summaryrefslogtreecommitdiffstats
path: root/src/intel/vulkan/genX_pipeline_util.h
blob: 129ae94aebaf2ab9189c0d6ecb227935e8e77358 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
/*
 * Copyright © 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#ifndef GENX_PIPELINE_UTIL_H
#define GENX_PIPELINE_UTIL_H

#include "common/gen_l3_config.h"
#include "common/gen_sample_positions.h"
#include "vk_format_info.h"

static uint32_t
vertex_element_comp_control(enum isl_format format, unsigned comp)
{
   uint8_t bits;
   switch (comp) {
   case 0: bits = isl_format_layouts[format].channels.r.bits; break;
   case 1: bits = isl_format_layouts[format].channels.g.bits; break;
   case 2: bits = isl_format_layouts[format].channels.b.bits; break;
   case 3: bits = isl_format_layouts[format].channels.a.bits; break;
   default: unreachable("Invalid component");
   }

   if (bits) {
      return VFCOMP_STORE_SRC;
   } else if (comp < 3) {
      return VFCOMP_STORE_0;
   } else if (isl_format_layouts[format].channels.r.type == ISL_UINT ||
            isl_format_layouts[format].channels.r.type == ISL_SINT) {
      assert(comp == 3);
      return VFCOMP_STORE_1_INT;
   } else {
      assert(comp == 3);
      return VFCOMP_STORE_1_FP;
   }
}

static void
emit_vertex_input(struct anv_pipeline *pipeline,
                  const VkPipelineVertexInputStateCreateInfo *info)
{
   const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);

   /* Pull inputs_read out of the VS prog data */
   const uint64_t inputs_read = vs_prog_data->inputs_read;
   assert((inputs_read & ((1 << VERT_ATTRIB_GENERIC0) - 1)) == 0);
   const uint32_t elements = inputs_read >> VERT_ATTRIB_GENERIC0;

#if GEN_GEN >= 8
   /* On BDW+, we only need to allocate space for base ids.  Setting up
    * the actual vertex and instance id is a separate packet.
    */
   const bool needs_svgs_elem = vs_prog_data->uses_basevertex ||
                                vs_prog_data->uses_baseinstance;
#else
   /* On Haswell and prior, vertex and instance id are created by using the
    * ComponentControl fields, so we need an element for any of them.
    */
   const bool needs_svgs_elem = vs_prog_data->uses_vertexid ||
                                vs_prog_data->uses_instanceid ||
                                vs_prog_data->uses_basevertex ||
                                vs_prog_data->uses_baseinstance;
#endif

   uint32_t elem_count = __builtin_popcount(elements) + needs_svgs_elem;
   if (elem_count == 0)
      return;

   uint32_t *p;

   const uint32_t num_dwords = 1 + elem_count * 2;
   p = anv_batch_emitn(&pipeline->batch, num_dwords,
                       GENX(3DSTATE_VERTEX_ELEMENTS));
   memset(p + 1, 0, (num_dwords - 1) * 4);

   for (uint32_t i = 0; i < info->vertexAttributeDescriptionCount; i++) {
      const VkVertexInputAttributeDescription *desc =
         &info->pVertexAttributeDescriptions[i];
      enum isl_format format = anv_get_isl_format(&pipeline->device->info,
                                                  desc->format,
                                                  VK_IMAGE_ASPECT_COLOR_BIT,
                                                  VK_IMAGE_TILING_LINEAR);

      assert(desc->binding < 32);

      if ((elements & (1 << desc->location)) == 0)
         continue; /* Binding unused */

      uint32_t slot = __builtin_popcount(elements & ((1 << desc->location) - 1));

      struct GENX(VERTEX_ELEMENT_STATE) element = {
         .VertexBufferIndex = desc->binding,
         .Valid = true,
         .SourceElementFormat = format,
         .EdgeFlagEnable = false,
         .SourceElementOffset = desc->offset,
         .Component0Control = vertex_element_comp_control(format, 0),
         .Component1Control = vertex_element_comp_control(format, 1),
         .Component2Control = vertex_element_comp_control(format, 2),
         .Component3Control = vertex_element_comp_control(format, 3),
      };
      GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + slot * 2], &element);

#if GEN_GEN >= 8
      /* On Broadwell and later, we have a separate VF_INSTANCING packet
       * that controls instancing.  On Haswell and prior, that's part of
       * VERTEX_BUFFER_STATE which we emit later.
       */
      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_INSTANCING), vfi) {
         vfi.InstancingEnable = pipeline->instancing_enable[desc->binding];
         vfi.VertexElementIndex = slot;
         /* Vulkan so far doesn't have an instance divisor, so
          * this is always 1 (ignored if not instancing). */
         vfi.InstanceDataStepRate = 1;
      }
#endif
   }

   const uint32_t id_slot = __builtin_popcount(elements);
   if (needs_svgs_elem) {
      /* From the Broadwell PRM for the 3D_Vertex_Component_Control enum:
       *    "Within a VERTEX_ELEMENT_STATE structure, if a Component
       *    Control field is set to something other than VFCOMP_STORE_SRC,
       *    no higher-numbered Component Control fields may be set to
       *    VFCOMP_STORE_SRC"
       *
       * This means, that if we have BaseInstance, we need BaseVertex as
       * well.  Just do all or nothing.
       */
      uint32_t base_ctrl = (vs_prog_data->uses_basevertex ||
                            vs_prog_data->uses_baseinstance) ?
                           VFCOMP_STORE_SRC : VFCOMP_STORE_0;

      struct GENX(VERTEX_ELEMENT_STATE) element = {
         .VertexBufferIndex = 32, /* Reserved for this */
         .Valid = true,
         .SourceElementFormat = ISL_FORMAT_R32G32_UINT,
         .Component0Control = base_ctrl,
         .Component1Control = base_ctrl,
#if GEN_GEN >= 8
         .Component2Control = VFCOMP_STORE_0,
         .Component3Control = VFCOMP_STORE_0,
#else
         .Component2Control = VFCOMP_STORE_VID,
         .Component3Control = VFCOMP_STORE_IID,
#endif
      };
      GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + id_slot * 2], &element);
   }

#if GEN_GEN >= 8
   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_SGVS), sgvs) {
      sgvs.VertexIDEnable              = vs_prog_data->uses_vertexid;
      sgvs.VertexIDComponentNumber     = 2;
      sgvs.VertexIDElementOffset       = id_slot;
      sgvs.InstanceIDEnable            = vs_prog_data->uses_instanceid;
      sgvs.InstanceIDComponentNumber   = 3;
      sgvs.InstanceIDElementOffset     = id_slot;
   }
#endif
}

void
genX(emit_urb_setup)(struct anv_device *device, struct anv_batch *batch,
                     VkShaderStageFlags active_stages,
                     unsigned vs_size, unsigned gs_size,
                     const struct gen_l3_config *l3_config)
{
   if (!(active_stages & VK_SHADER_STAGE_VERTEX_BIT))
      vs_size = 1;

   if (!(active_stages & VK_SHADER_STAGE_GEOMETRY_BIT))
      gs_size = 1;

   unsigned vs_entry_size_bytes = vs_size * 64;
   unsigned gs_entry_size_bytes = gs_size * 64;

   /* From p35 of the Ivy Bridge PRM (section 1.7.1: 3DSTATE_URB_GS):
    *
    *     VS Number of URB Entries must be divisible by 8 if the VS URB Entry
    *     Allocation Size is less than 9 512-bit URB entries.
    *
    * Similar text exists for GS.
    */
   unsigned vs_granularity = (vs_size < 9) ? 8 : 1;
   unsigned gs_granularity = (gs_size < 9) ? 8 : 1;

   /* URB allocations must be done in 8k chunks. */
   unsigned chunk_size_bytes = 8192;

   /* Determine the size of the URB in chunks. */
   const unsigned total_urb_size =
      gen_get_l3_config_urb_size(&device->info, l3_config);
   const unsigned urb_chunks = total_urb_size * 1024 / chunk_size_bytes;

   /* Reserve space for push constants */
   unsigned push_constant_kb;
   if (device->info.gen >= 8)
      push_constant_kb = 32;
   else if (device->info.is_haswell)
      push_constant_kb = device->info.gt == 3 ? 32 : 16;
   else
      push_constant_kb = 16;

   unsigned push_constant_bytes = push_constant_kb * 1024;
   unsigned push_constant_chunks =
      push_constant_bytes / chunk_size_bytes;

   /* Initially, assign each stage the minimum amount of URB space it needs,
    * and make a note of how much additional space it "wants" (the amount of
    * additional space it could actually make use of).
    */

   /* VS has a lower limit on the number of URB entries */
   unsigned vs_chunks =
      ALIGN(device->info.urb.min_vs_entries * vs_entry_size_bytes,
            chunk_size_bytes) / chunk_size_bytes;
   unsigned vs_wants =
      ALIGN(device->info.urb.max_vs_entries * vs_entry_size_bytes,
            chunk_size_bytes) / chunk_size_bytes - vs_chunks;

   unsigned gs_chunks = 0;
   unsigned gs_wants = 0;
   if (active_stages & VK_SHADER_STAGE_GEOMETRY_BIT) {
      /* There are two constraints on the minimum amount of URB space we can
       * allocate:
       *
       * (1) We need room for at least 2 URB entries, since we always operate
       * the GS in DUAL_OBJECT mode.
       *
       * (2) We can't allocate less than nr_gs_entries_granularity.
       */
      gs_chunks = ALIGN(MAX2(gs_granularity, 2) * gs_entry_size_bytes,
                        chunk_size_bytes) / chunk_size_bytes;
      gs_wants =
         ALIGN(device->info.urb.max_gs_entries * gs_entry_size_bytes,
               chunk_size_bytes) / chunk_size_bytes - gs_chunks;
   }

   /* There should always be enough URB space to satisfy the minimum
    * requirements of each stage.
    */
   unsigned total_needs = push_constant_chunks + vs_chunks + gs_chunks;
   assert(total_needs <= urb_chunks);

   /* Mete out remaining space (if any) in proportion to "wants". */
   unsigned total_wants = vs_wants + gs_wants;
   unsigned remaining_space = urb_chunks - total_needs;
   if (remaining_space > total_wants)
      remaining_space = total_wants;
   if (remaining_space > 0) {
      unsigned vs_additional = (unsigned)
         round(vs_wants * (((double) remaining_space) / total_wants));
      vs_chunks += vs_additional;
      remaining_space -= vs_additional;
      gs_chunks += remaining_space;
   }

   /* Sanity check that we haven't over-allocated. */
   assert(push_constant_chunks + vs_chunks + gs_chunks <= urb_chunks);

   /* Finally, compute the number of entries that can fit in the space
    * allocated to each stage.
    */
   unsigned nr_vs_entries = vs_chunks * chunk_size_bytes / vs_entry_size_bytes;
   unsigned nr_gs_entries = gs_chunks * chunk_size_bytes / gs_entry_size_bytes;

   /* Since we rounded up when computing *_wants, this may be slightly more
    * than the maximum allowed amount, so correct for that.
    */
   nr_vs_entries = MIN2(nr_vs_entries, device->info.urb.max_vs_entries);
   nr_gs_entries = MIN2(nr_gs_entries, device->info.urb.max_gs_entries);

   /* Ensure that we program a multiple of the granularity. */
   nr_vs_entries = ROUND_DOWN_TO(nr_vs_entries, vs_granularity);
   nr_gs_entries = ROUND_DOWN_TO(nr_gs_entries, gs_granularity);

   /* Finally, sanity check to make sure we have at least the minimum number
    * of entries needed for each stage.
    */
   assert(nr_vs_entries >= device->info.urb.min_vs_entries);
   if (active_stages & VK_SHADER_STAGE_GEOMETRY_BIT)
      assert(nr_gs_entries >= 2);

#if GEN_GEN == 7 && !GEN_IS_HASWELL
   /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
    *
    *    "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth stall
    *    needs to be sent just prior to any 3DSTATE_VS, 3DSTATE_URB_VS,
    *    3DSTATE_CONSTANT_VS, 3DSTATE_BINDING_TABLE_POINTER_VS,
    *    3DSTATE_SAMPLER_STATE_POINTER_VS command.  Only one PIPE_CONTROL
    *    needs to be sent before any combination of VS associated 3DSTATE."
    */
   anv_batch_emit(batch, GEN7_PIPE_CONTROL, pc) {
      pc.DepthStallEnable  = true;
      pc.PostSyncOperation = WriteImmediateData;
      pc.Address           = (struct anv_address) { &device->workaround_bo, 0 };
   }
#endif

   /* Lay out the URB in the following order:
    * - push constants
    * - VS
    * - GS
    */
   anv_batch_emit(batch, GENX(3DSTATE_URB_VS), urb) {
      urb.VSURBStartingAddress      = push_constant_chunks;
      urb.VSURBEntryAllocationSize  = vs_size - 1;
      urb.VSNumberofURBEntries      = nr_vs_entries;
   }

   anv_batch_emit(batch, GENX(3DSTATE_URB_HS), urb) {
      urb.HSURBStartingAddress      = push_constant_chunks;
   }

   anv_batch_emit(batch, GENX(3DSTATE_URB_DS), urb) {
      urb.DSURBStartingAddress      = push_constant_chunks;
   }

   anv_batch_emit(batch, GENX(3DSTATE_URB_GS), urb) {
      urb.GSURBStartingAddress      = push_constant_chunks + vs_chunks;
      urb.GSURBEntryAllocationSize  = gs_size - 1;
      urb.GSNumberofURBEntries      = nr_gs_entries;
   }
}

static inline void
emit_urb_setup(struct anv_pipeline *pipeline)
{
   unsigned vs_entry_size =
      (pipeline->active_stages & VK_SHADER_STAGE_VERTEX_BIT) ?
      get_vs_prog_data(pipeline)->base.urb_entry_size : 0;
   unsigned gs_entry_size =
      (pipeline->active_stages & VK_SHADER_STAGE_GEOMETRY_BIT) ?
      get_gs_prog_data(pipeline)->base.urb_entry_size : 0;

   genX(emit_urb_setup)(pipeline->device, &pipeline->batch,
                        pipeline->active_stages, vs_entry_size, gs_entry_size,
                        pipeline->urb.l3_config);
}

static void
emit_3dstate_sbe(struct anv_pipeline *pipeline)
{
   const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
   const struct brw_gs_prog_data *gs_prog_data = get_gs_prog_data(pipeline);
   const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
   const struct brw_vue_map *fs_input_map;

   if (pipeline->gs_kernel == NO_KERNEL)
      fs_input_map = &vs_prog_data->base.vue_map;
   else
      fs_input_map = &gs_prog_data->base.vue_map;

   struct GENX(3DSTATE_SBE) sbe = {
      GENX(3DSTATE_SBE_header),
      .AttributeSwizzleEnable = true,
      .PointSpriteTextureCoordinateOrigin = UPPERLEFT,
      .NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs,
      .ConstantInterpolationEnable = wm_prog_data->flat_inputs,
   };

#if GEN_GEN >= 9
   for (unsigned i = 0; i < 32; i++)
      sbe.AttributeActiveComponentFormat[i] = ACF_XYZW;
#endif

#if GEN_GEN >= 8
   /* On Broadwell, they broke 3DSTATE_SBE into two packets */
   struct GENX(3DSTATE_SBE_SWIZ) swiz = {
      GENX(3DSTATE_SBE_SWIZ_header),
   };
#else
#  define swiz sbe
#endif

   int max_source_attr = 0;
   for (int attr = 0; attr < VARYING_SLOT_MAX; attr++) {
      int input_index = wm_prog_data->urb_setup[attr];

      if (input_index < 0)
         continue;

      if (attr == VARYING_SLOT_PNTC) {
         sbe.PointSpriteTextureCoordinateEnable = 1 << input_index;
         continue;
      }

      const int slot = fs_input_map->varying_to_slot[attr];

      if (input_index >= 16)
         continue;

      if (slot == -1) {
         /* This attribute does not exist in the VUE--that means that the
          * vertex shader did not write to it.  It could be that it's a
          * regular varying read by the fragment shader but not written by
          * the vertex shader or it's gl_PrimitiveID. In the first case the
          * value is undefined, in the second it needs to be
          * gl_PrimitiveID.
          */
         swiz.Attribute[input_index].ConstantSource = PRIM_ID;
         swiz.Attribute[input_index].ComponentOverrideX = true;
         swiz.Attribute[input_index].ComponentOverrideY = true;
         swiz.Attribute[input_index].ComponentOverrideZ = true;
         swiz.Attribute[input_index].ComponentOverrideW = true;
      } else {
         assert(slot >= 2);
         const int source_attr = slot - 2;
         max_source_attr = MAX2(max_source_attr, source_attr);
         /* We have to subtract two slots to accout for the URB entry output
          * read offset in the VS and GS stages.
          */
         swiz.Attribute[input_index].SourceAttribute = source_attr;
      }
   }

   sbe.VertexURBEntryReadOffset = 1; /* Skip the VUE header and position slots */
   sbe.VertexURBEntryReadLength = DIV_ROUND_UP(max_source_attr + 1, 2);

   uint32_t *dw = anv_batch_emit_dwords(&pipeline->batch,
                                        GENX(3DSTATE_SBE_length));
   GENX(3DSTATE_SBE_pack)(&pipeline->batch, dw, &sbe);

#if GEN_GEN >= 8
   dw = anv_batch_emit_dwords(&pipeline->batch, GENX(3DSTATE_SBE_SWIZ_length));
   GENX(3DSTATE_SBE_SWIZ_pack)(&pipeline->batch, dw, &swiz);
#endif
}

static inline uint32_t
scratch_space(const struct brw_stage_prog_data *prog_data)
{
   return ffs(prog_data->total_scratch / 2048);
}

static const uint32_t vk_to_gen_cullmode[] = {
   [VK_CULL_MODE_NONE]                       = CULLMODE_NONE,
   [VK_CULL_MODE_FRONT_BIT]                  = CULLMODE_FRONT,
   [VK_CULL_MODE_BACK_BIT]                   = CULLMODE_BACK,
   [VK_CULL_MODE_FRONT_AND_BACK]             = CULLMODE_BOTH
};

static const uint32_t vk_to_gen_fillmode[] = {
   [VK_POLYGON_MODE_FILL]                    = FILL_MODE_SOLID,
   [VK_POLYGON_MODE_LINE]                    = FILL_MODE_WIREFRAME,
   [VK_POLYGON_MODE_POINT]                   = FILL_MODE_POINT,
};

static const uint32_t vk_to_gen_front_face[] = {
   [VK_FRONT_FACE_COUNTER_CLOCKWISE]         = 1,
   [VK_FRONT_FACE_CLOCKWISE]                 = 0
};

static void
emit_rs_state(struct anv_pipeline *pipeline,
              const VkPipelineRasterizationStateCreateInfo *rs_info,
              const VkPipelineMultisampleStateCreateInfo *ms_info,
              const struct anv_render_pass *pass,
              const struct anv_subpass *subpass)
{
   struct GENX(3DSTATE_SF) sf = {
      GENX(3DSTATE_SF_header),
   };

   sf.ViewportTransformEnable = true;
   sf.StatisticsEnable = true;
   sf.TriangleStripListProvokingVertexSelect = 0;
   sf.LineStripListProvokingVertexSelect = 0;
   sf.TriangleFanProvokingVertexSelect = 1;
   sf.PointWidthSource = Vertex;
   sf.PointWidth = 1.0;

#if GEN_GEN >= 8
   struct GENX(3DSTATE_RASTER) raster = {
      GENX(3DSTATE_RASTER_header),
   };
#else
#  define raster sf
#endif

   /* For details on 3DSTATE_RASTER multisample state, see the BSpec table
    * "Multisample Modes State".
    */
#if GEN_GEN >= 8
   raster.DXMultisampleRasterizationEnable = true;
   raster.ForcedSampleCount = FSC_NUMRASTSAMPLES_0;
   raster.ForceMultisampling = false;
#else
   raster.MultisampleRasterizationMode =
      (ms_info && ms_info->rasterizationSamples > 1) ?
      MSRASTMODE_ON_PATTERN : MSRASTMODE_OFF_PIXEL;
#endif

   raster.FrontWinding = vk_to_gen_front_face[rs_info->frontFace];
   raster.CullMode = vk_to_gen_cullmode[rs_info->cullMode];
   raster.FrontFaceFillMode = vk_to_gen_fillmode[rs_info->polygonMode];
   raster.BackFaceFillMode = vk_to_gen_fillmode[rs_info->polygonMode];
   raster.ScissorRectangleEnable = true;

#if GEN_GEN >= 9
   /* GEN9+ splits ViewportZClipTestEnable into near and far enable bits */
   raster.ViewportZFarClipTestEnable = !pipeline->depth_clamp_enable;
   raster.ViewportZNearClipTestEnable = !pipeline->depth_clamp_enable;
#elif GEN_GEN >= 8
   raster.ViewportZClipTestEnable = !pipeline->depth_clamp_enable;
#endif

   raster.GlobalDepthOffsetEnableSolid = rs_info->depthBiasEnable;
   raster.GlobalDepthOffsetEnableWireframe = rs_info->depthBiasEnable;
   raster.GlobalDepthOffsetEnablePoint = rs_info->depthBiasEnable;

#if GEN_GEN == 7
   /* Gen7 requires that we provide the depth format in 3DSTATE_SF so that it
    * can get the depth offsets correct.
    */
   if (subpass->depth_stencil_attachment < pass->attachment_count) {
      VkFormat vk_format =
         pass->attachments[subpass->depth_stencil_attachment].format;
      assert(vk_format_is_depth_or_stencil(vk_format));
      if (vk_format_aspects(vk_format) & VK_IMAGE_ASPECT_DEPTH_BIT) {
         enum isl_format isl_format =
            anv_get_isl_format(&pipeline->device->info, vk_format,
                               VK_IMAGE_ASPECT_DEPTH_BIT,
                               VK_IMAGE_TILING_OPTIMAL);
         sf.DepthBufferSurfaceFormat =
            isl_format_get_depth_format(isl_format, false);
      }
   }
#endif

#if GEN_GEN >= 8
   GENX(3DSTATE_SF_pack)(NULL, pipeline->gen8.sf, &sf);
   GENX(3DSTATE_RASTER_pack)(NULL, pipeline->gen8.raster, &raster);
#else
#  undef raster
   GENX(3DSTATE_SF_pack)(NULL, &pipeline->gen7.sf, &sf);
#endif
}

static void
emit_ms_state(struct anv_pipeline *pipeline,
              const VkPipelineMultisampleStateCreateInfo *info)
{
   uint32_t samples = 1;
   uint32_t log2_samples = 0;

   /* From the Vulkan 1.0 spec:
    *    If pSampleMask is NULL, it is treated as if the mask has all bits
    *    enabled, i.e. no coverage is removed from fragments.
    *
    * 3DSTATE_SAMPLE_MASK.SampleMask is 16 bits.
    */
#if GEN_GEN >= 8
   uint32_t sample_mask = 0xffff;
#else
   uint32_t sample_mask = 0xff;
#endif

   if (info) {
      samples = info->rasterizationSamples;
      log2_samples = __builtin_ffs(samples) - 1;
   }

   if (info && info->pSampleMask)
      sample_mask &= info->pSampleMask[0];

   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_MULTISAMPLE), ms) {
      ms.NumberofMultisamples       = log2_samples;

#if GEN_GEN >= 8
      /* The PRM says that this bit is valid only for DX9:
       *
       *    SW can choose to set this bit only for DX9 API. DX10/OGL API's
       *    should not have any effect by setting or not setting this bit.
       */
      ms.PixelPositionOffsetEnable  = false;
      ms.PixelLocation              = CENTER;
#else
      ms.PixelLocation              = PIXLOC_CENTER;

      switch (samples) {
      case 1:
         GEN_SAMPLE_POS_1X(ms.Sample);
         break;
      case 2:
         GEN_SAMPLE_POS_2X(ms.Sample);
         break;
      case 4:
         GEN_SAMPLE_POS_4X(ms.Sample);
         break;
      case 8:
         GEN_SAMPLE_POS_8X(ms.Sample);
         break;
      default:
         break;
      }
#endif
   }

   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_SAMPLE_MASK), sm) {
      sm.SampleMask = sample_mask;
   }
}

static const uint32_t vk_to_gen_logic_op[] = {
   [VK_LOGIC_OP_COPY]                        = LOGICOP_COPY,
   [VK_LOGIC_OP_CLEAR]                       = LOGICOP_CLEAR,
   [VK_LOGIC_OP_AND]                         = LOGICOP_AND,
   [VK_LOGIC_OP_AND_REVERSE]                 = LOGICOP_AND_REVERSE,
   [VK_LOGIC_OP_AND_INVERTED]                = LOGICOP_AND_INVERTED,
   [VK_LOGIC_OP_NO_OP]                       = LOGICOP_NOOP,
   [VK_LOGIC_OP_XOR]                         = LOGICOP_XOR,
   [VK_LOGIC_OP_OR]                          = LOGICOP_OR,
   [VK_LOGIC_OP_NOR]                         = LOGICOP_NOR,
   [VK_LOGIC_OP_EQUIVALENT]                  = LOGICOP_EQUIV,
   [VK_LOGIC_OP_INVERT]                      = LOGICOP_INVERT,
   [VK_LOGIC_OP_OR_REVERSE]                  = LOGICOP_OR_REVERSE,
   [VK_LOGIC_OP_COPY_INVERTED]               = LOGICOP_COPY_INVERTED,
   [VK_LOGIC_OP_OR_INVERTED]                 = LOGICOP_OR_INVERTED,
   [VK_LOGIC_OP_NAND]                        = LOGICOP_NAND,
   [VK_LOGIC_OP_SET]                         = LOGICOP_SET,
};

static const uint32_t vk_to_gen_blend[] = {
   [VK_BLEND_FACTOR_ZERO]                    = BLENDFACTOR_ZERO,
   [VK_BLEND_FACTOR_ONE]                     = BLENDFACTOR_ONE,
   [VK_BLEND_FACTOR_SRC_COLOR]               = BLENDFACTOR_SRC_COLOR,
   [VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR]     = BLENDFACTOR_INV_SRC_COLOR,
   [VK_BLEND_FACTOR_DST_COLOR]               = BLENDFACTOR_DST_COLOR,
   [VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR]     = BLENDFACTOR_INV_DST_COLOR,
   [VK_BLEND_FACTOR_SRC_ALPHA]               = BLENDFACTOR_SRC_ALPHA,
   [VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA]     = BLENDFACTOR_INV_SRC_ALPHA,
   [VK_BLEND_FACTOR_DST_ALPHA]               = BLENDFACTOR_DST_ALPHA,
   [VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA]     = BLENDFACTOR_INV_DST_ALPHA,
   [VK_BLEND_FACTOR_CONSTANT_COLOR]          = BLENDFACTOR_CONST_COLOR,
   [VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR]= BLENDFACTOR_INV_CONST_COLOR,
   [VK_BLEND_FACTOR_CONSTANT_ALPHA]          = BLENDFACTOR_CONST_ALPHA,
   [VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA]= BLENDFACTOR_INV_CONST_ALPHA,
   [VK_BLEND_FACTOR_SRC_ALPHA_SATURATE]      = BLENDFACTOR_SRC_ALPHA_SATURATE,
   [VK_BLEND_FACTOR_SRC1_COLOR]              = BLENDFACTOR_SRC1_COLOR,
   [VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR]    = BLENDFACTOR_INV_SRC1_COLOR,
   [VK_BLEND_FACTOR_SRC1_ALPHA]              = BLENDFACTOR_SRC1_ALPHA,
   [VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA]    = BLENDFACTOR_INV_SRC1_ALPHA,
};

static const uint32_t vk_to_gen_blend_op[] = {
   [VK_BLEND_OP_ADD]                         = BLENDFUNCTION_ADD,
   [VK_BLEND_OP_SUBTRACT]                    = BLENDFUNCTION_SUBTRACT,
   [VK_BLEND_OP_REVERSE_SUBTRACT]            = BLENDFUNCTION_REVERSE_SUBTRACT,
   [VK_BLEND_OP_MIN]                         = BLENDFUNCTION_MIN,
   [VK_BLEND_OP_MAX]                         = BLENDFUNCTION_MAX,
};

static const uint32_t vk_to_gen_compare_op[] = {
   [VK_COMPARE_OP_NEVER]                        = PREFILTEROPNEVER,
   [VK_COMPARE_OP_LESS]                         = PREFILTEROPLESS,
   [VK_COMPARE_OP_EQUAL]                        = PREFILTEROPEQUAL,
   [VK_COMPARE_OP_LESS_OR_EQUAL]                = PREFILTEROPLEQUAL,
   [VK_COMPARE_OP_GREATER]                      = PREFILTEROPGREATER,
   [VK_COMPARE_OP_NOT_EQUAL]                    = PREFILTEROPNOTEQUAL,
   [VK_COMPARE_OP_GREATER_OR_EQUAL]             = PREFILTEROPGEQUAL,
   [VK_COMPARE_OP_ALWAYS]                       = PREFILTEROPALWAYS,
};

static const uint32_t vk_to_gen_stencil_op[] = {
   [VK_STENCIL_OP_KEEP]                         = STENCILOP_KEEP,
   [VK_STENCIL_OP_ZERO]                         = STENCILOP_ZERO,
   [VK_STENCIL_OP_REPLACE]                      = STENCILOP_REPLACE,
   [VK_STENCIL_OP_INCREMENT_AND_CLAMP]          = STENCILOP_INCRSAT,
   [VK_STENCIL_OP_DECREMENT_AND_CLAMP]          = STENCILOP_DECRSAT,
   [VK_STENCIL_OP_INVERT]                       = STENCILOP_INVERT,
   [VK_STENCIL_OP_INCREMENT_AND_WRAP]           = STENCILOP_INCR,
   [VK_STENCIL_OP_DECREMENT_AND_WRAP]           = STENCILOP_DECR,
};

static void
emit_ds_state(struct anv_pipeline *pipeline,
              const VkPipelineDepthStencilStateCreateInfo *info,
              const struct anv_render_pass *pass,
              const struct anv_subpass *subpass)
{
#if GEN_GEN == 7
#  define depth_stencil_dw pipeline->gen7.depth_stencil_state
#elif GEN_GEN == 8
#  define depth_stencil_dw pipeline->gen8.wm_depth_stencil
#else
#  define depth_stencil_dw pipeline->gen9.wm_depth_stencil
#endif

   if (info == NULL) {
      /* We're going to OR this together with the dynamic state.  We need
       * to make sure it's initialized to something useful.
       */
      memset(depth_stencil_dw, 0, sizeof(depth_stencil_dw));
      return;
   }

   /* VkBool32 depthBoundsTestEnable; // optional (depth_bounds_test) */

#if GEN_GEN <= 7
   struct GENX(DEPTH_STENCIL_STATE) depth_stencil = {
#else
   struct GENX(3DSTATE_WM_DEPTH_STENCIL) depth_stencil = {
#endif
      .DepthTestEnable = info->depthTestEnable,
      .DepthBufferWriteEnable = info->depthWriteEnable,
      .DepthTestFunction = vk_to_gen_compare_op[info->depthCompareOp],
      .DoubleSidedStencilEnable = true,

      .StencilTestEnable = info->stencilTestEnable,
      .StencilBufferWriteEnable = info->stencilTestEnable,
      .StencilFailOp = vk_to_gen_stencil_op[info->front.failOp],
      .StencilPassDepthPassOp = vk_to_gen_stencil_op[info->front.passOp],
      .StencilPassDepthFailOp = vk_to_gen_stencil_op[info->front.depthFailOp],
      .StencilTestFunction = vk_to_gen_compare_op[info->front.compareOp],
      .BackfaceStencilFailOp = vk_to_gen_stencil_op[info->back.failOp],
      .BackfaceStencilPassDepthPassOp = vk_to_gen_stencil_op[info->back.passOp],
      .BackfaceStencilPassDepthFailOp =vk_to_gen_stencil_op[info->back.depthFailOp],
      .BackfaceStencilTestFunction = vk_to_gen_compare_op[info->back.compareOp],
   };

   VkImageAspectFlags aspects = 0;
   if (subpass->depth_stencil_attachment != VK_ATTACHMENT_UNUSED) {
      VkFormat depth_stencil_format =
         pass->attachments[subpass->depth_stencil_attachment].format;
      aspects = vk_format_aspects(depth_stencil_format);
   }

   /* The Vulkan spec requires that if either depth or stencil is not present,
    * the pipeline is to act as if the test silently passes.
    */
   if (!(aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
      depth_stencil.DepthBufferWriteEnable = false;
      depth_stencil.DepthTestFunction = PREFILTEROPALWAYS;
   }

   if (!(aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) {
      depth_stencil.StencilBufferWriteEnable = false;
      depth_stencil.StencilTestFunction = PREFILTEROPALWAYS;
      depth_stencil.BackfaceStencilTestFunction = PREFILTEROPALWAYS;
   }

   /* From the Broadwell PRM:
    *
    *    "If Depth_Test_Enable = 1 AND Depth_Test_func = EQUAL, the
    *    Depth_Write_Enable must be set to 0."
    */
   if (info->depthTestEnable && info->depthCompareOp == VK_COMPARE_OP_EQUAL)
      depth_stencil.DepthBufferWriteEnable = false;

#if GEN_GEN <= 7
   GENX(DEPTH_STENCIL_STATE_pack)(NULL, depth_stencil_dw, &depth_stencil);
#else
   GENX(3DSTATE_WM_DEPTH_STENCIL_pack)(NULL, depth_stencil_dw, &depth_stencil);
#endif
}

static void
emit_cb_state(struct anv_pipeline *pipeline,
              const VkPipelineColorBlendStateCreateInfo *info,
              const VkPipelineMultisampleStateCreateInfo *ms_info)
{
   struct anv_device *device = pipeline->device;

   const uint32_t num_dwords = GENX(BLEND_STATE_length);
   pipeline->blend_state =
      anv_state_pool_alloc(&device->dynamic_state_pool, num_dwords * 4, 64);

   struct GENX(BLEND_STATE) blend_state = {
#if GEN_GEN >= 8
      .AlphaToCoverageEnable = ms_info && ms_info->alphaToCoverageEnable,
      .AlphaToOneEnable = ms_info && ms_info->alphaToOneEnable,
#else
      /* Make sure it gets zeroed */
      .Entry = { { 0, }, },
#endif
   };

   /* Default everything to disabled */
   for (uint32_t i = 0; i < 8; i++) {
      blend_state.Entry[i].WriteDisableAlpha = true;
      blend_state.Entry[i].WriteDisableRed = true;
      blend_state.Entry[i].WriteDisableGreen = true;
      blend_state.Entry[i].WriteDisableBlue = true;
   }

   uint32_t surface_count = 0;
   struct anv_pipeline_bind_map *map;
   if (anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
      map = &pipeline->shaders[MESA_SHADER_FRAGMENT]->bind_map;
      surface_count = map->surface_count;
   }

   bool has_writeable_rt = false;
   for (unsigned i = 0; i < surface_count; i++) {
      struct anv_pipeline_binding *binding = &map->surface_to_descriptor[i];

      /* All color attachments are at the beginning of the binding table */
      if (binding->set != ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS)
         break;

      /* We can have at most 8 attachments */
      assert(i < 8);

      if (binding->index >= info->attachmentCount)
         continue;

      assert(binding->binding == 0);
      const VkPipelineColorBlendAttachmentState *a =
         &info->pAttachments[binding->index];

      blend_state.Entry[i] = (struct GENX(BLEND_STATE_ENTRY)) {
#if GEN_GEN < 8
         .AlphaToCoverageEnable = ms_info && ms_info->alphaToCoverageEnable,
         .AlphaToOneEnable = ms_info && ms_info->alphaToOneEnable,
#endif
         .LogicOpEnable = info->logicOpEnable,
         .LogicOpFunction = vk_to_gen_logic_op[info->logicOp],
         .ColorBufferBlendEnable = a->blendEnable,
         .ColorClampRange = COLORCLAMP_RTFORMAT,
         .PreBlendColorClampEnable = true,
         .PostBlendColorClampEnable = true,
         .SourceBlendFactor = vk_to_gen_blend[a->srcColorBlendFactor],
         .DestinationBlendFactor = vk_to_gen_blend[a->dstColorBlendFactor],
         .ColorBlendFunction = vk_to_gen_blend_op[a->colorBlendOp],
         .SourceAlphaBlendFactor = vk_to_gen_blend[a->srcAlphaBlendFactor],
         .DestinationAlphaBlendFactor = vk_to_gen_blend[a->dstAlphaBlendFactor],
         .AlphaBlendFunction = vk_to_gen_blend_op[a->alphaBlendOp],
         .WriteDisableAlpha = !(a->colorWriteMask & VK_COLOR_COMPONENT_A_BIT),
         .WriteDisableRed = !(a->colorWriteMask & VK_COLOR_COMPONENT_R_BIT),
         .WriteDisableGreen = !(a->colorWriteMask & VK_COLOR_COMPONENT_G_BIT),
         .WriteDisableBlue = !(a->colorWriteMask & VK_COLOR_COMPONENT_B_BIT),
      };

      if (a->srcColorBlendFactor != a->srcAlphaBlendFactor ||
          a->dstColorBlendFactor != a->dstAlphaBlendFactor ||
          a->colorBlendOp != a->alphaBlendOp) {
#if GEN_GEN >= 8
         blend_state.IndependentAlphaBlendEnable = true;
#else
         blend_state.Entry[i].IndependentAlphaBlendEnable = true;
#endif
      }

      if (a->colorWriteMask != 0)
         has_writeable_rt = true;

      /* Our hardware applies the blend factor prior to the blend function
       * regardless of what function is used.  Technically, this means the
       * hardware can do MORE than GL or Vulkan specify.  However, it also
       * means that, for MIN and MAX, we have to stomp the blend factor to
       * ONE to make it a no-op.
       */
      if (a->colorBlendOp == VK_BLEND_OP_MIN ||
          a->colorBlendOp == VK_BLEND_OP_MAX) {
         blend_state.Entry[i].SourceBlendFactor = BLENDFACTOR_ONE;
         blend_state.Entry[i].DestinationBlendFactor = BLENDFACTOR_ONE;
      }
      if (a->alphaBlendOp == VK_BLEND_OP_MIN ||
          a->alphaBlendOp == VK_BLEND_OP_MAX) {
         blend_state.Entry[i].SourceAlphaBlendFactor = BLENDFACTOR_ONE;
         blend_state.Entry[i].DestinationAlphaBlendFactor = BLENDFACTOR_ONE;
      }
   }

#if GEN_GEN >= 8
   struct GENX(BLEND_STATE_ENTRY) *bs0 = &blend_state.Entry[0];
   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_BLEND), blend) {
      blend.AlphaToCoverageEnable         = blend_state.AlphaToCoverageEnable;
      blend.HasWriteableRT                = has_writeable_rt;
      blend.ColorBufferBlendEnable        = bs0->ColorBufferBlendEnable;
      blend.SourceAlphaBlendFactor        = bs0->SourceAlphaBlendFactor;
      blend.DestinationAlphaBlendFactor   = bs0->DestinationAlphaBlendFactor;
      blend.SourceBlendFactor             = bs0->SourceBlendFactor;
      blend.DestinationBlendFactor        = bs0->DestinationBlendFactor;
      blend.AlphaTestEnable               = false;
      blend.IndependentAlphaBlendEnable   =
         blend_state.IndependentAlphaBlendEnable;
   }
#else
   (void)has_writeable_rt;
#endif

   GENX(BLEND_STATE_pack)(NULL, pipeline->blend_state.map, &blend_state);
   if (!device->info.has_llc)
      anv_state_clflush(pipeline->blend_state);

   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_BLEND_STATE_POINTERS), bsp) {
      bsp.BlendStatePointer      = pipeline->blend_state.offset;
#if GEN_GEN >= 8
      bsp.BlendStatePointerValid = true;
#endif
   }
}

static void
emit_3dstate_clip(struct anv_pipeline *pipeline,
                  const VkPipelineViewportStateCreateInfo *vp_info,
                  const VkPipelineRasterizationStateCreateInfo *rs_info)
{
   const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
   (void) wm_prog_data;
   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_CLIP), clip) {
      clip.ClipEnable               = true;
      clip.EarlyCullEnable          = true;
      clip.APIMode                  = APIMODE_D3D,
      clip.ViewportXYClipTestEnable = true;

      clip.ClipMode = CLIPMODE_NORMAL;

      clip.TriangleStripListProvokingVertexSelect = 0;
      clip.LineStripListProvokingVertexSelect     = 0;
      clip.TriangleFanProvokingVertexSelect       = 1;

      clip.MinimumPointWidth = 0.125;
      clip.MaximumPointWidth = 255.875;
      clip.MaximumVPIndex    = (vp_info ? vp_info->viewportCount : 1) - 1;

#if GEN_GEN == 7
      clip.FrontWinding            = vk_to_gen_front_face[rs_info->frontFace];
      clip.CullMode                = vk_to_gen_cullmode[rs_info->cullMode];
      clip.ViewportZClipTestEnable = !pipeline->depth_clamp_enable;
#else
      clip.NonPerspectiveBarycentricEnable = wm_prog_data ?
         (wm_prog_data->barycentric_interp_modes & 0x38) != 0 : 0;
#endif
   }
}

static void
emit_3dstate_streamout(struct anv_pipeline *pipeline,
                       const VkPipelineRasterizationStateCreateInfo *rs_info)
{
   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_STREAMOUT), so) {
      so.RenderingDisable = rs_info->rasterizerDiscardEnable;
   }
}

#endif /* GENX_PIPELINE_UTIL_H */