summaryrefslogtreecommitdiffstats
path: root/src/gallium/drivers/swr/rasterizer/core/threads.cpp
blob: ea5542ab3320d3170c59cf9e0baa93554f006c8b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
/****************************************************************************
* Copyright (C) 2014-2016 Intel Corporation.   All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
****************************************************************************/

#include <stdio.h>
#include <thread>
#include <algorithm>
#include <float.h>
#include <vector>
#include <utility>
#include <fstream>
#include <string>

#if defined(__linux__) || defined(__gnu_linux__)
#include <pthread.h>
#include <sched.h>
#include <unistd.h>
#endif

#include "common/os.h"
#include "context.h"
#include "frontend.h"
#include "backend.h"
#include "rasterizer.h"
#include "rdtsc_core.h"
#include "tilemgr.h"




// ThreadId
struct Core
{
    uint32_t                procGroup = 0;
    std::vector<uint32_t>   threadIds;
};

struct NumaNode
{
    std::vector<Core> cores;
};

typedef std::vector<NumaNode> CPUNumaNodes;

void CalculateProcessorTopology(CPUNumaNodes& out_nodes, uint32_t& out_numThreadsPerProcGroup)
{
    out_nodes.clear();
    out_numThreadsPerProcGroup = 0;

#if defined(_WIN32)

    std::vector<KAFFINITY> threadMaskPerProcGroup;

    static std::mutex m;
    std::lock_guard<std::mutex> l(m);

    DWORD bufSize = 0;

    BOOL ret = GetLogicalProcessorInformationEx(RelationProcessorCore, nullptr, &bufSize);
    SWR_ASSERT(ret == FALSE && GetLastError() == ERROR_INSUFFICIENT_BUFFER);

    PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX pBufferMem = (PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX)malloc(bufSize);
    SWR_ASSERT(pBufferMem);

    ret = GetLogicalProcessorInformationEx(RelationProcessorCore, pBufferMem, &bufSize);
    SWR_ASSERT(ret != FALSE, "Failed to get Processor Topology Information");

    uint32_t count = bufSize / pBufferMem->Size;
    PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX pBuffer = pBufferMem;

    for (uint32_t i = 0; i < count; ++i)
    {
        SWR_ASSERT(pBuffer->Relationship == RelationProcessorCore);
        for (uint32_t g = 0; g < pBuffer->Processor.GroupCount; ++g)
        {
            auto& gmask = pBuffer->Processor.GroupMask[g];
            uint32_t threadId = 0;
            uint32_t procGroup = gmask.Group;

            Core* pCore = nullptr;

            uint32_t numThreads = (uint32_t)_mm_popcount_sizeT(gmask.Mask);

            while (BitScanForwardSizeT((unsigned long*)&threadId, gmask.Mask))
            {
                // clear mask
                KAFFINITY threadMask = KAFFINITY(1) << threadId;
                gmask.Mask &= ~threadMask;

                if (procGroup >= threadMaskPerProcGroup.size())
                {
                    threadMaskPerProcGroup.resize(procGroup + 1);
                }

                if (threadMaskPerProcGroup[procGroup] & threadMask)
                {
                    // Already seen this mask.  This means that we are in 32-bit mode and
                    // have seen more than 32 HW threads for this procGroup
                    // Don't use it
#if defined(_WIN64)
                    SWR_ASSERT(false, "Shouldn't get here in 64-bit mode");
#endif
                    continue;
                }

                threadMaskPerProcGroup[procGroup] |= (KAFFINITY(1) << threadId);

                // Find Numa Node
                uint32_t numaId = 0;
                PROCESSOR_NUMBER procNum = {};
                procNum.Group = WORD(procGroup);
                procNum.Number = UCHAR(threadId);

                ret = GetNumaProcessorNodeEx(&procNum, (PUSHORT)&numaId);
                SWR_ASSERT(ret);

                // Store data
                if (out_nodes.size() <= numaId) out_nodes.resize(numaId + 1);
                auto& numaNode = out_nodes[numaId];

                uint32_t coreId = 0;

                if (nullptr == pCore)
                {
                    numaNode.cores.push_back(Core());
                    pCore = &numaNode.cores.back();
                    pCore->procGroup = procGroup;
                }
                pCore->threadIds.push_back(threadId);
                if (procGroup == 0)
                {
                    out_numThreadsPerProcGroup++;
                }
            }
        }
        pBuffer = PtrAdd(pBuffer, pBuffer->Size);
    }

    free(pBufferMem);


#elif defined(__linux__) || defined (__gnu_linux__)

    // Parse /proc/cpuinfo to get full topology
    std::ifstream input("/proc/cpuinfo");
    std::string line;
    char* c;
    uint32_t threadId = uint32_t(-1);
    uint32_t coreId = uint32_t(-1);
    uint32_t numaId = uint32_t(-1);

    while (std::getline(input, line))
    {
        if (line.find("processor") != std::string::npos)
        {
            if (threadId != uint32_t(-1))
            {
                // Save information.
                if (out_nodes.size() <= numaId) out_nodes.resize(numaId + 1);
                auto& numaNode = out_nodes[numaId];
                if (numaNode.cores.size() <= coreId) numaNode.cores.resize(coreId + 1);
                auto& core = numaNode.cores[coreId];

                core.procGroup = coreId;
                core.threadIds.push_back(threadId);

                out_numThreadsPerProcGroup++;
            }

            auto data_start = line.find(": ") + 2;
            threadId = std::strtoul(&line.c_str()[data_start], &c, 10);
            continue;
        }
        if (line.find("core id") != std::string::npos)
        {
            auto data_start = line.find(": ") + 2;
            coreId = std::strtoul(&line.c_str()[data_start], &c, 10);
            continue;
        }
        if (line.find("physical id") != std::string::npos)
        {
            auto data_start = line.find(": ") + 2;
            numaId = std::strtoul(&line.c_str()[data_start], &c, 10);
            continue;
        }
    }

    if (threadId != uint32_t(-1))
    {
        // Save information.
        if (out_nodes.size() <= numaId) out_nodes.resize(numaId + 1);
        auto& numaNode = out_nodes[numaId];
        if (numaNode.cores.size() <= coreId) numaNode.cores.resize(coreId + 1);
        auto& core = numaNode.cores[coreId];

        core.procGroup = coreId;
        core.threadIds.push_back(threadId);
        out_numThreadsPerProcGroup++;
    }

    for (uint32_t node = 0; node < out_nodes.size(); node++) {
        auto& numaNode = out_nodes[node];
        auto it = numaNode.cores.begin();
        for ( ; it != numaNode.cores.end(); ) {
            if (it->threadIds.size() == 0)
                numaNode.cores.erase(it);
            else
                ++it;
        }
    }

#else

#error Unsupported platform

#endif
}


void bindThread(SWR_CONTEXT* pContext, uint32_t threadId, uint32_t procGroupId = 0, bool bindProcGroup=false)
{
    // Only bind threads when MAX_WORKER_THREADS isn't set.
    if (pContext->threadInfo.MAX_WORKER_THREADS && bindProcGroup == false)
    {
        return;
    }

#if defined(_WIN32)

    GROUP_AFFINITY affinity = {};
    affinity.Group = procGroupId;

#if !defined(_WIN64)
    if (threadId >= 32)
    {
        // Hopefully we don't get here.  Logic in CreateThreadPool should prevent this.
        SWR_REL_ASSERT(false, "Shouldn't get here");

        // In a 32-bit process on Windows it is impossible to bind
        // to logical processors 32-63 within a processor group.
        // In this case set the mask to 0 and let the system assign
        // the processor.  Hopefully it will make smart choices.
        affinity.Mask = 0;
    }
    else
#endif
    {
        // If MAX_WORKER_THREADS is set, only bind to the proc group,
        // Not the individual HW thread.
        if (!pContext->threadInfo.MAX_WORKER_THREADS)
        {
            affinity.Mask = KAFFINITY(1) << threadId;
        }
    }

    SetThreadGroupAffinity(GetCurrentThread(), &affinity, nullptr);

#else

    cpu_set_t cpuset;
    pthread_t thread = pthread_self();
    CPU_ZERO(&cpuset);
    CPU_SET(threadId, &cpuset);

    pthread_setaffinity_np(thread, sizeof(cpu_set_t), &cpuset);

#endif
}

INLINE
uint32_t GetEnqueuedDraw(SWR_CONTEXT *pContext)
{
    return pContext->dcRing.GetHead();
}

INLINE
DRAW_CONTEXT *GetDC(SWR_CONTEXT *pContext, uint32_t drawId)
{
    return &pContext->dcRing[(drawId-1) % KNOB_MAX_DRAWS_IN_FLIGHT];
}

INLINE
bool IDComparesLess(uint32_t a, uint32_t b)
{
    // Use signed delta to ensure that wrap-around to 0 is correctly handled.
    int32_t delta = int32_t(a - b);
    return (delta < 0);
}

// returns true if dependency not met
INLINE
bool CheckDependency(SWR_CONTEXT *pContext, DRAW_CONTEXT *pDC, uint32_t lastRetiredDraw)
{
    return pDC->dependent && IDComparesLess(lastRetiredDraw, pDC->drawId - 1);
}

//////////////////////////////////////////////////////////////////////////
/// @brief Update client stats.
INLINE void UpdateClientStats(SWR_CONTEXT* pContext, uint32_t workerId, DRAW_CONTEXT* pDC)
{
    if ((pContext->pfnUpdateStats == nullptr) || (GetApiState(pDC).enableStats == false))
    {
        return;
    }

    DRAW_DYNAMIC_STATE& dynState = pDC->dynState;
    SWR_STATS stats{ 0 };

    // Sum up stats across all workers before sending to client.
    for (uint32_t i = 0; i < pContext->NumWorkerThreads; ++i)
    {
        stats.DepthPassCount += dynState.pStats[i].DepthPassCount;

        stats.PsInvocations  += dynState.pStats[i].PsInvocations;
        stats.CsInvocations  += dynState.pStats[i].CsInvocations;
    }


    pContext->pfnUpdateStats(GetPrivateState(pDC), &stats);
}

INLINE void ExecuteCallbacks(SWR_CONTEXT* pContext, uint32_t workerId, DRAW_CONTEXT* pDC)
{
    UpdateClientStats(pContext, workerId, pDC);

    if (pDC->retireCallback.pfnCallbackFunc)
    {
        pDC->retireCallback.pfnCallbackFunc(pDC->retireCallback.userData,
            pDC->retireCallback.userData2,
            pDC->retireCallback.userData3);
    }
}

// inlined-only version
INLINE int32_t CompleteDrawContextInl(SWR_CONTEXT* pContext, uint32_t workerId, DRAW_CONTEXT* pDC)
{
    int32_t result = InterlockedDecrement((volatile LONG*)&pDC->threadsDone);
    SWR_ASSERT(result >= 0);

    if (result == 0)
    {
        ExecuteCallbacks(pContext, workerId, pDC);

        // Cleanup memory allocations
        pDC->pArena->Reset(true);
        if (!pDC->isCompute)
        {
            pDC->pTileMgr->initialize();
        }
        if (pDC->cleanupState)
        {
            pDC->pState->pArena->Reset(true);
        }

        _ReadWriteBarrier();

        pContext->dcRing.Dequeue();  // Remove from tail
    }

    return result;
}

// available to other translation modules
int32_t CompleteDrawContext(SWR_CONTEXT* pContext, DRAW_CONTEXT* pDC)
{
    return CompleteDrawContextInl(pContext, 0, pDC);
}

INLINE bool FindFirstIncompleteDraw(SWR_CONTEXT* pContext, uint32_t workerId, uint32_t& curDrawBE, uint32_t& drawEnqueued)
{
    // increment our current draw id to the first incomplete draw
    drawEnqueued = GetEnqueuedDraw(pContext);
    while (IDComparesLess(curDrawBE, drawEnqueued))
    {
        DRAW_CONTEXT *pDC = &pContext->dcRing[curDrawBE % KNOB_MAX_DRAWS_IN_FLIGHT];

        // If its not compute and FE is not done then break out of loop.
        if (!pDC->doneFE && !pDC->isCompute) break;

        bool isWorkComplete = pDC->isCompute ?
            pDC->pDispatch->isWorkComplete() :
            pDC->pTileMgr->isWorkComplete();

        if (isWorkComplete)
        {
            curDrawBE++;
            CompleteDrawContextInl(pContext, workerId, pDC);
        }
        else
        {
            break;
        }
    }

    // If there are no more incomplete draws then return false.
    return IDComparesLess(curDrawBE, drawEnqueued);
}

//////////////////////////////////////////////////////////////////////////
/// @brief If there is any BE work then go work on it.
/// @param pContext - pointer to SWR context.
/// @param workerId - The unique worker ID that is assigned to this thread.
/// @param curDrawBE - This tracks the draw contexts that this thread has processed. Each worker thread
///                    has its own curDrawBE counter and this ensures that each worker processes all the
///                    draws in order.
/// @param lockedTiles - This is the set of tiles locked by other threads. Each thread maintains its
///                      own set and each time it fails to lock a macrotile, because its already locked,
///                      then it will add that tile to the lockedTiles set. As a worker begins to work
///                      on future draws the lockedTiles ensure that it doesn't work on tiles that may
///                      still have work pending in a previous draw. Additionally, the lockedTiles is
///                      hueristic that can steer a worker back to the same macrotile that it had been
///                      working on in a previous draw.
/// @returns        true if worker thread should shutdown
bool WorkOnFifoBE(
    SWR_CONTEXT *pContext,
    uint32_t workerId,
    uint32_t &curDrawBE,
    TileSet& lockedTiles,
    uint32_t numaNode,
    uint32_t numaMask)
{
    bool bShutdown = false;

    // Find the first incomplete draw that has pending work. If no such draw is found then
    // return. FindFirstIncompleteDraw is responsible for incrementing the curDrawBE.
    uint32_t drawEnqueued = 0;
    if (FindFirstIncompleteDraw(pContext, workerId, curDrawBE, drawEnqueued) == false)
    {
        return false;
    }

    uint32_t lastRetiredDraw = pContext->dcRing[curDrawBE % KNOB_MAX_DRAWS_IN_FLIGHT].drawId - 1;

    // Reset our history for locked tiles. We'll have to re-learn which tiles are locked.
    lockedTiles.clear();

    // Try to work on each draw in order of the available draws in flight.
    //   1. If we're on curDrawBE, we can work on any macrotile that is available.
    //   2. If we're trying to work on draws after curDrawBE, we are restricted to 
    //      working on those macrotiles that are known to be complete in the prior draw to
    //      maintain order. The locked tiles provides the history to ensures this.
    for (uint32_t i = curDrawBE; IDComparesLess(i, drawEnqueued); ++i)
    {
        DRAW_CONTEXT *pDC = &pContext->dcRing[i % KNOB_MAX_DRAWS_IN_FLIGHT];

        if (pDC->isCompute) return false; // We don't look at compute work.

        // First wait for FE to be finished with this draw. This keeps threading model simple
        // but if there are lots of bubbles between draws then serializing FE and BE may
        // need to be revisited.
        if (!pDC->doneFE) return false;
        
        // If this draw is dependent on a previous draw then we need to bail.
        if (CheckDependency(pContext, pDC, lastRetiredDraw))
        {
            return false;
        }

        // Grab the list of all dirty macrotiles. A tile is dirty if it has work queued to it.
        auto &macroTiles = pDC->pTileMgr->getDirtyTiles();

        for (auto tile : macroTiles)
        {
            uint32_t tileID = tile->mId;

            // Only work on tiles for this numa node
            uint32_t x, y;
            pDC->pTileMgr->getTileIndices(tileID, x, y);
            if (((x ^ y) & numaMask) != numaNode)
            {
                continue;
            }

            if (!tile->getNumQueued())
            {
                continue;
            }

            // can only work on this draw if it's not in use by other threads
            if (lockedTiles.find(tileID) != lockedTiles.end())
            {
                continue;
            }

            if (tile->tryLock())
            {
                BE_WORK *pWork;

                AR_BEGIN(WorkerFoundWork, pDC->drawId);

                uint32_t numWorkItems = tile->getNumQueued();
                SWR_ASSERT(numWorkItems);

                pWork = tile->peek();
                SWR_ASSERT(pWork);
                if (pWork->type == DRAW)
                {
                    pContext->pHotTileMgr->InitializeHotTiles(pContext, pDC, workerId, tileID);
                }
                else if (pWork->type == SHUTDOWN)
                {
                    bShutdown = true;
                }

                while ((pWork = tile->peek()) != nullptr)
                {
                    pWork->pfnWork(pDC, workerId, tileID, &pWork->desc);
                    tile->dequeue();
                }
                AR_END(WorkerFoundWork, numWorkItems);

                _ReadWriteBarrier();

                pDC->pTileMgr->markTileComplete(tileID);

                // Optimization: If the draw is complete and we're the last one to have worked on it then
                // we can reset the locked list as we know that all previous draws before the next are guaranteed to be complete.
                if ((curDrawBE == i) && (bShutdown || pDC->pTileMgr->isWorkComplete()))
                {
                    // We can increment the current BE and safely move to next draw since we know this draw is complete.
                    curDrawBE++;
                    CompleteDrawContextInl(pContext, workerId, pDC);

                    lastRetiredDraw++;

                    lockedTiles.clear();
                    break;
                }

                if (bShutdown)
                {
                    break;
                }
            }
            else
            {
                // This tile is already locked. So let's add it to our locked tiles set. This way we don't try locking this one again.
                lockedTiles.insert(tileID);
            }
        }
    }

    return bShutdown;
}

//////////////////////////////////////////////////////////////////////////
/// @brief Called when FE work is complete for this DC.
INLINE void CompleteDrawFE(SWR_CONTEXT* pContext, uint32_t workerId, DRAW_CONTEXT* pDC)
{
    if (pContext->pfnUpdateStatsFE && GetApiState(pDC).enableStats)
    {
        SWR_STATS_FE& stats = pDC->dynState.statsFE;

        AR_EVENT(FrontendStatsEvent(pDC->drawId,
            stats.IaVertices, stats.IaPrimitives, stats.VsInvocations, stats.HsInvocations,
            stats.DsInvocations, stats.GsInvocations, stats.GsPrimitives, stats.CInvocations, stats.CPrimitives,
            stats.SoPrimStorageNeeded[0], stats.SoPrimStorageNeeded[1], stats.SoPrimStorageNeeded[2], stats.SoPrimStorageNeeded[3],
            stats.SoNumPrimsWritten[0], stats.SoNumPrimsWritten[1], stats.SoNumPrimsWritten[2], stats.SoNumPrimsWritten[3]
        ));

        pContext->pfnUpdateStatsFE(GetPrivateState(pDC), &stats);
    }

    if (pContext->pfnUpdateSoWriteOffset)
    {
        for (uint32_t i = 0; i < MAX_SO_BUFFERS; ++i)
        {
            if ((pDC->dynState.SoWriteOffsetDirty[i]) &&
                (pDC->pState->state.soBuffer[i].soWriteEnable))
            {
                pContext->pfnUpdateSoWriteOffset(GetPrivateState(pDC), i, pDC->dynState.SoWriteOffset[i]);
            }
        }
    }

    // Ensure all streaming writes are globally visible before marking this FE done
    _mm_mfence();
    pDC->doneFE = true;
    InterlockedDecrement((volatile LONG*)&pContext->drawsOutstandingFE);
}

void WorkOnFifoFE(SWR_CONTEXT *pContext, uint32_t workerId, uint32_t &curDrawFE)
{
    // Try to grab the next DC from the ring
    uint32_t drawEnqueued = GetEnqueuedDraw(pContext);
    while (IDComparesLess(curDrawFE, drawEnqueued))
    {
        uint32_t dcSlot = curDrawFE % KNOB_MAX_DRAWS_IN_FLIGHT;
        DRAW_CONTEXT *pDC = &pContext->dcRing[dcSlot];
        if (pDC->isCompute || pDC->doneFE || pDC->FeLock)
        {
            CompleteDrawContextInl(pContext, workerId, pDC);
            curDrawFE++;
        }
        else
        {
            break;
        }
    }

    uint32_t curDraw = curDrawFE;
    while (IDComparesLess(curDraw, drawEnqueued))
    {
        uint32_t dcSlot = curDraw % KNOB_MAX_DRAWS_IN_FLIGHT;
        DRAW_CONTEXT *pDC = &pContext->dcRing[dcSlot];

        if (!pDC->isCompute && !pDC->FeLock)
        {
            uint32_t initial = InterlockedCompareExchange((volatile uint32_t*)&pDC->FeLock, 1, 0);
            if (initial == 0)
            {
                // successfully grabbed the DC, now run the FE
                pDC->FeWork.pfnWork(pContext, pDC, workerId, &pDC->FeWork.desc);

                CompleteDrawFE(pContext, workerId, pDC);
            }
        }
        curDraw++;
    }
}

//////////////////////////////////////////////////////////////////////////
/// @brief If there is any compute work then go work on it.
/// @param pContext - pointer to SWR context.
/// @param workerId - The unique worker ID that is assigned to this thread.
/// @param curDrawBE - This tracks the draw contexts that this thread has processed. Each worker thread
///                    has its own curDrawBE counter and this ensures that each worker processes all the
///                    draws in order.
void WorkOnCompute(
    SWR_CONTEXT *pContext,
    uint32_t workerId,
    uint32_t& curDrawBE)
{
    uint32_t drawEnqueued = 0;
    if (FindFirstIncompleteDraw(pContext, workerId, curDrawBE, drawEnqueued) == false)
    {
        return;
    }

    uint32_t lastRetiredDraw = pContext->dcRing[curDrawBE % KNOB_MAX_DRAWS_IN_FLIGHT].drawId - 1;

    for (uint64_t i = curDrawBE; IDComparesLess(i, drawEnqueued); ++i)
    {
        DRAW_CONTEXT *pDC = &pContext->dcRing[i % KNOB_MAX_DRAWS_IN_FLIGHT];
        if (pDC->isCompute == false) return;

        // check dependencies
        if (CheckDependency(pContext, pDC, lastRetiredDraw))
        {
            return;
        }

        SWR_ASSERT(pDC->pDispatch != nullptr);
        DispatchQueue& queue = *pDC->pDispatch;

        // Is there any work remaining?
        if (queue.getNumQueued() > 0)
        {
            void* pSpillFillBuffer = nullptr;
            uint32_t threadGroupId = 0;
            while (queue.getWork(threadGroupId))
            {
                queue.dispatch(pDC, workerId, threadGroupId, pSpillFillBuffer);
                queue.finishedWork();
            }

            // Ensure all streaming writes are globally visible before moving onto the next draw
            _mm_mfence();
        }
    }
}

template<bool IsFEThread, bool IsBEThread>
DWORD workerThreadMain(LPVOID pData)
{
    THREAD_DATA *pThreadData = (THREAD_DATA*)pData;
    SWR_CONTEXT *pContext = pThreadData->pContext;
    uint32_t threadId = pThreadData->threadId;
    uint32_t workerId = pThreadData->workerId;

    bindThread(pContext, threadId, pThreadData->procGroupId, pThreadData->forceBindProcGroup); 

    RDTSC_INIT(threadId);

    uint32_t numaNode = pThreadData->numaId;
    uint32_t numaMask = pContext->threadPool.numaMask;

    // flush denormals to 0
    _mm_setcsr(_mm_getcsr() | _MM_FLUSH_ZERO_ON | _MM_DENORMALS_ZERO_ON);

    // Track tiles locked by other threads. If we try to lock a macrotile and find its already
    // locked then we'll add it to this list so that we don't try and lock it again.
    TileSet lockedTiles;

    // each worker has the ability to work on any of the queued draws as long as certain
    // conditions are met. the data associated
    // with a draw is guaranteed to be active as long as a worker hasn't signaled that he 
    // has moved on to the next draw when he determines there is no more work to do. The api
    // thread will not increment the head of the dc ring until all workers have moved past the
    // current head.
    // the logic to determine what to work on is:
    // 1- try to work on the FE any draw that is queued. For now there are no dependencies
    //    on the FE work, so any worker can grab any FE and process in parallel.  Eventually
    //    we'll need dependency tracking to force serialization on FEs.  The worker will try
    //    to pick an FE by atomically incrementing a counter in the swr context.  he'll keep
    //    trying until he reaches the tail.
    // 2- BE work must be done in strict order. we accomplish this today by pulling work off
    //    the oldest draw (ie the head) of the dcRing. the worker can determine if there is
    //    any work left by comparing the total # of binned work items and the total # of completed
    //    work items. If they are equal, then there is no more work to do for this draw, and
    //    the worker can safely increment its oldestDraw counter and move on to the next draw.
    std::unique_lock<std::mutex> lock(pContext->WaitLock, std::defer_lock);

    auto threadHasWork = [&](uint32_t curDraw) { return curDraw != pContext->dcRing.GetHead(); };

    uint32_t curDrawBE = 0;
    uint32_t curDrawFE = 0;

    bool bShutdown = false;

    while (true)
    {
        if (bShutdown && !threadHasWork(curDrawBE))
        {
            break;
        }

        uint32_t loop = 0;
        while (loop++ < KNOB_WORKER_SPIN_LOOP_COUNT && !threadHasWork(curDrawBE))
        {
            _mm_pause();
        }

        if (!threadHasWork(curDrawBE))
        {
            lock.lock();

            // check for thread idle condition again under lock
            if (threadHasWork(curDrawBE))
            {
                lock.unlock();
                continue;
            }

            pContext->FifosNotEmpty.wait(lock);
            lock.unlock();
        }

        if (IsBEThread)
        {
            AR_BEGIN(WorkerWorkOnFifoBE, 0);
            bShutdown |= WorkOnFifoBE(pContext, workerId, curDrawBE, lockedTiles, numaNode, numaMask);
            AR_END(WorkerWorkOnFifoBE, 0);

            WorkOnCompute(pContext, workerId, curDrawBE);
        }

        if (IsFEThread)
        {
            WorkOnFifoFE(pContext, workerId, curDrawFE);

            if (!IsBEThread)
            {
                curDrawBE = curDrawFE;
            }
        }
    }

    return 0;
}
template<> DWORD workerThreadMain<false, false>(LPVOID) = delete;

template <bool IsFEThread, bool IsBEThread>
DWORD workerThreadInit(LPVOID pData)
{
#if defined(_WIN32)
    __try
#endif // _WIN32
    {
        return workerThreadMain<IsFEThread, IsBEThread>(pData);
    }

#if defined(_WIN32)
    __except(EXCEPTION_CONTINUE_SEARCH)
    {
    }

#endif // _WIN32

    return 1;
}
template<> DWORD workerThreadInit<false, false>(LPVOID pData) = delete;

//////////////////////////////////////////////////////////////////////////
/// @brief Creates thread pool info but doesn't launch threads.
/// @param pContext - pointer to context
/// @param pPool - pointer to thread pool object.
void CreateThreadPool(SWR_CONTEXT* pContext, THREAD_POOL* pPool)
{
    bindThread(pContext, 0);

    CPUNumaNodes nodes;
    uint32_t numThreadsPerProcGroup = 0;
    CalculateProcessorTopology(nodes, numThreadsPerProcGroup);

    uint32_t numHWNodes         = (uint32_t)nodes.size();
    uint32_t numHWCoresPerNode  = (uint32_t)nodes[0].cores.size();
    uint32_t numHWHyperThreads  = (uint32_t)nodes[0].cores[0].threadIds.size();

    // Calculate num HW threads.  Due to asymmetric topologies, this is not
    // a trivial multiplication.
    uint32_t numHWThreads = 0;
    for (auto& node : nodes)
    {
        for (auto& core : node.cores)
        {
            numHWThreads += (uint32_t)core.threadIds.size();
        }
    }

    uint32_t numNodes           = numHWNodes;
    uint32_t numCoresPerNode    = numHWCoresPerNode;
    uint32_t numHyperThreads    = numHWHyperThreads;

    if (pContext->threadInfo.MAX_NUMA_NODES)
    {
        numNodes = std::min(numNodes, pContext->threadInfo.MAX_NUMA_NODES);
    }

    if (pContext->threadInfo.MAX_CORES_PER_NUMA_NODE)
    {
        numCoresPerNode = std::min(numCoresPerNode, pContext->threadInfo.MAX_CORES_PER_NUMA_NODE);
    }

    if (pContext->threadInfo.MAX_THREADS_PER_CORE)
    {
        numHyperThreads = std::min(numHyperThreads, pContext->threadInfo.MAX_THREADS_PER_CORE);
    }

#if defined(_WIN32) && !defined(_WIN64)
    if (!pContext->threadInfo.MAX_WORKER_THREADS)
    {
        // Limit 32-bit windows to bindable HW threads only
        if ((numCoresPerNode * numHWHyperThreads) > 32)
        {
            numCoresPerNode = 32 / numHWHyperThreads;
        }
    }
#endif

    // Calculate numThreads
    uint32_t numThreads = numNodes * numCoresPerNode * numHyperThreads;
    numThreads = std::min(numThreads, numHWThreads);

    if (pContext->threadInfo.MAX_WORKER_THREADS)
    {
        uint32_t maxHWThreads = numHWNodes * numHWCoresPerNode * numHWHyperThreads;
        numThreads = std::min(pContext->threadInfo.MAX_WORKER_THREADS, maxHWThreads);
    }

    uint32_t numAPIReservedThreads = 1;


    if (numThreads == 1)
    {
        // If only 1 worker threads, try to move it to an available
        // HW thread.  If that fails, use the API thread.
        if (numCoresPerNode < numHWCoresPerNode)
        {
            numCoresPerNode++;
        }
        else if (numHyperThreads < numHWHyperThreads)
        {
            numHyperThreads++;
        }
        else if (numNodes < numHWNodes)
        {
            numNodes++;
        }
        else
        {
            pContext->threadInfo.SINGLE_THREADED = true;
        }
    }
    else
    {
        // Save HW threads for the API if we can
        if (numThreads > numAPIReservedThreads)
        {
            numThreads -= numAPIReservedThreads;
        }
        else
        {
            numAPIReservedThreads = 0;
        }
    }

    if (pContext->threadInfo.SINGLE_THREADED)
    {
        numThreads = 1;
    }

    // Initialize DRAW_CONTEXT's per-thread stats
    for (uint32_t dc = 0; dc < KNOB_MAX_DRAWS_IN_FLIGHT; ++dc)
    {
        pContext->dcRing[dc].dynState.pStats = new SWR_STATS[numThreads];
        memset(pContext->dcRing[dc].dynState.pStats, 0, sizeof(SWR_STATS) * numThreads);
    }

    if (pContext->threadInfo.SINGLE_THREADED)
    {
        pContext->NumWorkerThreads = 1;
        pContext->NumFEThreads = 1;
        pContext->NumBEThreads = 1;
        pPool->numThreads = 0;

        return;
    }

    pPool->numThreads = numThreads;
    pContext->NumWorkerThreads = pPool->numThreads;

    pPool->pThreadData = (THREAD_DATA *)malloc(pPool->numThreads * sizeof(THREAD_DATA));
    pPool->numaMask = 0;

    pPool->pThreads = new THREAD_PTR[pPool->numThreads];

    if (pContext->threadInfo.MAX_WORKER_THREADS)
    {
        bool bForceBindProcGroup = (numThreads > numThreadsPerProcGroup);
        uint32_t numProcGroups = (numThreads + numThreadsPerProcGroup - 1) / numThreadsPerProcGroup;
        // When MAX_WORKER_THREADS is set we don't bother to bind to specific HW threads
        // But Windows will still require binding to specific process groups
        for (uint32_t workerId = 0; workerId < numThreads; ++workerId)
        {
            pPool->pThreadData[workerId].workerId = workerId;
            pPool->pThreadData[workerId].procGroupId = workerId % numProcGroups;
            pPool->pThreadData[workerId].threadId = 0;
            pPool->pThreadData[workerId].numaId = 0;
            pPool->pThreadData[workerId].coreId = 0;
            pPool->pThreadData[workerId].htId = 0;
            pPool->pThreadData[workerId].pContext = pContext;
            pPool->pThreadData[workerId].forceBindProcGroup = bForceBindProcGroup;

            pContext->NumBEThreads++;
            pContext->NumFEThreads++;
        }
    }
    else
    {
        pPool->numaMask = numNodes - 1; // Only works for 2**n numa nodes (1, 2, 4, etc.)

        uint32_t workerId = 0;
        for (uint32_t n = 0; n < numNodes; ++n)
        {
            auto& node = nodes[n];
            uint32_t numCores = numCoresPerNode;
            for (uint32_t c = 0; c < numCores; ++c)
            {
                if (c >= node.cores.size())
                {
                    break;
                }

                auto& core = node.cores[c];
                for (uint32_t t = 0; t < numHyperThreads; ++t)
                {
                    if (t >= core.threadIds.size())
                    {
                        break;
                    }

                    if (numAPIReservedThreads)
                    {
                        --numAPIReservedThreads;
                        continue;
                    }

                    SWR_ASSERT(workerId < numThreads);

                    pPool->pThreadData[workerId].workerId = workerId;
                    pPool->pThreadData[workerId].procGroupId = core.procGroup;
                    pPool->pThreadData[workerId].threadId = core.threadIds[t];
                    pPool->pThreadData[workerId].numaId = n;
                    pPool->pThreadData[workerId].coreId = c;
                    pPool->pThreadData[workerId].htId = t;
                    pPool->pThreadData[workerId].pContext = pContext;

                    pContext->NumBEThreads++;
                    pContext->NumFEThreads++;

                    ++workerId;
                }
            }
        }
        SWR_ASSERT(workerId == pContext->NumWorkerThreads);
    }
}

//////////////////////////////////////////////////////////////////////////
/// @brief Launches worker threads in thread pool.
/// @param pContext - pointer to context
/// @param pPool - pointer to thread pool object.
void StartThreadPool(SWR_CONTEXT* pContext, THREAD_POOL* pPool)
{
    if (pContext->threadInfo.SINGLE_THREADED)
    {
        return;
    }

    for (uint32_t workerId = 0; workerId < pContext->NumWorkerThreads; ++workerId)
    {
        pPool->pThreads[workerId] = new std::thread(workerThreadInit<true, true>, &pPool->pThreadData[workerId]);
    }
}

//////////////////////////////////////////////////////////////////////////
/// @brief Destroys thread pool.
/// @param pContext - pointer to context
/// @param pPool - pointer to thread pool object.
void DestroyThreadPool(SWR_CONTEXT *pContext, THREAD_POOL *pPool)
{
    if (!pContext->threadInfo.SINGLE_THREADED)
    {
        // Wait for all threads to finish
        SwrWaitForIdle(pContext);

        // Wait for threads to finish and destroy them
        for (uint32_t t = 0; t < pPool->numThreads; ++t)
        {
            // Detach from thread.  Cannot join() due to possibility (in Windows) of code
            // in some DLLMain(THREAD_DETATCH case) blocking the thread until after this returns.
            pPool->pThreads[t]->detach();
            delete(pPool->pThreads[t]);
        }

        delete [] pPool->pThreads;

        // Clean up data used by threads
        free(pPool->pThreadData);
    }
}