summaryrefslogtreecommitdiffstats
path: root/src/mesa/drivers/dri/r300/r300_fragprog_emit.c
blob: d95008edc0612408afed9f0e2fd4d6a1d1bbff35 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
/*
 * Copyright (C) 2005 Ben Skeggs.
 *
 * All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice (including the
 * next paragraph) shall be included in all copies or substantial
 * portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
 * IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
 * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
 * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
 * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 */

/**
 * \file
 *
 * Emit the r300_fragment_program_code that can be understood by the hardware.
 * Input is a pre-transformed radeon_program.
 *
 * \author Ben Skeggs <darktama@iinet.net.au>
 *
 * \author Jerome Glisse <j.glisse@gmail.com>
 *
 * \todo FogOption
 *
 * \todo Verify results of opcodes for accuracy, I've only checked them in
 * specific cases.
 */

#include "glheader.h"
#include "macros.h"
#include "enums.h"
#include "shader/prog_instruction.h"
#include "shader/prog_parameter.h"
#include "shader/prog_print.h"

#include "r300_context.h"
#include "r300_fragprog.h"
#include "r300_reg.h"
#include "r300_state.h"

/* Mapping Mesa registers to R300 temporaries */
struct reg_acc {
	int reg;		/* Assigned hw temp */
	unsigned int refcount;	/* Number of uses by mesa program */
};

/**
 * Describe the current lifetime information for an R300 temporary
 */
struct reg_lifetime {
	/* Index of the first slot where this register is free in the sense
	   that it can be used as a new destination register.
	   This is -1 if the register has been assigned to a Mesa register
	   and the last access to the register has not yet been emitted */
	int free;

	/* Index of the first slot where this register is currently reserved.
	   This is used to stop e.g. a scalar operation from being moved
	   before the allocation time of a register that was first allocated
	   for a vector operation. */
	int reserved;

	/* Index of the first slot in which the register can be used as a
	   source without losing the value that is written by the last
	   emitted instruction that writes to the register */
	int vector_valid;
	int scalar_valid;

	/* Index to the slot where the register was last read.
	   This is also the first slot in which the register may be written again */
	int vector_lastread;
	int scalar_lastread;
};

/**
 * Store usage information about an ALU instruction slot during the
 * compilation of a fragment program.
 */
#define SLOT_SRC_VECTOR  (1<<0)
#define SLOT_SRC_SCALAR  (1<<3)
#define SLOT_SRC_BOTH    (SLOT_SRC_VECTOR | SLOT_SRC_SCALAR)
#define SLOT_OP_VECTOR   (1<<16)
#define SLOT_OP_SCALAR   (1<<17)
#define SLOT_OP_BOTH     (SLOT_OP_VECTOR | SLOT_OP_SCALAR)

struct r300_pfs_compile_slot {
	/* Bitmask indicating which parts of the slot are used, using SLOT_ constants
	   defined above */
	unsigned int used;

	/* Selected sources */
	int vsrc[3];
	int ssrc[3];
};

/**
 * Store information during compilation of fragment programs.
 */
struct r300_pfs_compile_state {
	struct r300_fragment_program_compiler *compiler;

	int nrslots;		/* number of ALU slots used so far */

	/* Track which (parts of) slots are already filled with instructions */
	struct r300_pfs_compile_slot slot[PFS_MAX_ALU_INST];

	/* Track the validity of R300 temporaries */
	struct reg_lifetime hwtemps[PFS_NUM_TEMP_REGS];

	/* Used to map Mesa's inputs/temps onto hardware temps */
	int temp_in_use;
	struct reg_acc temps[PFS_NUM_TEMP_REGS];
	struct reg_acc inputs[32];	/* don't actually need 32... */

	/* Track usage of hardware temps, for register allocation,
	 * indirection detection, etc. */
	GLuint used_in_node;
	GLuint dest_in_node;
};


/*
 * Usefull macros and values
 */
#define ERROR(fmt, args...) do {			\
		fprintf(stderr, "%s::%s(): " fmt "\n",	\
			__FILE__, __FUNCTION__, ##args);	\
		fp->error = GL_TRUE;			\
	} while(0)

#define PFS_INVAL 0xFFFFFFFF
#define COMPILE_STATE \
	struct r300_fragment_program *fp = cs->compiler->fp; \
	struct r300_fragment_program_code *code = cs->compiler->code; \
	(void)code; (void)fp

#define SWIZZLE_XYZ		0
#define SWIZZLE_XXX		1
#define SWIZZLE_YYY		2
#define SWIZZLE_ZZZ		3
#define SWIZZLE_WWW		4
#define SWIZZLE_YZX		5
#define SWIZZLE_ZXY		6
#define SWIZZLE_WZY		7
#define SWIZZLE_111		8
#define SWIZZLE_000		9
#define SWIZZLE_HHH		10

#define swizzle(r, x, y, z, w) do_swizzle(cs, r,		\
					  ((SWIZZLE_##x<<0)|	\
					   (SWIZZLE_##y<<3)|	\
					   (SWIZZLE_##z<<6)|	\
					   (SWIZZLE_##w<<9)),	\
					  0)

#define REG_TYPE_INPUT		0
#define REG_TYPE_OUTPUT		1
#define REG_TYPE_TEMP		2
#define REG_TYPE_CONST		3

#define REG_TYPE_SHIFT		0
#define REG_INDEX_SHIFT		2
#define REG_VSWZ_SHIFT		8
#define REG_SSWZ_SHIFT		13
#define REG_NEGV_SHIFT		18
#define REG_NEGS_SHIFT		19
#define REG_ABS_SHIFT		20
#define REG_NO_USE_SHIFT	21	// Hack for refcounting
#define REG_VALID_SHIFT		22	// Does the register contain a defined value?
#define REG_BUILTIN_SHIFT   23	// Is it a builtin (like all zero/all one)?

#define REG_TYPE_MASK		(0x03 << REG_TYPE_SHIFT)
#define REG_INDEX_MASK		(0x3F << REG_INDEX_SHIFT)
#define REG_VSWZ_MASK		(0x1F << REG_VSWZ_SHIFT)
#define REG_SSWZ_MASK		(0x1F << REG_SSWZ_SHIFT)
#define REG_NEGV_MASK		(0x01 << REG_NEGV_SHIFT)
#define REG_NEGS_MASK		(0x01 << REG_NEGS_SHIFT)
#define REG_ABS_MASK		(0x01 << REG_ABS_SHIFT)
#define REG_NO_USE_MASK		(0x01 << REG_NO_USE_SHIFT)
#define REG_VALID_MASK		(0x01 << REG_VALID_SHIFT)
#define REG_BUILTIN_MASK	(0x01 << REG_BUILTIN_SHIFT)

#define REG(type, index, vswz, sswz, nouse, valid, builtin)	\
	(((type << REG_TYPE_SHIFT) & REG_TYPE_MASK) |			\
	 ((index << REG_INDEX_SHIFT) & REG_INDEX_MASK) |		\
	 ((nouse << REG_NO_USE_SHIFT) & REG_NO_USE_MASK) |		\
	 ((valid << REG_VALID_SHIFT) & REG_VALID_MASK) |		\
	 ((builtin << REG_BUILTIN_SHIFT) & REG_BUILTIN_MASK) |	\
	 ((vswz << REG_VSWZ_SHIFT) & REG_VSWZ_MASK) |			\
	 ((sswz << REG_SSWZ_SHIFT) & REG_SSWZ_MASK))
#define REG_GET_TYPE(reg)						\
	((reg & REG_TYPE_MASK) >> REG_TYPE_SHIFT)
#define REG_GET_INDEX(reg)						\
	((reg & REG_INDEX_MASK) >> REG_INDEX_SHIFT)
#define REG_GET_VSWZ(reg)						\
	((reg & REG_VSWZ_MASK) >> REG_VSWZ_SHIFT)
#define REG_GET_SSWZ(reg)						\
	((reg & REG_SSWZ_MASK) >> REG_SSWZ_SHIFT)
#define REG_GET_NO_USE(reg)						\
	((reg & REG_NO_USE_MASK) >> REG_NO_USE_SHIFT)
#define REG_GET_VALID(reg)						\
	((reg & REG_VALID_MASK) >> REG_VALID_SHIFT)
#define REG_GET_BUILTIN(reg)						\
	((reg & REG_BUILTIN_MASK) >> REG_BUILTIN_SHIFT)
#define REG_SET_TYPE(reg, type)						\
	reg = ((reg & ~REG_TYPE_MASK) |					\
	       ((type << REG_TYPE_SHIFT) & REG_TYPE_MASK))
#define REG_SET_INDEX(reg, index)					\
	reg = ((reg & ~REG_INDEX_MASK) |				\
	       ((index << REG_INDEX_SHIFT) & REG_INDEX_MASK))
#define REG_SET_VSWZ(reg, vswz)						\
	reg = ((reg & ~REG_VSWZ_MASK) |					\
	       ((vswz << REG_VSWZ_SHIFT) & REG_VSWZ_MASK))
#define REG_SET_SSWZ(reg, sswz)						\
	reg = ((reg & ~REG_SSWZ_MASK) |					\
	       ((sswz << REG_SSWZ_SHIFT) & REG_SSWZ_MASK))
#define REG_SET_NO_USE(reg, nouse)					\
	reg = ((reg & ~REG_NO_USE_MASK) |				\
	       ((nouse << REG_NO_USE_SHIFT) & REG_NO_USE_MASK))
#define REG_SET_VALID(reg, valid)					\
	reg = ((reg & ~REG_VALID_MASK) |				\
	       ((valid << REG_VALID_SHIFT) & REG_VALID_MASK))
#define REG_SET_BUILTIN(reg, builtin)					\
	reg = ((reg & ~REG_BUILTIN_MASK) |				\
	       ((builtin << REG_BUILTIN_SHIFT) & REG_BUILTIN_MASK))
#define REG_ABS(reg)							\
	reg = (reg | REG_ABS_MASK)
#define REG_NEGV(reg)							\
	reg = (reg | REG_NEGV_MASK)
#define REG_NEGS(reg)							\
	reg = (reg | REG_NEGS_MASK)

#define NOP_INST0 (						 \
		(R300_ALU_OUTC_MAD) |				 \
		(R300_ALU_ARGC_ZERO << R300_ALU_ARG0C_SHIFT) | \
		(R300_ALU_ARGC_ZERO << R300_ALU_ARG1C_SHIFT) | \
		(R300_ALU_ARGC_ZERO << R300_ALU_ARG2C_SHIFT))
#define NOP_INST1 (					     \
		((0 | SRC_CONST) << R300_ALU_SRC0C_SHIFT) | \
		((0 | SRC_CONST) << R300_ALU_SRC1C_SHIFT) | \
		((0 | SRC_CONST) << R300_ALU_SRC2C_SHIFT))
#define NOP_INST2 ( \
		(R300_ALU_OUTA_MAD) |				 \
		(R300_ALU_ARGA_ZERO << R300_ALU_ARG0A_SHIFT) | \
		(R300_ALU_ARGA_ZERO << R300_ALU_ARG1A_SHIFT) | \
		(R300_ALU_ARGA_ZERO << R300_ALU_ARG2A_SHIFT))
#define NOP_INST3 (					     \
		((0 | SRC_CONST) << R300_ALU_SRC0A_SHIFT) | \
		((0 | SRC_CONST) << R300_ALU_SRC1A_SHIFT) | \
		((0 | SRC_CONST) << R300_ALU_SRC2A_SHIFT))


/*
 * Datas structures for fragment program generation
 */

/* description of r300 native hw instructions */
static const struct {
	const char *name;
	int argc;
	int v_op;
	int s_op;
} r300_fpop[] = {
	/* *INDENT-OFF* */
	{"MAD", 3, R300_ALU_OUTC_MAD, R300_ALU_OUTA_MAD},
	{"DP3", 2, R300_ALU_OUTC_DP3, R300_ALU_OUTA_DP4},
	{"DP4", 2, R300_ALU_OUTC_DP4, R300_ALU_OUTA_DP4},
	{"MIN", 2, R300_ALU_OUTC_MIN, R300_ALU_OUTA_MIN},
	{"MAX", 2, R300_ALU_OUTC_MAX, R300_ALU_OUTA_MAX},
	{"CMP", 3, R300_ALU_OUTC_CMP, R300_ALU_OUTA_CMP},
	{"FRC", 1, R300_ALU_OUTC_FRC, R300_ALU_OUTA_FRC},
	{"EX2", 1, R300_ALU_OUTC_REPL_ALPHA, R300_ALU_OUTA_EX2},
	{"LG2", 1, R300_ALU_OUTC_REPL_ALPHA, R300_ALU_OUTA_LG2},
	{"RCP", 1, R300_ALU_OUTC_REPL_ALPHA, R300_ALU_OUTA_RCP},
	{"RSQ", 1, R300_ALU_OUTC_REPL_ALPHA, R300_ALU_OUTA_RSQ},
	{"REPL_ALPHA", 1, R300_ALU_OUTC_REPL_ALPHA, PFS_INVAL},
	{"CMPH", 3, R300_ALU_OUTC_CMPH, PFS_INVAL},
	/* *INDENT-ON* */
};

/* vector swizzles r300 can support natively, with a couple of
 * cases we handle specially
 *
 * REG_VSWZ/REG_SSWZ is an index into this table
 */

/* mapping from SWIZZLE_* to r300 native values for scalar insns */
#define SWIZZLE_HALF 6

#define MAKE_SWZ3(x, y, z) (MAKE_SWIZZLE4(SWIZZLE_##x, \
					  SWIZZLE_##y, \
					  SWIZZLE_##z, \
					  SWIZZLE_ZERO))
/* native swizzles */
static const struct r300_pfs_swizzle {
	GLuint hash;		/* swizzle value this matches */
	GLuint base;		/* base value for hw swizzle */
	GLuint stride;		/* difference in base between arg0/1/2 */
	GLuint flags;
} v_swiz[] = {
	/* *INDENT-OFF* */
	{MAKE_SWZ3(X, Y, Z), R300_ALU_ARGC_SRC0C_XYZ, 4, SLOT_SRC_VECTOR},
	{MAKE_SWZ3(X, X, X), R300_ALU_ARGC_SRC0C_XXX, 4, SLOT_SRC_VECTOR},
	{MAKE_SWZ3(Y, Y, Y), R300_ALU_ARGC_SRC0C_YYY, 4, SLOT_SRC_VECTOR},
	{MAKE_SWZ3(Z, Z, Z), R300_ALU_ARGC_SRC0C_ZZZ, 4, SLOT_SRC_VECTOR},
	{MAKE_SWZ3(W, W, W), R300_ALU_ARGC_SRC0A, 1, SLOT_SRC_SCALAR},
	{MAKE_SWZ3(Y, Z, X), R300_ALU_ARGC_SRC0C_YZX, 1, SLOT_SRC_VECTOR},
	{MAKE_SWZ3(Z, X, Y), R300_ALU_ARGC_SRC0C_ZXY, 1, SLOT_SRC_VECTOR},
	{MAKE_SWZ3(W, Z, Y), R300_ALU_ARGC_SRC0CA_WZY, 1, SLOT_SRC_BOTH},
	{MAKE_SWZ3(ONE, ONE, ONE), R300_ALU_ARGC_ONE, 0, 0},
	{MAKE_SWZ3(ZERO, ZERO, ZERO), R300_ALU_ARGC_ZERO, 0, 0},
	{MAKE_SWZ3(HALF, HALF, HALF), R300_ALU_ARGC_HALF, 0, 0},
	{PFS_INVAL, 0, 0, 0},
	/* *INDENT-ON* */
};

/* used during matching of non-native swizzles */
#define SWZ_X_MASK (7 << 0)
#define SWZ_Y_MASK (7 << 3)
#define SWZ_Z_MASK (7 << 6)
#define SWZ_W_MASK (7 << 9)
static const struct {
	GLuint hash;		/* used to mask matching swizzle components */
	int mask;		/* actual outmask */
	int count;		/* count of components matched */
} s_mask[] = {
	/* *INDENT-OFF* */
	{SWZ_X_MASK | SWZ_Y_MASK | SWZ_Z_MASK, 1 | 2 | 4, 3},
	{SWZ_X_MASK | SWZ_Y_MASK, 1 | 2, 2},
	{SWZ_X_MASK | SWZ_Z_MASK, 1 | 4, 2},
	{SWZ_Y_MASK | SWZ_Z_MASK, 2 | 4, 2},
	{SWZ_X_MASK, 1, 1},
	{SWZ_Y_MASK, 2, 1},
	{SWZ_Z_MASK, 4, 1},
	{PFS_INVAL, PFS_INVAL, PFS_INVAL}
	/* *INDENT-ON* */
};

static const struct {
	int base;		/* hw value of swizzle */
	int stride;		/* difference between SRC0/1/2 */
	GLuint flags;
} s_swiz[] = {
	/* *INDENT-OFF* */
	{R300_ALU_ARGA_SRC0C_X, 3, SLOT_SRC_VECTOR},
	{R300_ALU_ARGA_SRC0C_Y, 3, SLOT_SRC_VECTOR},
	{R300_ALU_ARGA_SRC0C_Z, 3, SLOT_SRC_VECTOR},
	{R300_ALU_ARGA_SRC0A, 1, SLOT_SRC_SCALAR},
	{R300_ALU_ARGA_ZERO, 0, 0},
	{R300_ALU_ARGA_ONE, 0, 0},
	{R300_ALU_ARGA_HALF, 0, 0}
	/* *INDENT-ON* */
};

/* boiler-plate reg, for convenience */
static const GLuint undef = REG(REG_TYPE_TEMP,
				0,
				SWIZZLE_XYZ,
				SWIZZLE_W,
				GL_FALSE,
				GL_FALSE,
				GL_FALSE);

/* constant one source */
static const GLuint pfs_one = REG(REG_TYPE_CONST,
				  0,
				  SWIZZLE_111,
				  SWIZZLE_ONE,
				  GL_FALSE,
				  GL_TRUE,
				  GL_TRUE);

/* constant half source */
static const GLuint pfs_half = REG(REG_TYPE_CONST,
				   0,
				   SWIZZLE_HHH,
				   SWIZZLE_HALF,
				   GL_FALSE,
				   GL_TRUE,
				   GL_TRUE);

/* constant zero source */
static const GLuint pfs_zero = REG(REG_TYPE_CONST,
				   0,
				   SWIZZLE_000,
				   SWIZZLE_ZERO,
				   GL_FALSE,
				   GL_TRUE,
				   GL_TRUE);

/*
 * Common functions prototypes
 */
static void emit_arith(struct r300_pfs_compile_state *cs, int op,
		       GLuint dest, int mask,
		       GLuint src0, GLuint src1, GLuint src2, int flags);

/**
 * Get an R300 temporary that can be written to in the given slot.
 */
static int get_hw_temp(struct r300_pfs_compile_state *cs, int slot)
{
	COMPILE_STATE;
	int r;

	for (r = 0; r < PFS_NUM_TEMP_REGS; ++r) {
		if (cs->hwtemps[r].free >= 0 && cs->hwtemps[r].free <= slot)
			break;
	}

	if (r >= PFS_NUM_TEMP_REGS) {
		ERROR("Out of hardware temps\n");
		return 0;
	}
	// Reserved is used to avoid the following scenario:
	//  R300 temporary X is first assigned to Mesa temporary Y during vector ops
	//  R300 temporary X is then assigned to Mesa temporary Z for further vector ops
	//  Then scalar ops on Mesa temporary Z are emitted and move back in time
	//  to overwrite the value of temporary Y.
	// End scenario.
	cs->hwtemps[r].reserved = cs->hwtemps[r].free;
	cs->hwtemps[r].free = -1;

	// Reset to some value that won't mess things up when the user
	// tries to read from a temporary that hasn't been assigned a value yet.
	// In the normal case, vector_valid and scalar_valid should be set to
	// a sane value by the first emit that writes to this temporary.
	cs->hwtemps[r].vector_valid = 0;
	cs->hwtemps[r].scalar_valid = 0;

	if (r > code->max_temp_idx)
		code->max_temp_idx = r;

	return r;
}

/**
 * Get an R300 temporary that will act as a TEX destination register.
 */
static int get_hw_temp_tex(struct r300_pfs_compile_state *cs)
{
	COMPILE_STATE;
	int r;

	for (r = 0; r < PFS_NUM_TEMP_REGS; ++r) {
		if (cs->used_in_node & (1 << r))
			continue;

		// Note: Be very careful here
		if (cs->hwtemps[r].free >= 0 && cs->hwtemps[r].free <= 0)
			break;
	}

	if (r >= PFS_NUM_TEMP_REGS)
		return get_hw_temp(cs, 0);	/* Will cause an indirection */

	cs->hwtemps[r].reserved = cs->hwtemps[r].free;
	cs->hwtemps[r].free = -1;

	// Reset to some value that won't mess things up when the user
	// tries to read from a temporary that hasn't been assigned a value yet.
	// In the normal case, vector_valid and scalar_valid should be set to
	// a sane value by the first emit that writes to this temporary.
	cs->hwtemps[r].vector_valid = cs->nrslots;
	cs->hwtemps[r].scalar_valid = cs->nrslots;

	if (r > code->max_temp_idx)
		code->max_temp_idx = r;

	return r;
}

/**
 * Mark the given hardware register as free.
 */
static void free_hw_temp(struct r300_pfs_compile_state *cs, int idx)
{
	// Be very careful here. Consider sequences like
	//  MAD r0, r1,r2,r3
	//  TEX r4, ...
	// The TEX instruction may be moved in front of the MAD instruction
	// due to the way nodes work. We don't want to alias r1 and r4 in
	// this case.
	// I'm certain the register allocation could be further sanitized,
	// but it's tricky because of stuff that can happen inside emit_tex
	// and emit_arith.
	cs->hwtemps[idx].free = cs->nrslots + 1;
}

/**
 * Create a new Mesa temporary register.
 */
static GLuint get_temp_reg(struct r300_pfs_compile_state *cs)
{
	COMPILE_STATE;
	GLuint r = undef;
	GLuint index;

	index = ffs(~cs->temp_in_use);
	if (!index) {
		ERROR("Out of program temps\n");
		return r;
	}

	cs->temp_in_use |= (1 << --index);
	cs->temps[index].refcount = 0xFFFFFFFF;
	cs->temps[index].reg = -1;

	REG_SET_TYPE(r, REG_TYPE_TEMP);
	REG_SET_INDEX(r, index);
	REG_SET_VALID(r, GL_TRUE);
	return r;
}

/**
 * Free a Mesa temporary and the associated R300 temporary.
 */
static void free_temp(struct r300_pfs_compile_state *cs, GLuint r)
{
	GLuint index = REG_GET_INDEX(r);

	if (!(cs->temp_in_use & (1 << index)))
		return;

	if (REG_GET_TYPE(r) == REG_TYPE_TEMP) {
		free_hw_temp(cs, cs->temps[index].reg);
		cs->temps[index].reg = -1;
		cs->temp_in_use &= ~(1 << index);
	} else if (REG_GET_TYPE(r) == REG_TYPE_INPUT) {
		free_hw_temp(cs, cs->inputs[index].reg);
		cs->inputs[index].reg = -1;
	}
}

/**
 * Emit a hardware constant/parameter.
 */
static GLuint emit_const4fv(struct r300_pfs_compile_state *cs,
			    struct prog_src_register srcreg)
{
	COMPILE_STATE;
	GLuint reg = undef;
	int index;

	for (index = 0; index < code->const_nr; ++index) {
		if (code->constant[index].File == srcreg.File &&
		    code->constant[index].Index == srcreg.Index)
			break;
	}

	if (index >= code->const_nr) {
		if (index >= PFS_NUM_CONST_REGS) {
			ERROR("Out of hw constants!\n");
			return reg;
		}

		code->const_nr++;
		code->constant[index] = srcreg;
	}

	REG_SET_TYPE(reg, REG_TYPE_CONST);
	REG_SET_INDEX(reg, index);
	REG_SET_VALID(reg, GL_TRUE);
	return reg;
}

static INLINE GLuint negate(GLuint r)
{
	REG_NEGS(r);
	REG_NEGV(r);
	return r;
}

/* Hack, to prevent clobbering sources used multiple times when
 * emulating non-native instructions
 */
static INLINE GLuint keep(GLuint r)
{
	REG_SET_NO_USE(r, GL_TRUE);
	return r;
}

static INLINE GLuint absolute(GLuint r)
{
	REG_ABS(r);
	return r;
}

static int swz_native(struct r300_pfs_compile_state *cs,
		      GLuint src, GLuint * r, GLuint arbneg)
{
	COMPILE_STATE;

	/* Native swizzle, handle negation */
	src = (src & ~REG_NEGS_MASK) | (((arbneg >> 3) & 1) << REG_NEGS_SHIFT);

	if ((arbneg & 0x7) == 0x0) {
		src = src & ~REG_NEGV_MASK;
		*r = src;
	} else if ((arbneg & 0x7) == 0x7) {
		src |= REG_NEGV_MASK;
		*r = src;
	} else {
		if (!REG_GET_VALID(*r))
			*r = get_temp_reg(cs);
		src |= REG_NEGV_MASK;
		emit_arith(cs,
			   PFS_OP_MAD,
			   *r, arbneg & 0x7, keep(src), pfs_one, pfs_zero, 0);
		src = src & ~REG_NEGV_MASK;
		emit_arith(cs,
			   PFS_OP_MAD,
			   *r,
			   (arbneg ^ 0x7) | WRITEMASK_W,
			   src, pfs_one, pfs_zero, 0);
	}

	return 3;
}

static int swz_emit_partial(struct r300_pfs_compile_state *cs,
			    GLuint src,
			    GLuint * r, int mask, int mc, GLuint arbneg)
{
	COMPILE_STATE;
	GLuint tmp;
	GLuint wmask = 0;

	if (!REG_GET_VALID(*r))
		*r = get_temp_reg(cs);

	/* A partial match, VSWZ/mask define what parts of the
	 * desired swizzle we match
	 */
	if (mc + s_mask[mask].count == 3) {
		wmask = WRITEMASK_W;
		src |= ((arbneg >> 3) & 1) << REG_NEGS_SHIFT;
	}

	tmp = arbneg & s_mask[mask].mask;
	if (tmp) {
		tmp = tmp ^ s_mask[mask].mask;
		if (tmp) {
			emit_arith(cs,
				   PFS_OP_MAD,
				   *r,
				   arbneg & s_mask[mask].mask,
				   keep(src) | REG_NEGV_MASK,
				   pfs_one, pfs_zero, 0);
			if (!wmask) {
				REG_SET_NO_USE(src, GL_TRUE);
			} else {
				REG_SET_NO_USE(src, GL_FALSE);
			}
			emit_arith(cs,
				   PFS_OP_MAD,
				   *r, tmp | wmask, src, pfs_one, pfs_zero, 0);
		} else {
			if (!wmask) {
				REG_SET_NO_USE(src, GL_TRUE);
			} else {
				REG_SET_NO_USE(src, GL_FALSE);
			}
			emit_arith(cs,
				   PFS_OP_MAD,
				   *r,
				   (arbneg & s_mask[mask].mask) | wmask,
				   src | REG_NEGV_MASK, pfs_one, pfs_zero, 0);
		}
	} else {
		if (!wmask) {
			REG_SET_NO_USE(src, GL_TRUE);
		} else {
			REG_SET_NO_USE(src, GL_FALSE);
		}
		emit_arith(cs, PFS_OP_MAD,
			   *r,
			   s_mask[mask].mask | wmask,
			   src, pfs_one, pfs_zero, 0);
	}

	return s_mask[mask].count;
}

static GLuint do_swizzle(struct r300_pfs_compile_state *cs,
			 GLuint src, GLuint arbswz, GLuint arbneg)
{
	COMPILE_STATE;
	GLuint r = undef;
	GLuint vswz;
	int c_mask = 0;
	int v_match = 0;

	/* If swizzling from something without an XYZW native swizzle,
	 * emit result to a temp, and do new swizzle from the temp.
	 */
#if 0
	if (REG_GET_VSWZ(src) != SWIZZLE_XYZ || REG_GET_SSWZ(src) != SWIZZLE_W) {
		GLuint temp = get_temp_reg(fp);
		emit_arith(fp,
			   PFS_OP_MAD,
			   temp, WRITEMASK_XYZW, src, pfs_one, pfs_zero, 0);
		src = temp;
	}
#endif

	if (REG_GET_VSWZ(src) != SWIZZLE_XYZ || REG_GET_SSWZ(src) != SWIZZLE_W) {
		GLuint vsrcswz =
		    (v_swiz[REG_GET_VSWZ(src)].
		     hash & (SWZ_X_MASK | SWZ_Y_MASK | SWZ_Z_MASK)) |
		    REG_GET_SSWZ(src) << 9;
		GLint i;

		GLuint newswz = 0;
		GLuint offset;
		for (i = 0; i < 4; ++i) {
			offset = GET_SWZ(arbswz, i);

			newswz |=
			    (offset <= 3) ? GET_SWZ(vsrcswz,
						    offset) << i *
			    3 : offset << i * 3;
		}

		arbswz = newswz & (SWZ_X_MASK | SWZ_Y_MASK | SWZ_Z_MASK);
		REG_SET_SSWZ(src, GET_SWZ(newswz, 3));
	} else {
		/* set scalar swizzling */
		REG_SET_SSWZ(src, GET_SWZ(arbswz, 3));

	}
	do {
		vswz = REG_GET_VSWZ(src);
		do {
			int chash;

			REG_SET_VSWZ(src, vswz);
			chash = v_swiz[REG_GET_VSWZ(src)].hash &
			    s_mask[c_mask].hash;

			if (chash == (arbswz & s_mask[c_mask].hash)) {
				if (s_mask[c_mask].count == 3) {
					v_match += swz_native(cs,
							      src, &r, arbneg);
				} else {
					v_match += swz_emit_partial(cs,
								    src,
								    &r,
								    c_mask,
								    v_match,
								    arbneg);
				}

				if (v_match == 3)
					return r;

				/* Fill with something invalid.. all 0's was
				 * wrong before, matched SWIZZLE_X.  So all
				 * 1's will be okay for now
				 */
				arbswz |= (PFS_INVAL & s_mask[c_mask].hash);
			}
		} while (v_swiz[++vswz].hash != PFS_INVAL);
		REG_SET_VSWZ(src, SWIZZLE_XYZ);
	} while (s_mask[++c_mask].hash != PFS_INVAL);

	ERROR("should NEVER get here\n");
	return r;
}

static GLuint t_src(struct r300_pfs_compile_state *cs,
		    struct prog_src_register fpsrc)
{
	COMPILE_STATE;
	GLuint r = undef;

	switch (fpsrc.File) {
	case PROGRAM_TEMPORARY:
		REG_SET_INDEX(r, fpsrc.Index);
		REG_SET_VALID(r, GL_TRUE);
		REG_SET_TYPE(r, REG_TYPE_TEMP);
		break;
	case PROGRAM_INPUT:
		REG_SET_INDEX(r, fpsrc.Index);
		REG_SET_VALID(r, GL_TRUE);
		REG_SET_TYPE(r, REG_TYPE_INPUT);
		break;
	case PROGRAM_LOCAL_PARAM:
	case PROGRAM_ENV_PARAM:
	case PROGRAM_STATE_VAR:
	case PROGRAM_NAMED_PARAM:
	case PROGRAM_CONSTANT:
		r = emit_const4fv(cs, fpsrc);
		break;
	case PROGRAM_BUILTIN:
		switch(fpsrc.Swizzle) {
		case SWIZZLE_1111: r = pfs_one; break;
		case SWIZZLE_0000: r = pfs_zero; break;
		default:
			ERROR("bad PROGRAM_BUILTIN swizzle %u\n", fpsrc.Swizzle);
			break;
		}
		break;
	default:
		ERROR("unknown SrcReg->File %x\n", fpsrc.File);
		return r;
	}

	/* no point swizzling ONE/ZERO/HALF constants... */
	if (REG_GET_VSWZ(r) < SWIZZLE_111 || REG_GET_SSWZ(r) < SWIZZLE_ZERO)
		r = do_swizzle(cs, r, fpsrc.Swizzle, fpsrc.NegateBase);
	if (fpsrc.Abs)
		r = absolute(r);
	if (fpsrc.NegateAbs)
		r = negate(r);
	return r;
}

static GLuint t_scalar_src(struct r300_pfs_compile_state *cs,
			   struct prog_src_register fpsrc)
{
	struct prog_src_register src = fpsrc;
	int sc = GET_SWZ(fpsrc.Swizzle, 0);	/* X */

	src.Swizzle = ((sc << 0) | (sc << 3) | (sc << 6) | (sc << 9));

	return t_src(cs, src);
}

static GLuint t_dst(struct r300_pfs_compile_state *cs,
		    struct prog_dst_register dest)
{
	COMPILE_STATE;
	GLuint r = undef;

	switch (dest.File) {
	case PROGRAM_TEMPORARY:
		REG_SET_INDEX(r, dest.Index);
		REG_SET_VALID(r, GL_TRUE);
		REG_SET_TYPE(r, REG_TYPE_TEMP);
		return r;
	case PROGRAM_OUTPUT:
		REG_SET_TYPE(r, REG_TYPE_OUTPUT);
		switch (dest.Index) {
		case FRAG_RESULT_COLR:
		case FRAG_RESULT_DEPR:
			REG_SET_INDEX(r, dest.Index);
			REG_SET_VALID(r, GL_TRUE);
			return r;
		default:
			ERROR("Bad DstReg->Index 0x%x\n", dest.Index);
			return r;
		}
	default:
		ERROR("Bad DstReg->File 0x%x\n", dest.File);
		return r;
	}
}

static int t_hw_src(struct r300_pfs_compile_state *cs, GLuint src, GLboolean tex)
{
	COMPILE_STATE;
	int idx;
	int index = REG_GET_INDEX(src);

	switch (REG_GET_TYPE(src)) {
	case REG_TYPE_TEMP:
		/* NOTE: if reg==-1 here, a source is being read that
		 *       hasn't been written to. Undefined results.
		 */
		if (cs->temps[index].reg == -1)
			cs->temps[index].reg = get_hw_temp(cs, cs->nrslots);

		idx = cs->temps[index].reg;

		if (!REG_GET_NO_USE(src) && (--cs->temps[index].refcount == 0))
			free_temp(cs, src);
		break;
	case REG_TYPE_INPUT:
		idx = cs->inputs[index].reg;

		if (!REG_GET_NO_USE(src) && (--cs->inputs[index].refcount == 0))
			free_hw_temp(cs, cs->inputs[index].reg);
		break;
	case REG_TYPE_CONST:
		return (index | SRC_CONST);
	default:
		ERROR("Invalid type for source reg\n");
		return (0 | SRC_CONST);
	}

	if (!tex)
		cs->used_in_node |= (1 << idx);

	return idx;
}

static int t_hw_dst(struct r300_pfs_compile_state *cs,
		    GLuint dest, GLboolean tex, int slot)
{
	COMPILE_STATE;
	int idx;
	GLuint index = REG_GET_INDEX(dest);
	assert(REG_GET_VALID(dest));

	switch (REG_GET_TYPE(dest)) {
	case REG_TYPE_TEMP:
		if (cs->temps[REG_GET_INDEX(dest)].reg == -1) {
			if (!tex) {
				cs->temps[index].reg = get_hw_temp(cs, slot);
			} else {
				cs->temps[index].reg = get_hw_temp_tex(cs);
			}
		}
		idx = cs->temps[index].reg;

		if (!REG_GET_NO_USE(dest) && (--cs->temps[index].refcount == 0))
			free_temp(cs, dest);

		cs->dest_in_node |= (1 << idx);
		cs->used_in_node |= (1 << idx);
		break;
	case REG_TYPE_OUTPUT:
		switch (index) {
		case FRAG_RESULT_COLR:
			code->node[code->cur_node].flags |= R300_RGBA_OUT;
			break;
		case FRAG_RESULT_DEPR:
			fp->WritesDepth = GL_TRUE;
			code->node[code->cur_node].flags |= R300_W_OUT;
			break;
		}
		return index;
		break;
	default:
		ERROR("invalid dest reg type %d\n", REG_GET_TYPE(dest));
		return 0;
	}

	return idx;
}

static void emit_nop(struct r300_pfs_compile_state *cs)
{
	COMPILE_STATE;

	if (cs->nrslots >= PFS_MAX_ALU_INST) {
		ERROR("Out of ALU instruction slots\n");
		return;
	}

	code->alu.inst[cs->nrslots].inst0 = NOP_INST0;
	code->alu.inst[cs->nrslots].inst1 = NOP_INST1;
	code->alu.inst[cs->nrslots].inst2 = NOP_INST2;
	code->alu.inst[cs->nrslots].inst3 = NOP_INST3;
	cs->nrslots++;
}

static void emit_tex(struct r300_pfs_compile_state *cs,
		     struct prog_instruction *fpi, int opcode)
{
	COMPILE_STATE;
	GLuint coord = t_src(cs, fpi->SrcReg[0]);
	GLuint dest = undef;
	GLuint din, uin;
	int unit = fpi->TexSrcUnit;
	int hwsrc, hwdest;

	/* Ensure correct node indirection */
	uin = cs->used_in_node;
	din = cs->dest_in_node;

	/* Resolve source/dest to hardware registers */
	hwsrc = t_hw_src(cs, coord, GL_TRUE);

	if (opcode != R300_TEX_OP_KIL) {
		dest = t_dst(cs, fpi->DstReg);

		hwdest =
		    t_hw_dst(cs, dest, GL_TRUE,
			     code->node[code->cur_node].alu_offset);

		/* Use a temp that hasn't been used in this node, rather
		 * than causing an indirection
		 */
		if (uin & (1 << hwdest)) {
			free_hw_temp(cs, hwdest);
			hwdest = get_hw_temp_tex(cs);
			cs->temps[REG_GET_INDEX(dest)].reg = hwdest;
		}
	} else {
		hwdest = 0;
		unit = 0;
	}

	/* Indirection if source has been written in this node, or if the
	 * dest has been read/written in this node
	 */
	if ((REG_GET_TYPE(coord) != REG_TYPE_CONST &&
	     (din & (1 << hwsrc))) || (uin & (1 << hwdest))) {

		/* Finish off current node */
		if (code->node[code->cur_node].alu_offset == cs->nrslots)
			emit_nop(cs);

		code->node[code->cur_node].alu_end =
		    cs->nrslots - code->node[code->cur_node].alu_offset - 1;
		assert(code->node[code->cur_node].alu_end >= 0);

		if (++code->cur_node >= PFS_MAX_TEX_INDIRECT) {
			ERROR("too many levels of texture indirection\n");
			return;
		}

		/* Start new node */
		code->node[code->cur_node].tex_offset = code->tex.length;
		code->node[code->cur_node].alu_offset = cs->nrslots;
		code->node[code->cur_node].tex_end = -1;
		code->node[code->cur_node].alu_end = -1;
		code->node[code->cur_node].flags = 0;
		cs->used_in_node = 0;
		cs->dest_in_node = 0;
	}

	if (code->cur_node == 0)
		code->first_node_has_tex = 1;

	code->tex.inst[code->tex.length++] = 0 | (hwsrc << R300_SRC_ADDR_SHIFT)
	    | (hwdest << R300_DST_ADDR_SHIFT)
	    | (unit << R300_TEX_ID_SHIFT)
	    | (opcode << R300_TEX_INST_SHIFT);

	cs->dest_in_node |= (1 << hwdest);
	if (REG_GET_TYPE(coord) != REG_TYPE_CONST)
		cs->used_in_node |= (1 << hwsrc);

	code->node[code->cur_node].tex_end++;
}

/**
 * Returns the first slot where we could possibly allow writing to dest,
 * according to register allocation.
 */
static int get_earliest_allowed_write(struct r300_pfs_compile_state *cs,
				      GLuint dest, int mask)
{
	COMPILE_STATE;
	int idx;
	int pos;
	GLuint index = REG_GET_INDEX(dest);
	assert(REG_GET_VALID(dest));

	switch (REG_GET_TYPE(dest)) {
	case REG_TYPE_TEMP:
		if (cs->temps[index].reg == -1)
			return 0;

		idx = cs->temps[index].reg;
		break;
	case REG_TYPE_OUTPUT:
		return 0;
	default:
		ERROR("invalid dest reg type %d\n", REG_GET_TYPE(dest));
		return 0;
	}

	pos = cs->hwtemps[idx].reserved;
	if (mask & WRITEMASK_XYZ) {
		if (pos < cs->hwtemps[idx].vector_lastread)
			pos = cs->hwtemps[idx].vector_lastread;
	}
	if (mask & WRITEMASK_W) {
		if (pos < cs->hwtemps[idx].scalar_lastread)
			pos = cs->hwtemps[idx].scalar_lastread;
	}

	return pos;
}

/**
 * Allocates a slot for an ALU instruction that can consist of
 * a vertex part or a scalar part or both.
 *
 * Sources from src (src[0] to src[argc-1]) are added to the slot in the
 * appropriate position (vector and/or scalar), and their positions are
 * recorded in the srcpos array.
 *
 * This function emits instruction code for the source fetch and the
 * argument selection. It does not emit instruction code for the
 * opcode or the destination selection.
 *
 * @return the index of the slot
 */
static int find_and_prepare_slot(struct r300_pfs_compile_state *cs,
				 GLboolean emit_vop,
				 GLboolean emit_sop,
				 int argc, GLuint * src, GLuint dest, int mask)
{
	COMPILE_STATE;
	int hwsrc[3];
	int srcpos[3];
	unsigned int used;
	int tempused;
	int tempvsrc[3];
	int tempssrc[3];
	int pos;
	int regnr;
	int i, j;

	// Determine instruction slots, whether sources are required on
	// vector or scalar side, and the smallest slot number where
	// all source registers are available
	used = 0;
	if (emit_vop)
		used |= SLOT_OP_VECTOR;
	if (emit_sop)
		used |= SLOT_OP_SCALAR;

	pos = get_earliest_allowed_write(cs, dest, mask);

	if (code->node[code->cur_node].alu_offset > pos)
		pos = code->node[code->cur_node].alu_offset;
	for (i = 0; i < argc; ++i) {
		if (!REG_GET_BUILTIN(src[i])) {
			if (emit_vop)
				used |= v_swiz[REG_GET_VSWZ(src[i])].flags << i;
			if (emit_sop)
				used |= s_swiz[REG_GET_SSWZ(src[i])].flags << i;
		}

		hwsrc[i] = t_hw_src(cs, src[i], GL_FALSE);	/* Note: sideeffects wrt refcounting! */
		regnr = hwsrc[i] & 31;

		if (REG_GET_TYPE(src[i]) == REG_TYPE_TEMP) {
			if (used & (SLOT_SRC_VECTOR << i)) {
				if (cs->hwtemps[regnr].vector_valid > pos)
					pos = cs->hwtemps[regnr].vector_valid;
			}
			if (used & (SLOT_SRC_SCALAR << i)) {
				if (cs->hwtemps[regnr].scalar_valid > pos)
					pos = cs->hwtemps[regnr].scalar_valid;
			}
		}
	}

	// Find a slot that fits
	for (;; ++pos) {
		if (cs->slot[pos].used & used & SLOT_OP_BOTH)
			continue;

		if (pos >= cs->nrslots) {
			if (cs->nrslots >= PFS_MAX_ALU_INST) {
				ERROR("Out of ALU instruction slots\n");
				return -1;
			}

			code->alu.inst[pos].inst0 = NOP_INST0;
			code->alu.inst[pos].inst1 = NOP_INST1;
			code->alu.inst[pos].inst2 = NOP_INST2;
			code->alu.inst[pos].inst3 = NOP_INST3;

			cs->nrslots++;
		}
		// Note: When we need both parts (vector and scalar) of a source,
		// we always try to put them into the same position. This makes the
		// code easier to read, and it is optimal (i.e. one doesn't gain
		// anything by splitting the parts).
		// It also avoids headaches with swizzles that access both parts (i.e WXY)
		tempused = cs->slot[pos].used;
		for (i = 0; i < 3; ++i) {
			tempvsrc[i] = cs->slot[pos].vsrc[i];
			tempssrc[i] = cs->slot[pos].ssrc[i];
		}

		for (i = 0; i < argc; ++i) {
			int flags = (used >> i) & SLOT_SRC_BOTH;

			if (!flags) {
				srcpos[i] = 0;
				continue;
			}

			for (j = 0; j < 3; ++j) {
				if ((tempused >> j) & flags & SLOT_SRC_VECTOR) {
					if (tempvsrc[j] != hwsrc[i])
						continue;
				}

				if ((tempused >> j) & flags & SLOT_SRC_SCALAR) {
					if (tempssrc[j] != hwsrc[i])
						continue;
				}

				break;
			}

			if (j == 3)
				break;

			srcpos[i] = j;
			tempused |= flags << j;
			if (flags & SLOT_SRC_VECTOR)
				tempvsrc[j] = hwsrc[i];
			if (flags & SLOT_SRC_SCALAR)
				tempssrc[j] = hwsrc[i];
		}

		if (i == argc)
			break;
	}

	// Found a slot, reserve it
	cs->slot[pos].used = tempused | (used & SLOT_OP_BOTH);
	for (i = 0; i < 3; ++i) {
		cs->slot[pos].vsrc[i] = tempvsrc[i];
		cs->slot[pos].ssrc[i] = tempssrc[i];
	}

	for (i = 0; i < argc; ++i) {
		if (REG_GET_TYPE(src[i]) == REG_TYPE_TEMP) {
			int regnr = hwsrc[i] & 31;

			if (used & (SLOT_SRC_VECTOR << i)) {
				if (cs->hwtemps[regnr].vector_lastread < pos)
					cs->hwtemps[regnr].vector_lastread =
					    pos;
			}
			if (used & (SLOT_SRC_SCALAR << i)) {
				if (cs->hwtemps[regnr].scalar_lastread < pos)
					cs->hwtemps[regnr].scalar_lastread =
					    pos;
			}
		}
	}

	// Emit the source fetch code
	code->alu.inst[pos].inst1 &= ~R300_ALU_SRC_MASK;
	code->alu.inst[pos].inst1 |=
	    ((cs->slot[pos].vsrc[0] << R300_ALU_SRC0C_SHIFT) |
	     (cs->slot[pos].vsrc[1] << R300_ALU_SRC1C_SHIFT) |
	     (cs->slot[pos].vsrc[2] << R300_ALU_SRC2C_SHIFT));

	code->alu.inst[pos].inst3 &= ~R300_ALU_SRC_MASK;
	code->alu.inst[pos].inst3 |=
	    ((cs->slot[pos].ssrc[0] << R300_ALU_SRC0A_SHIFT) |
	     (cs->slot[pos].ssrc[1] << R300_ALU_SRC1A_SHIFT) |
	     (cs->slot[pos].ssrc[2] << R300_ALU_SRC2A_SHIFT));

	// Emit the argument selection code
	if (emit_vop) {
		int swz[3];

		for (i = 0; i < 3; ++i) {
			if (i < argc) {
				swz[i] = (v_swiz[REG_GET_VSWZ(src[i])].base +
					  (srcpos[i] *
					   v_swiz[REG_GET_VSWZ(src[i])].
					   stride)) | ((src[i] & REG_NEGV_MASK)
						       ? ARG_NEG : 0) | ((src[i]
									  &
									  REG_ABS_MASK)
									 ?
									 ARG_ABS
									 : 0);
			} else {
				swz[i] = R300_ALU_ARGC_ZERO;
			}
		}

		code->alu.inst[pos].inst0 &=
		    ~(R300_ALU_ARG0C_MASK | R300_ALU_ARG1C_MASK |
		      R300_ALU_ARG2C_MASK);
		code->alu.inst[pos].inst0 |=
		    (swz[0] << R300_ALU_ARG0C_SHIFT) | (swz[1] <<
							 R300_ALU_ARG1C_SHIFT)
		    | (swz[2] << R300_ALU_ARG2C_SHIFT);
	}

	if (emit_sop) {
		int swz[3];

		for (i = 0; i < 3; ++i) {
			if (i < argc) {
				swz[i] = (s_swiz[REG_GET_SSWZ(src[i])].base +
					  (srcpos[i] *
					   s_swiz[REG_GET_SSWZ(src[i])].
					   stride)) | ((src[i] & REG_NEGS_MASK)
						       ? ARG_NEG : 0) | ((src[i]
									  &
									  REG_ABS_MASK)
									 ?
									 ARG_ABS
									 : 0);
			} else {
				swz[i] = R300_ALU_ARGA_ZERO;
			}
		}

		code->alu.inst[pos].inst2 &=
		    ~(R300_ALU_ARG0A_MASK | R300_ALU_ARG1A_MASK |
		      R300_ALU_ARG2A_MASK);
		code->alu.inst[pos].inst2 |=
		    (swz[0] << R300_ALU_ARG0A_SHIFT) | (swz[1] <<
							 R300_ALU_ARG1A_SHIFT)
		    | (swz[2] << R300_ALU_ARG2A_SHIFT);
	}

	return pos;
}

/**
 * Append an ALU instruction to the instruction list.
 */
static void emit_arith(struct r300_pfs_compile_state *cs,
		       int op,
		       GLuint dest,
		       int mask,
		       GLuint src0, GLuint src1, GLuint src2, int flags)
{
	COMPILE_STATE;
	GLuint src[3] = { src0, src1, src2 };
	int hwdest;
	GLboolean emit_vop, emit_sop;
	int vop, sop, argc;
	int pos;

	vop = r300_fpop[op].v_op;
	sop = r300_fpop[op].s_op;
	argc = r300_fpop[op].argc;

	if (REG_GET_TYPE(dest) == REG_TYPE_OUTPUT &&
	    REG_GET_INDEX(dest) == FRAG_RESULT_DEPR) {
		if (mask & WRITEMASK_Z) {
			mask = WRITEMASK_W;
		} else {
			return;
		}
	}

	emit_vop = GL_FALSE;
	emit_sop = GL_FALSE;
	if ((mask & WRITEMASK_XYZ) || vop == R300_ALU_OUTC_DP3)
		emit_vop = GL_TRUE;
	if ((mask & WRITEMASK_W) || vop == R300_ALU_OUTC_REPL_ALPHA)
		emit_sop = GL_TRUE;

	pos =
	    find_and_prepare_slot(cs, emit_vop, emit_sop, argc, src, dest,
				  mask);
	if (pos < 0)
		return;

	hwdest = t_hw_dst(cs, dest, GL_FALSE, pos);	/* Note: Side effects wrt register allocation */

	if (flags & PFS_FLAG_SAT) {
		vop |= R300_ALU_OUTC_CLAMP;
		sop |= R300_ALU_OUTA_CLAMP;
	}

	/* Throw the pieces together and get ALU/1 */
	if (emit_vop) {
		code->alu.inst[pos].inst0 |= vop;

		code->alu.inst[pos].inst1 |= hwdest << R300_ALU_DSTC_SHIFT;

		if (REG_GET_TYPE(dest) == REG_TYPE_OUTPUT) {
			if (REG_GET_INDEX(dest) == FRAG_RESULT_COLR) {
				code->alu.inst[pos].inst1 |=
				    (mask & WRITEMASK_XYZ) <<
				    R300_ALU_DSTC_OUTPUT_MASK_SHIFT;
			} else
				assert(0);
		} else {
			code->alu.inst[pos].inst1 |=
			    (mask & WRITEMASK_XYZ) <<
			    R300_ALU_DSTC_REG_MASK_SHIFT;

			cs->hwtemps[hwdest].vector_valid = pos + 1;
		}
	}

	/* And now ALU/3 */
	if (emit_sop) {
		code->alu.inst[pos].inst2 |= sop;

		if (mask & WRITEMASK_W) {
			if (REG_GET_TYPE(dest) == REG_TYPE_OUTPUT) {
				if (REG_GET_INDEX(dest) == FRAG_RESULT_COLR) {
					code->alu.inst[pos].inst3 |=
					    (hwdest << R300_ALU_DSTA_SHIFT) |
					    R300_ALU_DSTA_OUTPUT;
				} else if (REG_GET_INDEX(dest) ==
					   FRAG_RESULT_DEPR) {
					code->alu.inst[pos].inst3 |=
					    R300_ALU_DSTA_DEPTH;
				} else
					assert(0);
			} else {
				code->alu.inst[pos].inst3 |=
				    (hwdest << R300_ALU_DSTA_SHIFT) |
				    R300_ALU_DSTA_REG;

				cs->hwtemps[hwdest].scalar_valid = pos + 1;
			}
		}
	}

	return;
}

static GLfloat SinCosConsts[2][4] = {
	{
	 1.273239545,		// 4/PI
	 -0.405284735,		// -4/(PI*PI)
	 3.141592654,		// PI
	 0.2225			// weight
	 },
	{
	 0.75,
	 0.0,
	 0.159154943,		// 1/(2*PI)
	 6.283185307		// 2*PI
	 }
};

static GLuint emit_sincosconsts(struct r300_pfs_compile_state *cs, int i)
{
	struct prog_src_register srcreg;
	GLuint constant_swizzle;

	srcreg.File = PROGRAM_CONSTANT;
	srcreg.Index = _mesa_add_unnamed_constant(cs->compiler->program->Parameters,
		SinCosConsts[i], 4, &constant_swizzle);
	srcreg.Swizzle = constant_swizzle;

	return emit_const4fv(cs, srcreg);
}

static void emit_instruction(struct r300_pfs_compile_state *cs, struct prog_instruction *fpi)
{
	COMPILE_STATE;
	GLuint src[3], dest, temp[2];
	int flags, mask = 0;
	int const_sin[2];

	if (fpi->SaturateMode == SATURATE_ZERO_ONE)
		flags = PFS_FLAG_SAT;
	else
		flags = 0;

	if (fpi->Opcode != OPCODE_KIL) {
		dest = t_dst(cs, fpi->DstReg);
		mask = fpi->DstReg.WriteMask;
	}

	switch (fpi->Opcode) {
	case OPCODE_ADD:
		src[0] = t_src(cs, fpi->SrcReg[0]);
		src[1] = t_src(cs, fpi->SrcReg[1]);
		emit_arith(cs, PFS_OP_MAD, dest, mask,
				src[0], pfs_one, src[1], flags);
		break;
	case OPCODE_CMP:
		src[0] = t_src(cs, fpi->SrcReg[0]);
		src[1] = t_src(cs, fpi->SrcReg[1]);
		src[2] = t_src(cs, fpi->SrcReg[2]);
		/* ARB_f_p - if src0.c < 0.0 ? src1.c : src2.c
		 *    r300 - if src2.c < 0.0 ? src1.c : src0.c
		 */
		emit_arith(cs, PFS_OP_CMP, dest, mask,
				src[2], src[1], src[0], flags);
		break;
	case OPCODE_COS:
		/*
			* cos using a parabola (see SIN):
			* cos(x):
			*   x = (x/(2*PI))+0.75
			*   x = frac(x)
			*   x = (x*2*PI)-PI
			*   result = sin(x)
			*/
		temp[0] = get_temp_reg(cs);
		const_sin[0] = emit_sincosconsts(cs, 0);
		const_sin[1] = emit_sincosconsts(cs, 1);
		src[0] = t_scalar_src(cs, fpi->SrcReg[0]);

		/* add 0.5*PI and do range reduction */

		emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_X,
				swizzle(src[0], X, X, X, X),
				swizzle(const_sin[1], Z, Z, Z, Z),
				swizzle(const_sin[1], X, X, X, X), 0);

		emit_arith(cs, PFS_OP_FRC, temp[0], WRITEMASK_X,
				swizzle(temp[0], X, X, X, X),
				undef, undef, 0);

		emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_Z, swizzle(temp[0], X, X, X, X), swizzle(const_sin[1], W, W, W, W),	//2*PI
				negate(swizzle(const_sin[0], Z, Z, Z, Z)),	//-PI
				0);

		/* SIN */

		emit_arith(cs, PFS_OP_MAD, temp[0],
				WRITEMASK_X | WRITEMASK_Y, swizzle(temp[0],
								Z, Z, Z,
								Z),
				const_sin[0], pfs_zero, 0);

		emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_X,
				swizzle(temp[0], Y, Y, Y, Y),
				absolute(swizzle(temp[0], Z, Z, Z, Z)),
				swizzle(temp[0], X, X, X, X), 0);

		emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_Y,
				swizzle(temp[0], X, X, X, X),
				absolute(swizzle(temp[0], X, X, X, X)),
				negate(swizzle(temp[0], X, X, X, X)), 0);

		emit_arith(cs, PFS_OP_MAD, dest, mask,
				swizzle(temp[0], Y, Y, Y, Y),
				swizzle(const_sin[0], W, W, W, W),
				swizzle(temp[0], X, X, X, X), flags);

		free_temp(cs, temp[0]);
		break;
	case OPCODE_DP3:
		src[0] = t_src(cs, fpi->SrcReg[0]);
		src[1] = t_src(cs, fpi->SrcReg[1]);
		emit_arith(cs, PFS_OP_DP3, dest, mask,
				src[0], src[1], undef, flags);
		break;
	case OPCODE_DP4:
		src[0] = t_src(cs, fpi->SrcReg[0]);
		src[1] = t_src(cs, fpi->SrcReg[1]);
		emit_arith(cs, PFS_OP_DP4, dest, mask,
				src[0], src[1], undef, flags);
		break;
	case OPCODE_DST:
		src[0] = t_src(cs, fpi->SrcReg[0]);
		src[1] = t_src(cs, fpi->SrcReg[1]);
		/* dest.y = src0.y * src1.y */
		if (mask & WRITEMASK_Y)
			emit_arith(cs, PFS_OP_MAD, dest, WRITEMASK_Y,
					keep(src[0]), keep(src[1]),
					pfs_zero, flags);
		/* dest.z = src0.z */
		if (mask & WRITEMASK_Z)
			emit_arith(cs, PFS_OP_MAD, dest, WRITEMASK_Z,
					src[0], pfs_one, pfs_zero, flags);
		/* result.x = 1.0
			* result.w = src1.w */
		if (mask & WRITEMASK_XW) {
			REG_SET_VSWZ(src[1], SWIZZLE_111);	/*Cheat */
			emit_arith(cs, PFS_OP_MAD, dest,
					mask & WRITEMASK_XW,
					src[1], pfs_one, pfs_zero, flags);
		}
		break;
	case OPCODE_EX2:
		src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
		emit_arith(cs, PFS_OP_EX2, dest, mask,
				src[0], undef, undef, flags);
		break;
	case OPCODE_FRC:
		src[0] = t_src(cs, fpi->SrcReg[0]);
		emit_arith(cs, PFS_OP_FRC, dest, mask,
				src[0], undef, undef, flags);
		break;
	case OPCODE_KIL:
		emit_tex(cs, fpi, R300_TEX_OP_KIL);
		break;
	case OPCODE_LG2:
		src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
		emit_arith(cs, PFS_OP_LG2, dest, mask,
				src[0], undef, undef, flags);
		break;
	case OPCODE_LRP:
		src[0] = t_src(cs, fpi->SrcReg[0]);
		src[1] = t_src(cs, fpi->SrcReg[1]);
		src[2] = t_src(cs, fpi->SrcReg[2]);
		/* result = tmp0tmp1 + (1 - tmp0)tmp2
			*        = tmp0tmp1 + tmp2 + (-tmp0)tmp2
			*     MAD temp, -tmp0, tmp2, tmp2
			*     MAD result, tmp0, tmp1, temp
			*/
		temp[0] = get_temp_reg(cs);
		emit_arith(cs, PFS_OP_MAD, temp[0], mask,
				negate(keep(src[0])), keep(src[2]), src[2],
				0);
		emit_arith(cs, PFS_OP_MAD, dest, mask,
				src[0], src[1], temp[0], flags);
		free_temp(cs, temp[0]);
		break;
	case OPCODE_MAD:
		src[0] = t_src(cs, fpi->SrcReg[0]);
		src[1] = t_src(cs, fpi->SrcReg[1]);
		src[2] = t_src(cs, fpi->SrcReg[2]);
		emit_arith(cs, PFS_OP_MAD, dest, mask,
				src[0], src[1], src[2], flags);
		break;
	case OPCODE_MAX:
		src[0] = t_src(cs, fpi->SrcReg[0]);
		src[1] = t_src(cs, fpi->SrcReg[1]);
		emit_arith(cs, PFS_OP_MAX, dest, mask,
				src[0], src[1], undef, flags);
		break;
	case OPCODE_MIN:
		src[0] = t_src(cs, fpi->SrcReg[0]);
		src[1] = t_src(cs, fpi->SrcReg[1]);
		emit_arith(cs, PFS_OP_MIN, dest, mask,
				src[0], src[1], undef, flags);
		break;
	case OPCODE_MOV:
		src[0] = t_src(cs, fpi->SrcReg[0]);
		emit_arith(cs, PFS_OP_MAD, dest, mask,
				src[0], pfs_one, pfs_zero, flags);
		break;
	case OPCODE_MUL:
		src[0] = t_src(cs, fpi->SrcReg[0]);
		src[1] = t_src(cs, fpi->SrcReg[1]);
		emit_arith(cs, PFS_OP_MAD, dest, mask,
				src[0], src[1], pfs_zero, flags);
		break;
	case OPCODE_RCP:
		src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
		emit_arith(cs, PFS_OP_RCP, dest, mask,
				src[0], undef, undef, flags);
		break;
	case OPCODE_RSQ:
		src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
		emit_arith(cs, PFS_OP_RSQ, dest, mask,
				absolute(src[0]), pfs_zero, pfs_zero, flags);
		break;
	case OPCODE_SCS:
		/*
			* scs using a parabola :
			* scs(x):
			*   result.x = sin(-abs(x)+0.5*PI)  (cos)
			*   result.y = sin(x)               (sin)
			*
			*/
		temp[0] = get_temp_reg(cs);
		temp[1] = get_temp_reg(cs);
		const_sin[0] = emit_sincosconsts(cs, 0);
		const_sin[1] = emit_sincosconsts(cs, 1);
		src[0] = t_scalar_src(cs, fpi->SrcReg[0]);

		/* x = -abs(x)+0.5*PI */
		emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_Z, swizzle(const_sin[0], Z, Z, Z, Z),	//PI
				pfs_half,
				negate(abs
					(swizzle(keep(src[0]), X, X, X, X))),
				0);

		/* C*x (sin) */
		emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_W,
				swizzle(const_sin[0], Y, Y, Y, Y),
				swizzle(keep(src[0]), X, X, X, X),
				pfs_zero, 0);

		/* B*x, C*x (cos) */
		emit_arith(cs, PFS_OP_MAD, temp[0],
				WRITEMASK_X | WRITEMASK_Y, swizzle(temp[0],
								Z, Z, Z,
								Z),
				const_sin[0], pfs_zero, 0);

		/* B*x (sin) */
		emit_arith(cs, PFS_OP_MAD, temp[1], WRITEMASK_W,
				swizzle(const_sin[0], X, X, X, X),
				keep(src[0]), pfs_zero, 0);

		/* y = B*x + C*x*abs(x) (sin) */
		emit_arith(cs, PFS_OP_MAD, temp[1], WRITEMASK_Z,
				absolute(src[0]),
				swizzle(temp[0], W, W, W, W),
				swizzle(temp[1], W, W, W, W), 0);

		/* y = B*x + C*x*abs(x) (cos) */
		emit_arith(cs, PFS_OP_MAD, temp[1], WRITEMASK_W,
				swizzle(temp[0], Y, Y, Y, Y),
				absolute(swizzle(temp[0], Z, Z, Z, Z)),
				swizzle(temp[0], X, X, X, X), 0);

		/* y*abs(y) - y (cos), y*abs(y) - y (sin) */
		emit_arith(cs, PFS_OP_MAD, temp[0],
				WRITEMASK_X | WRITEMASK_Y, swizzle(temp[1],
								W, Z, Y,
								X),
				absolute(swizzle(temp[1], W, Z, Y, X)),
				negate(swizzle(temp[1], W, Z, Y, X)), 0);

		/* dest.xy = mad(temp.xy, P, temp2.wz) */
		emit_arith(cs, PFS_OP_MAD, dest,
				mask & (WRITEMASK_X | WRITEMASK_Y), temp[0],
				swizzle(const_sin[0], W, W, W, W),
				swizzle(temp[1], W, Z, Y, X), flags);

		free_temp(cs, temp[0]);
		free_temp(cs, temp[1]);
		break;
	case OPCODE_SIN:
		/*
			*  using a parabola:
			* sin(x) = 4/pi * x + -4/(pi*pi) * x * abs(x)
			* extra precision is obtained by weighting against
			* itself squared.
			*/

		temp[0] = get_temp_reg(cs);
		const_sin[0] = emit_sincosconsts(cs, 0);
		const_sin[1] = emit_sincosconsts(cs, 1);
		src[0] = t_scalar_src(cs, fpi->SrcReg[0]);

		/* do range reduction */

		emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_X,
				swizzle(keep(src[0]), X, X, X, X),
				swizzle(const_sin[1], Z, Z, Z, Z),
				pfs_half, 0);

		emit_arith(cs, PFS_OP_FRC, temp[0], WRITEMASK_X,
				swizzle(temp[0], X, X, X, X),
				undef, undef, 0);

		emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_Z, swizzle(temp[0], X, X, X, X), swizzle(const_sin[1], W, W, W, W),	//2*PI
				negate(swizzle(const_sin[0], Z, Z, Z, Z)),	//PI
				0);

		/* SIN */

		emit_arith(cs, PFS_OP_MAD, temp[0],
				WRITEMASK_X | WRITEMASK_Y, swizzle(temp[0],
								Z, Z, Z,
								Z),
				const_sin[0], pfs_zero, 0);

		emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_X,
				swizzle(temp[0], Y, Y, Y, Y),
				absolute(swizzle(temp[0], Z, Z, Z, Z)),
				swizzle(temp[0], X, X, X, X), 0);

		emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_Y,
				swizzle(temp[0], X, X, X, X),
				absolute(swizzle(temp[0], X, X, X, X)),
				negate(swizzle(temp[0], X, X, X, X)), 0);

		emit_arith(cs, PFS_OP_MAD, dest, mask,
				swizzle(temp[0], Y, Y, Y, Y),
				swizzle(const_sin[0], W, W, W, W),
				swizzle(temp[0], X, X, X, X), flags);

		free_temp(cs, temp[0]);
		break;
	case OPCODE_TEX:
		emit_tex(cs, fpi, R300_TEX_OP_LD);
		break;
	case OPCODE_TXB:
		emit_tex(cs, fpi, R300_TEX_OP_TXB);
		break;
	case OPCODE_TXP:
		emit_tex(cs, fpi, R300_TEX_OP_TXP);
		break;
	default:
		ERROR("unknown fpi->Opcode %d\n", fpi->Opcode);
		break;
	}
}

static GLboolean parse_program(struct r300_pfs_compile_state *cs)
{
	COMPILE_STATE;
	struct prog_instruction* fpi;

	for(fpi = cs->compiler->program->Instructions; fpi->Opcode != OPCODE_END; ++fpi) {
		emit_instruction(cs, fpi);

		if (fp->error)
			return GL_FALSE;
	}

	return GL_TRUE;
}


/* - Init structures
 * - Determine what hwregs each input corresponds to
 */
static void init_program(struct r300_pfs_compile_state *cs)
{
	COMPILE_STATE;
	struct gl_fragment_program *mp = &fp->mesa_program;
	GLuint InputsRead = mp->Base.InputsRead;
	GLuint temps_used = 0;	/* for fp->temps[] */
	int i, j;

	/* New compile, reset tracking data */
	fp->optimization =
	    driQueryOptioni(&cs->compiler->r300->radeon.optionCache, "fp_optimization");
	fp->translated = GL_FALSE;
	fp->error = GL_FALSE;
	fp->WritesDepth = GL_FALSE;
	code->tex.length = 0;
	code->cur_node = 0;
	code->first_node_has_tex = 0;
	code->const_nr = 0;
	code->max_temp_idx = 0;
	code->node[0].alu_end = -1;
	code->node[0].tex_end = -1;

	for (i = 0; i < PFS_MAX_ALU_INST; i++) {
		for (j = 0; j < 3; j++) {
			cs->slot[i].vsrc[j] = SRC_CONST;
			cs->slot[i].ssrc[j] = SRC_CONST;
		}
	}

	/* Work out what temps the Mesa inputs correspond to, this must match
	 * what setup_rs_unit does, which shouldn't be a problem as rs_unit
	 * configures itself based on the fragprog's InputsRead
	 *
	 * NOTE: this depends on get_hw_temp() allocating registers in order,
	 * starting from register 0.
	 */

	/* Texcoords come first */
	for (i = 0; i < cs->compiler->r300->radeon.glCtx->Const.MaxTextureUnits; i++) {
		if (InputsRead & (FRAG_BIT_TEX0 << i)) {
			cs->inputs[FRAG_ATTRIB_TEX0 + i].refcount = 0;
			cs->inputs[FRAG_ATTRIB_TEX0 + i].reg =
			    get_hw_temp(cs, 0);
		}
	}
	InputsRead &= ~FRAG_BITS_TEX_ANY;

	/* fragment position treated as a texcoord */
	if (InputsRead & FRAG_BIT_WPOS) {
		cs->inputs[FRAG_ATTRIB_WPOS].refcount = 0;
		cs->inputs[FRAG_ATTRIB_WPOS].reg = get_hw_temp(cs, 0);
	}
	InputsRead &= ~FRAG_BIT_WPOS;

	/* Then primary colour */
	if (InputsRead & FRAG_BIT_COL0) {
		cs->inputs[FRAG_ATTRIB_COL0].refcount = 0;
		cs->inputs[FRAG_ATTRIB_COL0].reg = get_hw_temp(cs, 0);
	}
	InputsRead &= ~FRAG_BIT_COL0;

	/* Secondary color */
	if (InputsRead & FRAG_BIT_COL1) {
		cs->inputs[FRAG_ATTRIB_COL1].refcount = 0;
		cs->inputs[FRAG_ATTRIB_COL1].reg = get_hw_temp(cs, 0);
	}
	InputsRead &= ~FRAG_BIT_COL1;

	/* Anything else */
	if (InputsRead) {
		WARN_ONCE("Don't know how to handle inputs 0x%x\n", InputsRead);
		/* force read from hwreg 0 for now */
		for (i = 0; i < 32; i++)
			if (InputsRead & (1 << i))
				cs->inputs[i].reg = 0;
	}

	/* Pre-parse the program, grabbing refcounts on input/temp regs.
	 * That way, we can free up the reg when it's no longer needed
	 */
	for (i = 0; i < cs->compiler->program->NumInstructions; ++i) {
		struct prog_instruction *fpi = cs->compiler->program->Instructions + i;
		int idx;

		for (j = 0; j < 3; j++) {
			idx = fpi->SrcReg[j].Index;
			switch (fpi->SrcReg[j].File) {
			case PROGRAM_TEMPORARY:
				if (!(temps_used & (1 << idx))) {
					cs->temps[idx].reg = -1;
					cs->temps[idx].refcount = 1;
					temps_used |= (1 << idx);
				} else
					cs->temps[idx].refcount++;
				break;
			case PROGRAM_INPUT:
				cs->inputs[idx].refcount++;
				break;
			default:
				break;
			}
		}

		idx = fpi->DstReg.Index;
		if (fpi->DstReg.File == PROGRAM_TEMPORARY) {
			if (!(temps_used & (1 << idx))) {
				cs->temps[idx].reg = -1;
				cs->temps[idx].refcount = 1;
				temps_used |= (1 << idx);
			} else
				cs->temps[idx].refcount++;
		}
	}
	cs->temp_in_use = temps_used;
}


/**
 * Final compilation step: Turn the intermediate radeon_program into
 * machine-readable instructions.
 */
GLboolean r300FragmentProgramEmit(struct r300_fragment_program_compiler *compiler)
{
	struct r300_pfs_compile_state cs;
	struct r300_fragment_program_code *code = compiler->code;

	_mesa_memset(&cs, 0, sizeof(cs));
	cs.compiler = compiler;
	init_program(&cs);

	if (!parse_program(&cs))
		return GL_FALSE;

	/* Finish off */
	code->node[code->cur_node].alu_end =
		cs.nrslots - code->node[code->cur_node].alu_offset - 1;
	if (code->node[code->cur_node].tex_end < 0)
		code->node[code->cur_node].tex_end = 0;
	code->alu_offset = 0;
	code->alu_end = cs.nrslots - 1;
	code->tex_offset = 0;
	code->tex_end = code->tex.length ? code->tex.length - 1 : 0;
	assert(code->node[code->cur_node].alu_end >= 0);
	assert(code->alu_end >= 0);

	return GL_TRUE;
}