtx = TSInitCtx(
        tsState.domain,
        tsState.partitioning,
        tsState.tsOutputTopology,
        gt_pTessellationThreadData->pTxCtx,
        gt_pTessellationThreadData->tsCtxSize);
    if (tsCtx == nullptr)
    {
        gt_pTessellationThreadData->pTxCtx = AlignedMalloc(gt_pTessellationThreadData->tsCtxSize, 64);
        tsCtx = TSInitCtx(
            tsState.domain,
            tsState.partitioning,
            tsState.tsOutputTopology,
            gt_pTessellationThreadData->pTxCtx,
            gt_pTessellationThreadData->tsCtxSize);
    }
    SWR_ASSERT(tsCtx);

    PFN_PROCESS_PRIMS pfnClipFunc = nullptr;
    if (HasRastT::value)
    {
        switch (tsState.postDSTopology)
        {
        case TOP_TRIANGLE_LIST: pfnClipFunc = ClipTriangles; break;
        case TOP_LINE_LIST:     pfnClipFunc = ClipLines; break;
        case TOP_POINT_LIST:    pfnClipFunc = ClipPoints; break;
        default: SWR_ASSERT(false, "Unexpected DS output topology: %d", tsState.postDSTopology);
        }
    }

    SWR_HS_CONTEXT& hsContext = gt_pTessellationThreadData->hsContext;
    hsContext.pCPout = gt_pTessellationThreadData->patchData;
    hsContext.PrimitiveID = primID;

    uint32_t numVertsPerPrim = NumVertsPerPrim(pa.binTopology, false);
    // Max storage for one attribute for an entire simdprimitive
    simdvector simdattrib[MAX_NUM_VERTS_PER_PRIM];

    // assemble all attributes for the input primitives
    for (uint32_t slot = 0; slot < tsState.numHsInputAttribs; ++slot)
    {
        uint32_t attribSlot = VERTEX_ATTRIB_START_SLOT + slot;
        pa.Assemble(attribSlot, simdattrib);

        for (uint32_t i = 0; i < numVertsPerPrim; ++i)
        {
            hsContext.vert[i].attrib[attribSlot] = simdattrib[i];
        }
    }

#if defined(_DEBUG)
    memset(hsContext.pCPout, 0x90, sizeof(ScalarPatch) * KNOB_SIMD_WIDTH);
#endif

    uint32_t numPrims = pa.NumPrims();
    hsContext.mask = GenerateMask(numPrims);

    // Run the HS
    AR_BEGIN(FEHullShader, pDC->drawId);
    state.pfnHsFunc(GetPrivateState(pDC), &hsContext);
    AR_END(FEHullShader, 0);

    UPDATE_STAT_FE(HsInvocations, numPrims);

    const uint32_t* pPrimId = (const uint32_t*)&primID;

    for (uint32_t p = 0; p < numPrims; ++p)
    {
        // Run Tessellator
        SWR_TS_TESSELLATED_DATA tsData = { 0 };
        AR_BEGIN(FETessellation, pDC->drawId);
        TSTessellate(tsCtx, hsContext.pCPout[p].tessFactors, tsData);
        AR_END(FETessellation, 0);

        if (tsData.NumPrimitives == 0)
        {
            continue;
        }
        SWR_ASSERT(tsData.NumDomainPoints);

        // Allocate DS Output memory
        uint32_t requiredDSVectorInvocations = AlignUp(tsData.NumDomainPoints, KNOB_SIMD_WIDTH) / KNOB_SIMD_WIDTH;
        size_t requiredDSOutputVectors = requiredDSVectorInvocations * tsState.numDsOutputAttribs;
        size_t requiredAllocSize = sizeof(simdvector) * requiredDSOutputVectors;
        if (requiredDSOutputVectors > gt_pTessellationThreadData->numDSOutputVectors)
        {
            AlignedFree(gt_pTessellationThreadData->pDSOutput);
            gt_pTessellationThreadData->pDSOutput = (simdscalar*)AlignedMalloc(requiredAllocSize, 64);
            gt_pTessellationThreadData->numDSOutputVectors = requiredDSOutputVectors;
        }
        SWR_ASSERT(gt_pTessellationThreadData->pDSOutput);
        SWR_ASSERT(gt_pTessellationThreadData->numDSOutputVectors >= requiredDSOutputVectors);

#if defined(_DEBUG)
        memset(gt_pTessellationThreadData->pDSOutput, 0x90, requiredAllocSize);
#endif

        // Run Domain Shader
        SWR_DS_CONTEXT dsContext;
        dsContext.PrimitiveID = pPrimId[p];
        dsContext.pCpIn = &hsContext.pCPout[p];
        dsContext.pDomainU = (simdscalar*)tsData.pDomainPointsU;
        dsContext.pDomainV = (simdscalar*)tsData.pDomainPointsV;
        dsContext.pOutputData = gt_pTessellationThreadData->pDSOutput;
        dsContext.vectorStride = requiredDSVectorInvocations;

        uint32_t dsInvocations = 0;

        for (dsContext.vectorOffset = 0; dsContext.vectorOffset < requiredDSVectorInvocations; ++dsContext.vectorOffset)
        {
            dsContext.mask = GenerateMask(tsData.NumDomainPoints - dsInvocations);

            AR_BEGIN(FEDomainShader, pDC->drawId);
            state.pfnDsFunc(GetPrivateState(pDC), &dsContext);
            AR_END(FEDomainShader, 0);

            dsInvocations += KNOB_SIMD_WIDTH;
        }
        UPDATE_STAT_FE(DsInvocations, tsData.NumDomainPoints);

        PA_TESS tessPa(
            pDC,
            dsContext.pOutputData,
            dsContext.vectorStride,
            tsState.numDsOutputAttribs,
            tsData.ppIndices,
            tsData.NumPrimitives,
            tsState.postDSTopology);

        while (tessPa.HasWork())
        {
            if (HasGeometryShaderT::value)
            {
                GeometryShaderStage<HasStreamOutT, HasRastT>(
                    pDC, workerId, tessPa, pGsOut, pCutBuffer, pCutStreamBuffer, pSoPrimData,
                    _simd_set1_epi32(dsContext.PrimitiveID));
            }
            else
            {
                if (HasStreamOutT::value)
                {
                    StreamOut(pDC, tessPa, workerId, pSoPrimData, 0);
                }

                if (HasRastT::value)
                {
                    simdvector prim[3]; // Only deal with triangles, lines, or points
                    AR_BEGIN(FEPAAssemble, pDC->drawId);
#if SWR_ENABLE_ASSERTS
                    bool assemble =
#endif
                        tessPa.Assemble(VERTEX_POSITION_SLOT, prim);
                    AR_END(FEPAAssemble, 1);
                    SWR_ASSERT(assemble);

                    SWR_ASSERT(pfnClipFunc);
                    pfnClipFunc(pDC, tessPa, workerId, prim,
                        GenMask(tessPa.NumPrims()), _simd_set1_epi32(dsContext.PrimitiveID), _simd_set1_epi32(0));
                }
            }

            tessPa.NextPrim();

        } // while (tessPa.HasWork())
    } // for (uint32_t p = 0; p < numPrims; ++p)

    TSDestroyCtx(tsCtx);
}

//////////////////////////////////////////////////////////////////////////
/// @brief FE handler for SwrDraw.
/// @tparam IsIndexedT - Is indexed drawing enabled
/// @tparam HasTessellationT - Is tessellation enabled
/// @tparam HasGeometryShaderT::value - Is the geometry shader stage enabled
/// @tparam HasStreamOutT - Is stream-out enabled
/// @tparam HasRastT - Is rasterization enabled
/// @param pContext - pointer to SWR context.
/// @param pDC - pointer to draw context.
/// @param workerId - thread's worker id.
/// @param pUserData - Pointer to DRAW_WORK
template <
    typename IsIndexedT,
    typename IsCutIndexEnabledT,
    typename HasTessellationT,
    typename HasGeometryShaderT,
    typename HasStreamOutT,
    typename HasRastT>
void ProcessDraw(
    SWR_CONTEXT *pContext,
    DRAW_CONTEXT *pDC,
    uint32_t workerId,
    void *pUserData)
{

#if KNOB_ENABLE_TOSS_POINTS
    if (KNOB_TOSS_QUEUE_FE)
    {
        return;
    }
#endif

    AR_BEGIN(FEProcessDraw, pDC->drawId);

    DRAW_WORK&          work = *(DRAW_WORK*)pUserData;
    const API_STATE&    state = GetApiState(pDC);
    __m256i             vScale = _mm256_set_epi32(7, 6, 5, 4, 3, 2, 1, 0);
    SWR_VS_CONTEXT      vsContext;
    simdvertex          vin;

    int indexSize = 0;
    uint32_t endVertex = work.numVerts; 

    const int32_t* pLastRequestedIndex = nullptr;
    if (IsIndexedT::value)
    {
        switch (work.type)
        {
        case R32_UINT:
            indexSize = sizeof(uint32_t);
            pLastRequestedIndex = &(work.pIB[endVertex]);
            break;
        case R16_UINT:
            indexSize = sizeof(uint16_t);
            // nasty address offset to last index
            pLastRequestedIndex = (int32_t*)(&(((uint16_t*)work.pIB)[endVertex]));
            break;
        case R8_UINT:
            indexSize = sizeof(uint8_t);
            // nasty address offset to last index
            pLastRequestedIndex = (int32_t*)(&(((uint8_t*)work.pIB)[endVertex]));
            break;
        default:
            SWR_ASSERT(0);
        }
    }
    else
    {
        // No cuts, prune partial primitives.
        endVertex = GetNumVerts(state.topology, GetNumPrims(state.topology, work.numVerts));
    }

    SWR_FETCH_CONTEXT fetchInfo = { 0 };
    fetchInfo.pStreams = &state.vertexBuffers[0];
    fetchInfo.StartInstance = work.startInstance;
    fetchInfo.StartVertex = 0;

    vsContext.pVin = &vin;

    if (IsIndexedT::value)
    {
        fetchInfo.BaseVertex = work.baseVertex;

        // if the entire index buffer isn't being consumed, set the last index
        // so that fetches < a SIMD wide will be masked off
        fetchInfo.pLastIndex = (const int32_t*)(((uint8_t*)state.indexBuffer.pIndices) + state.indexBuffer.size);
        if (pLastRequestedIndex < fetchInfo.pLastIndex)
        {
            fetchInfo.pLastIndex = pLastRequestedIndex;
        }
    }
    else
    {
        fetchInfo.StartVertex = work.startVertex;
    }

#if defined(KNOB_ENABLE_RDTSC) || defined(KNOB_ENABLE_AR)
    uint32_t numPrims = GetNumPrims(state.topology, work.numVerts);
#endif

    void* pGsOut = nullptr;
    void* pCutBuffer = nullptr;
    void* pStreamCutBuffer = nullptr;
    if (HasGeometryShaderT::value)
    {
        AllocateGsBuffers(pDC, state, &pGsOut, &pCutBuffer, &pStreamCutBuffer);
    }

    if (HasTessellationT::value)
    {
        SWR_ASSERT(state.tsState.tsEnable == true);
        SWR_ASSERT(state.pfnHsFunc != nullptr);
        SWR_ASSERT(state.pfnDsFunc != nullptr);

        AllocateTessellationData(pContext);
    }
    else
    {
        SWR_ASSERT(state.tsState.tsEnable == false);
        SWR_ASSERT(state.pfnHsFunc == nullptr);
        SWR_ASSERT(state.pfnDsFunc == nullptr);
    }

    // allocate space for streamout input prim data
    uint32_t* pSoPrimData = nullptr;
    if (HasStreamOutT::value)
    {
        pSoPrimData = (uint32_t*)pDC->pArena->AllocAligned(4096, 16);
    }

    // choose primitive assembler
    PA_FACTORY<IsIndexedT, IsCutIndexEnabledT> paFactory(pDC, state.topology, work.numVerts);
    PA_STATE& pa = paFactory.GetPA();

    /// @todo: temporarily move instance loop in the FE to ensure SO ordering
    for (uint32_t instanceNum = 0; instanceNum < work.numInstances; instanceNum++)
    {
        simdscalari vIndex;
        uint32_t  i = 0;

        if (IsIndexedT::value)
        {
            fetchInfo.pIndices = work.pIB;
        }
        else
        {
            vIndex = _simd_add_epi32(_simd_set1_epi32(work.startVertexID), vScale);
            fetchInfo.pIndices = (const int32_t*)&vIndex;
        }

        fetchInfo.CurInstance = instanceNum;
        vsContext.InstanceID = instanceNum;

        while (pa.HasWork())
        {
            // PaGetNextVsOutput currently has the side effect of updating some PA state machine state.
            // So we need to keep this outside of (i < endVertex) check.
            simdmask* pvCutIndices = nullptr;
            if (IsIndexedT::value)
            {
                pvCutIndices = &pa.GetNextVsIndices();
            }

            simdvertex& vout = pa.GetNextVsOutput();
            vsContext.pVout = &vout;

            if (i < endVertex)
            {

                // 1. Execute FS/VS for a single SIMD.
                AR_BEGIN(FEFetchShader, pDC->drawId);
                state.pfnFetchFunc(fetchInfo, vin);
                AR_END(FEFetchShader, 0);

                // forward fetch generated vertex IDs to the vertex shader
                vsContext.VertexID = fetchInfo.VertexID;

                // Setup active mask for vertex shader.
                vsContext.mask = GenerateMask(endVertex - i);

                // forward cut mask to the PA
                if (IsIndexedT::value)
                {
                    *pvCutIndices = _simd_movemask_ps(_simd_castsi_ps(fetchInfo.CutMask));
                }

                UPDATE_STAT_FE(IaVertices, GetNumInvocations(i, endVertex));

#if KNOB_ENABLE_TOSS_POINTS
                if (!KNOB_TOSS_FETCH)
#endif
                {
                    AR_BEGIN(FEVertexShader, pDC->drawId);
                    state.pfnVertexFunc(GetPrivateState(pDC), &vsContext);
                    AR_END(FEVertexShader, 0);

                    UPDATE_STAT_FE(VsInvocations, GetNumInvocations(i, endVertex));
                }
            }

            // 2. Assemble primitives given the last two SIMD.
            do
            {
                simdvector prim[MAX_NUM_VERTS_PER_PRIM];
                // PaAssemble returns false if there is not enough verts to assemble.
                AR_BEGIN(FEPAAssemble, pDC->drawId);
                bool assemble = pa.Assemble(VERTEX_POSITION_SLOT, prim);
                AR_END(FEPAAssemble, 1);

#if KNOB_ENABLE_TOSS_POINTS
                if (!KNOB_TOSS_FETCH)
#endif
                {
#if KNOB_ENABLE_TOSS_POINTS
                    if (!KNOB_TOSS_VS)
#endif
                    {
                        if (assemble)
                        {
                            UPDATE_STAT_FE(IaPrimitives, pa.NumPrims());

                            if (HasTessellationT::value)
                            {
                                TessellationStages<HasGeometryShaderT, HasStreamOutT, HasRastT>(
                                    pDC, workerId, pa, pGsOut, pCutBuffer, pStreamCutBuffer, pSoPrimData, pa.GetPrimID(work.startPrimID));
                            }
                            else if (HasGeometryShaderT::value)
                            {
                                GeometryShaderStage<HasStreamOutT, HasRastT>(
                                    pDC, workerId, pa, pGsOut, pCutBuffer, pStreamCutBuffer, pSoPrimData, pa.GetPrimID(work.startPrimID));
                            }
                            else
                            {
                                // If streamout is enabled then stream vertices out to memory.
                                if (HasStreamOutT::value)
                                {
                                    StreamOut(pDC, pa, workerId, pSoPrimData, 0);
                                }

                                if (HasRastT::value)
                                {
                                    SWR_ASSERT(pDC->pState->pfnProcessPrims);
                                    pDC->pState->pfnProcessPrims(pDC, pa, workerId, prim,
                                        GenMask(pa.NumPrims()), pa.GetPrimID(work.startPrimID), _simd_set1_epi32(0));
                                }
                            }
                        }
                    }
                }
            } while (pa.NextPrim());

            i += KNOB_SIMD_WIDTH;
            if (IsIndexedT::value)
            {
                fetchInfo.pIndices = (int*)((uint8_t*)fetchInfo.pIndices + KNOB_SIMD_WIDTH * indexSize);
            }
            else
            {
                vIndex = _simd_add_epi32(vIndex, _simd_set1_epi32(KNOB_SIMD_WIDTH));
            }
        }
        pa.Reset();
    }

    AR_END(FEProcessDraw, numPrims * work.numInstances);
}

struct FEDrawChooser
{
    typedef PFN_FE_WORK_FUNC FuncType;

    template <typename... ArgsB>
    static FuncType GetFunc()
    {
        return ProcessDraw<ArgsB...>;
    }
};


// Selector for correct templated Draw front-end function
PFN_FE_WORK_FUNC GetProcessDrawFunc(
    bool IsIndexed,
    bool IsCutIndexEnabled,
    bool HasTessellation,
    bool HasGeometryShader,
    bool HasStreamOut,
    bool HasRasterization)
{
    return TemplateArgUnroller<FEDrawChooser>::GetFunc(IsIndexed, IsCutIndexEnabled, HasTessellation, HasGeometryShader, HasStreamOut, HasRasterization);
}