1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
|
/*
* Copyright © 2012 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
/** @file brw_fs_copy_propagation.cpp
*
* Support for global copy propagation in two passes: A local pass that does
* intra-block copy (and constant) propagation, and a global pass that uses
* dataflow analysis on the copies available at the end of each block to re-do
* local copy propagation with more copies available.
*
* See Muchnick's Advanced Compiler Design and Implementation, section
* 12.5 (p356).
*/
#define ACP_HASH_SIZE 16
#include "main/bitset.h"
#include "brw_fs.h"
#include "brw_cfg.h"
namespace { /* avoid conflict with opt_copy_propagation_elements */
struct acp_entry : public exec_node {
fs_reg dst;
fs_reg src;
uint8_t regs_written;
enum opcode opcode;
bool saturate;
};
struct block_data {
/**
* Which entries in the fs_copy_prop_dataflow acp table are live at the
* start of this block. This is the useful output of the analysis, since
* it lets us plug those into the local copy propagation on the second
* pass.
*/
BITSET_WORD *livein;
/**
* Which entries in the fs_copy_prop_dataflow acp table are live at the end
* of this block. This is done in initial setup from the per-block acps
* returned by the first local copy prop pass.
*/
BITSET_WORD *liveout;
/**
* Which entries in the fs_copy_prop_dataflow acp table are generated by
* instructions in this block which reach the end of the block without
* being killed.
*/
BITSET_WORD *copy;
/**
* Which entries in the fs_copy_prop_dataflow acp table are killed over the
* course of this block.
*/
BITSET_WORD *kill;
};
class fs_copy_prop_dataflow
{
public:
fs_copy_prop_dataflow(void *mem_ctx, cfg_t *cfg,
exec_list *out_acp[ACP_HASH_SIZE]);
void setup_initial_values();
void run();
void dump_block_data() const;
void *mem_ctx;
cfg_t *cfg;
acp_entry **acp;
int num_acp;
int bitset_words;
struct block_data *bd;
};
} /* anonymous namespace */
fs_copy_prop_dataflow::fs_copy_prop_dataflow(void *mem_ctx, cfg_t *cfg,
exec_list *out_acp[ACP_HASH_SIZE])
: mem_ctx(mem_ctx), cfg(cfg)
{
bd = rzalloc_array(mem_ctx, struct block_data, cfg->num_blocks);
num_acp = 0;
foreach_block (block, cfg) {
for (int i = 0; i < ACP_HASH_SIZE; i++) {
num_acp += out_acp[block->num][i].length();
}
}
acp = rzalloc_array(mem_ctx, struct acp_entry *, num_acp);
bitset_words = BITSET_WORDS(num_acp);
int next_acp = 0;
foreach_block (block, cfg) {
bd[block->num].livein = rzalloc_array(bd, BITSET_WORD, bitset_words);
bd[block->num].liveout = rzalloc_array(bd, BITSET_WORD, bitset_words);
bd[block->num].copy = rzalloc_array(bd, BITSET_WORD, bitset_words);
bd[block->num].kill = rzalloc_array(bd, BITSET_WORD, bitset_words);
for (int i = 0; i < ACP_HASH_SIZE; i++) {
foreach_in_list(acp_entry, entry, &out_acp[block->num][i]) {
acp[next_acp] = entry;
/* opt_copy_propagate_local populates out_acp with copies created
* in a block which are still live at the end of the block. This
* is exactly what we want in the COPY set.
*/
BITSET_SET(bd[block->num].copy, next_acp);
next_acp++;
}
}
}
assert(next_acp == num_acp);
setup_initial_values();
run();
}
/**
* Set up initial values for each of the data flow sets, prior to running
* the fixed-point algorithm.
*/
void
fs_copy_prop_dataflow::setup_initial_values()
{
/* Initialize the COPY and KILL sets. */
foreach_block (block, cfg) {
foreach_inst_in_block(fs_inst, inst, block) {
if (inst->dst.file != GRF)
continue;
/* Mark ACP entries which are killed by this instruction. */
for (int i = 0; i < num_acp; i++) {
if (inst->overwrites_reg(acp[i]->dst) ||
inst->overwrites_reg(acp[i]->src)) {
BITSET_SET(bd[block->num].kill, i);
}
}
}
}
/* Populate the initial values for the livein and liveout sets. For the
* block at the start of the program, livein = 0 and liveout = copy.
* For the others, set liveout to 0 (the empty set) and livein to ~0
* (the universal set).
*/
foreach_block (block, cfg) {
if (block->parents.is_empty()) {
for (int i = 0; i < bitset_words; i++) {
bd[block->num].livein[i] = 0u;
bd[block->num].liveout[i] = bd[block->num].copy[i];
}
} else {
for (int i = 0; i < bitset_words; i++) {
bd[block->num].liveout[i] = 0u;
bd[block->num].livein[i] = ~0u;
}
}
}
}
/**
* Walk the set of instructions in the block, marking which entries in the acp
* are killed by the block.
*/
void
fs_copy_prop_dataflow::run()
{
bool progress;
do {
progress = false;
/* Update liveout for all blocks. */
foreach_block (block, cfg) {
if (block->parents.is_empty())
continue;
for (int i = 0; i < bitset_words; i++) {
const BITSET_WORD old_liveout = bd[block->num].liveout[i];
bd[block->num].liveout[i] =
bd[block->num].copy[i] | (bd[block->num].livein[i] &
~bd[block->num].kill[i]);
if (old_liveout != bd[block->num].liveout[i])
progress = true;
}
}
/* Update livein for all blocks. If a copy is live out of all parent
* blocks, it's live coming in to this block.
*/
foreach_block (block, cfg) {
if (block->parents.is_empty())
continue;
for (int i = 0; i < bitset_words; i++) {
const BITSET_WORD old_livein = bd[block->num].livein[i];
bd[block->num].livein[i] = ~0u;
foreach_list_typed(bblock_link, parent_link, link, &block->parents) {
bblock_t *parent = parent_link->block;
bd[block->num].livein[i] &= bd[parent->num].liveout[i];
}
if (old_livein != bd[block->num].livein[i])
progress = true;
}
}
} while (progress);
}
void
fs_copy_prop_dataflow::dump_block_data() const
{
foreach_block (block, cfg) {
fprintf(stderr, "Block %d [%d, %d] (parents ", block->num,
block->start_ip, block->end_ip);
foreach_list_typed(bblock_link, link, link, &block->parents) {
bblock_t *parent = link->block;
fprintf(stderr, "%d ", parent->num);
}
fprintf(stderr, "):\n");
fprintf(stderr, " livein = 0x");
for (int i = 0; i < bitset_words; i++)
fprintf(stderr, "%08x", bd[block->num].livein[i]);
fprintf(stderr, ", liveout = 0x");
for (int i = 0; i < bitset_words; i++)
fprintf(stderr, "%08x", bd[block->num].liveout[i]);
fprintf(stderr, ",\n copy = 0x");
for (int i = 0; i < bitset_words; i++)
fprintf(stderr, "%08x", bd[block->num].copy[i]);
fprintf(stderr, ", kill = 0x");
for (int i = 0; i < bitset_words; i++)
fprintf(stderr, "%08x", bd[block->num].kill[i]);
fprintf(stderr, "\n");
}
}
static bool
is_logic_op(enum opcode opcode)
{
return (opcode == BRW_OPCODE_AND ||
opcode == BRW_OPCODE_OR ||
opcode == BRW_OPCODE_XOR ||
opcode == BRW_OPCODE_NOT);
}
bool
fs_visitor::try_copy_propagate(fs_inst *inst, int arg, acp_entry *entry)
{
if (inst->src[arg].file != GRF)
return false;
if (entry->src.file == IMM)
return false;
assert(entry->src.file == GRF || entry->src.file == UNIFORM);
if (entry->opcode == SHADER_OPCODE_LOAD_PAYLOAD &&
inst->opcode == SHADER_OPCODE_LOAD_PAYLOAD)
return false;
assert(entry->dst.file == GRF);
if (inst->src[arg].reg != entry->dst.reg)
return false;
/* Bail if inst is reading a range that isn't contained in the range
* that entry is writing.
*/
if (inst->src[arg].reg_offset < entry->dst.reg_offset ||
(inst->src[arg].reg_offset * 32 + inst->src[arg].subreg_offset +
inst->regs_read(arg) * inst->src[arg].stride * 32) >
(entry->dst.reg_offset + entry->regs_written) * 32)
return false;
/* we can't generally copy-propagate UD negations because we
* can end up accessing the resulting values as signed integers
* instead. See also resolve_ud_negate() and comment in
* fs_generator::generate_code.
*/
if (inst->src[arg].type == BRW_REGISTER_TYPE_UD &&
entry->src.negate)
return false;
bool has_source_modifiers = entry->src.abs || entry->src.negate;
if ((has_source_modifiers || entry->src.file == UNIFORM ||
!entry->src.is_contiguous()) &&
!inst->can_do_source_mods(brw))
return false;
if (has_source_modifiers &&
inst->opcode == SHADER_OPCODE_GEN4_SCRATCH_WRITE)
return false;
/* Bail if the result of composing both strides would exceed the
* hardware limit.
*/
if (entry->src.stride * inst->src[arg].stride > 4)
return false;
/* Bail if the result of composing both strides cannot be expressed
* as another stride. This avoids, for example, trying to transform
* this:
*
* MOV (8) rX<1>UD rY<0;1,0>UD
* FOO (8) ... rX<8;8,1>UW
*
* into this:
*
* FOO (8) ... rY<0;1,0>UW
*
* Which would have different semantics.
*/
if (entry->src.stride != 1 &&
(inst->src[arg].stride *
type_sz(inst->src[arg].type)) % type_sz(entry->src.type) != 0)
return false;
if (has_source_modifiers && entry->dst.type != inst->src[arg].type)
return false;
if (brw->gen >= 8 && (entry->src.negate || entry->src.abs) &&
is_logic_op(inst->opcode)) {
return false;
}
if (entry->saturate) {
switch(inst->opcode) {
case BRW_OPCODE_SEL:
if (inst->src[1].file != IMM ||
inst->src[1].fixed_hw_reg.dw1.f < 0.0 ||
inst->src[1].fixed_hw_reg.dw1.f > 1.0) {
return false;
}
break;
default:
return false;
}
}
inst->src[arg].file = entry->src.file;
inst->src[arg].reg = entry->src.reg;
inst->src[arg].stride *= entry->src.stride;
inst->saturate = inst->saturate || entry->saturate;
switch (entry->src.file) {
case UNIFORM:
assert(entry->src.width == 1);
case BAD_FILE:
case HW_REG:
inst->src[arg].width = entry->src.width;
inst->src[arg].reg_offset = entry->src.reg_offset;
inst->src[arg].subreg_offset = entry->src.subreg_offset;
break;
case GRF:
{
assert(entry->src.width % inst->src[arg].width == 0);
/* In this case, we'll just leave the width alone. The source
* register could have different widths depending on how it is
* being used. For instance, if only half of the register was
* used then we want to preserve that and continue to only use
* half.
*
* Also, we have to deal with mapping parts of vgrfs to other
* parts of vgrfs so we have to do some reg_offset magic.
*/
/* Compute the offset of inst->src[arg] relative to inst->dst */
assert(entry->dst.subreg_offset == 0);
int rel_offset = inst->src[arg].reg_offset - entry->dst.reg_offset;
int rel_suboffset = inst->src[arg].subreg_offset;
/* Compute the final register offset (in bytes) */
int offset = entry->src.reg_offset * 32 + entry->src.subreg_offset;
offset += rel_offset * 32 + rel_suboffset;
inst->src[arg].reg_offset = offset / 32;
inst->src[arg].subreg_offset = offset % 32;
}
break;
default:
unreachable("Invalid register file");
break;
}
if (!inst->src[arg].abs) {
inst->src[arg].abs = entry->src.abs;
inst->src[arg].negate ^= entry->src.negate;
}
return true;
}
bool
fs_visitor::try_constant_propagate(fs_inst *inst, acp_entry *entry)
{
bool progress = false;
if (entry->src.file != IMM)
return false;
if (entry->saturate)
return false;
for (int i = inst->sources - 1; i >= 0; i--) {
if (inst->src[i].file != GRF)
continue;
assert(entry->dst.file == GRF);
if (inst->src[i].reg != entry->dst.reg)
continue;
/* Bail if inst is reading a range that isn't contained in the range
* that entry is writing.
*/
if (inst->src[i].reg_offset < entry->dst.reg_offset ||
(inst->src[i].reg_offset * 32 + inst->src[i].subreg_offset +
inst->regs_read(i) * inst->src[i].stride * 32) >
(entry->dst.reg_offset + entry->regs_written) * 32)
continue;
fs_reg val = entry->src;
val.effective_width = inst->src[i].effective_width;
val.type = inst->src[i].type;
if (inst->src[i].abs) {
if ((brw->gen >= 8 && is_logic_op(inst->opcode)) ||
!brw_abs_immediate(val.type, &val.fixed_hw_reg)) {
continue;
}
}
if (inst->src[i].negate) {
if ((brw->gen >= 8 && is_logic_op(inst->opcode)) ||
!brw_negate_immediate(val.type, &val.fixed_hw_reg)) {
continue;
}
}
switch (inst->opcode) {
case BRW_OPCODE_MOV:
case SHADER_OPCODE_LOAD_PAYLOAD:
inst->src[i] = val;
progress = true;
break;
case SHADER_OPCODE_POW:
case SHADER_OPCODE_INT_QUOTIENT:
case SHADER_OPCODE_INT_REMAINDER:
if (brw->gen < 8)
break;
/* fallthrough */
case BRW_OPCODE_BFI1:
case BRW_OPCODE_ASR:
case BRW_OPCODE_SHL:
case BRW_OPCODE_SHR:
case BRW_OPCODE_SUBB:
if (i == 1) {
inst->src[i] = val;
progress = true;
}
break;
case BRW_OPCODE_MACH:
case BRW_OPCODE_MUL:
case BRW_OPCODE_ADD:
case BRW_OPCODE_OR:
case BRW_OPCODE_AND:
case BRW_OPCODE_XOR:
case BRW_OPCODE_ADDC:
if (i == 1) {
inst->src[i] = val;
progress = true;
} else if (i == 0 && inst->src[1].file != IMM) {
/* Fit this constant in by commuting the operands.
* Exception: we can't do this for 32-bit integer MUL/MACH
* because it's asymmetric.
*/
if ((inst->opcode == BRW_OPCODE_MUL ||
inst->opcode == BRW_OPCODE_MACH) &&
(inst->src[1].type == BRW_REGISTER_TYPE_D ||
inst->src[1].type == BRW_REGISTER_TYPE_UD))
break;
inst->src[0] = inst->src[1];
inst->src[1] = val;
progress = true;
}
break;
case BRW_OPCODE_CMP:
case BRW_OPCODE_IF:
if (i == 1) {
inst->src[i] = val;
progress = true;
} else if (i == 0 && inst->src[1].file != IMM) {
enum brw_conditional_mod new_cmod;
new_cmod = brw_swap_cmod(inst->conditional_mod);
if (new_cmod != BRW_CONDITIONAL_NONE) {
/* Fit this constant in by swapping the operands and
* flipping the test
*/
inst->src[0] = inst->src[1];
inst->src[1] = val;
inst->conditional_mod = new_cmod;
progress = true;
}
}
break;
case BRW_OPCODE_SEL:
if (i == 1) {
inst->src[i] = val;
progress = true;
} else if (i == 0 && inst->src[1].file != IMM) {
inst->src[0] = inst->src[1];
inst->src[1] = val;
/* If this was predicated, flipping operands means
* we also need to flip the predicate.
*/
if (inst->conditional_mod == BRW_CONDITIONAL_NONE) {
inst->predicate_inverse =
!inst->predicate_inverse;
}
progress = true;
}
break;
case SHADER_OPCODE_RCP:
/* The hardware doesn't do math on immediate values
* (because why are you doing that, seriously?), but
* the correct answer is to just constant fold it
* anyway.
*/
assert(i == 0);
if (inst->src[0].fixed_hw_reg.dw1.f != 0.0f) {
inst->opcode = BRW_OPCODE_MOV;
inst->src[0] = val;
inst->src[0].fixed_hw_reg.dw1.f = 1.0f / inst->src[0].fixed_hw_reg.dw1.f;
progress = true;
}
break;
case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
inst->src[i] = val;
progress = true;
break;
case BRW_OPCODE_MAD:
case BRW_OPCODE_LRP:
inst->src[i] = val;
progress = true;
break;
default:
break;
}
}
return progress;
}
static bool
can_propagate_from(fs_inst *inst)
{
return (inst->opcode == BRW_OPCODE_MOV &&
inst->dst.file == GRF &&
((inst->src[0].file == GRF &&
(inst->src[0].reg != inst->dst.reg ||
inst->src[0].reg_offset != inst->dst.reg_offset)) ||
inst->src[0].file == UNIFORM ||
inst->src[0].file == IMM) &&
inst->src[0].type == inst->dst.type &&
!inst->is_partial_write());
}
/* Walks a basic block and does copy propagation on it using the acp
* list.
*/
bool
fs_visitor::opt_copy_propagate_local(void *copy_prop_ctx, bblock_t *block,
exec_list *acp)
{
bool progress = false;
foreach_inst_in_block(fs_inst, inst, block) {
/* Try propagating into this instruction. */
for (int i = 0; i < inst->sources; i++) {
if (inst->src[i].file != GRF)
continue;
foreach_in_list(acp_entry, entry, &acp[inst->src[i].reg % ACP_HASH_SIZE]) {
if (try_constant_propagate(inst, entry))
progress = true;
if (try_copy_propagate(inst, i, entry))
progress = true;
}
}
/* kill the destination from the ACP */
if (inst->dst.file == GRF) {
foreach_in_list_safe(acp_entry, entry, &acp[inst->dst.reg % ACP_HASH_SIZE]) {
if (inst->overwrites_reg(entry->dst)) {
entry->remove();
}
}
/* Oops, we only have the chaining hash based on the destination, not
* the source, so walk across the entire table.
*/
for (int i = 0; i < ACP_HASH_SIZE; i++) {
foreach_in_list_safe(acp_entry, entry, &acp[i]) {
if (inst->overwrites_reg(entry->src))
entry->remove();
}
}
}
/* If this instruction's source could potentially be folded into the
* operand of another instruction, add it to the ACP.
*/
if (can_propagate_from(inst)) {
acp_entry *entry = ralloc(copy_prop_ctx, acp_entry);
entry->dst = inst->dst;
entry->src = inst->src[0];
entry->regs_written = inst->regs_written;
entry->opcode = inst->opcode;
entry->saturate = inst->saturate;
acp[entry->dst.reg % ACP_HASH_SIZE].push_tail(entry);
} else if (inst->opcode == SHADER_OPCODE_LOAD_PAYLOAD &&
inst->dst.file == GRF) {
int offset = 0;
for (int i = 0; i < inst->sources; i++) {
int regs_written = ((inst->src[i].effective_width *
type_sz(inst->src[i].type)) + 31) / 32;
if (inst->src[i].file == GRF) {
acp_entry *entry = ralloc(copy_prop_ctx, acp_entry);
entry->dst = inst->dst;
entry->dst.reg_offset = offset;
entry->dst.width = inst->src[i].effective_width;
entry->src = inst->src[i];
entry->regs_written = regs_written;
entry->opcode = inst->opcode;
if (!entry->dst.equals(inst->src[i])) {
acp[entry->dst.reg % ACP_HASH_SIZE].push_tail(entry);
} else {
ralloc_free(entry);
}
}
offset += regs_written;
}
}
}
return progress;
}
bool
fs_visitor::opt_copy_propagate()
{
bool progress = false;
void *copy_prop_ctx = ralloc_context(NULL);
exec_list *out_acp[cfg->num_blocks];
for (int i = 0; i < cfg->num_blocks; i++)
out_acp[i] = new exec_list [ACP_HASH_SIZE];
/* First, walk through each block doing local copy propagation and getting
* the set of copies available at the end of the block.
*/
foreach_block (block, cfg) {
progress = opt_copy_propagate_local(copy_prop_ctx, block,
out_acp[block->num]) || progress;
}
/* Do dataflow analysis for those available copies. */
fs_copy_prop_dataflow dataflow(copy_prop_ctx, cfg, out_acp);
/* Next, re-run local copy propagation, this time with the set of copies
* provided by the dataflow analysis available at the start of a block.
*/
foreach_block (block, cfg) {
exec_list in_acp[ACP_HASH_SIZE];
for (int i = 0; i < dataflow.num_acp; i++) {
if (BITSET_TEST(dataflow.bd[block->num].livein, i)) {
struct acp_entry *entry = dataflow.acp[i];
in_acp[entry->dst.reg % ACP_HASH_SIZE].push_tail(entry);
}
}
progress = opt_copy_propagate_local(copy_prop_ctx, block, in_acp) || progress;
}
for (int i = 0; i < cfg->num_blocks; i++)
delete [] out_acp[i];
ralloc_free(copy_prop_ctx);
if (progress)
invalidate_live_intervals();
return progress;
}
|